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Abstract: The entraining and distribution of air voids in the concrete matrix is a complex process that
makes the mechanical properties of lightweight foamed concrete (LFC) highly unpredictable. To study
the complex nature of aerated concrete, a reliable and robust prediction model is required, employing
different machine learning (ML) techniques. This study aims to predict the compressive strength of
LFC by using a support vector machine (SVM) as an individual learner along with bagging, boosting,
and random forest (RF) as a modified ensemble learner. For that purpose, a database of 191 data
points was collected from published literature, where the mix design ingredients, i.e., cement content,
sand content, water to cement ratio, and foam volume, were chosen to predict the compressive
strength of LFC. The 10-K fold cross-validation method and different statistical error and regression
tools, i.e., mean absolute error (MAE), root means square error (RMSE), and coefficient of determinant
(R2), were used to evaluate the performance of the developed ML models. The modified ensemble
learner (RF) outperforms all models by yielding a strong correlation of R2 = 0.96 along with the lowest
statistical error values of MAE = 1.84 MPa and RMSE = 2.52 MPa. Overall, the result suggests that
the ensemble learners would significantly enhance the performance and robustness of ML models.

Keywords: sustainable concrete; foamed concrete; compressive strength; machine learning; artificial
intelligence; ensemble learners

1. Introduction

The production of normal concrete consumes a large quantity of cement and natural
aggregates, which raises concerns about environmental degradation and sustainability. The
emission of carbon dioxide (CO2) from cement production plants is considered as one of the
main sources of greenhouse gas (GHG) production [1]. It is roughly estimated that cement
production plants are responsible for 7–8% of CO2 emissions into the atmosphere [1–3].
As the production of cement is expected to increase, the percentage of CO2 emission also
rises rapidly [4]. The production of cement process requires raw materials and fuel, and
the continuous mining of these materials will lead to loss of topsoil and deforestation [5].
On the other hand, the continuous usage and quarrying of resources greatly disturb the
natural habitats of organisms. From the lithosphere, the construction industry is expected
to consume 60% of the extracted materials [6]. Thus, there is a need for the production
of concrete that will minimize or replace the use of cement and natural aggregates and
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transform the construction industry towards sustainability and also be helpful to alleviate
the above-mentioned issues.

Foamed concrete (FC) is a lightweight material composed of either cement or mortar
paste with entrapped air voids. The LFC is used as an insulating material having interesting
structural features [7]. The LFC can also be used as a structural element for short- and
long-term purposes [8]. By controlling the dosage of foaming agent in LFC, a broad
range of densities (400–1850 kg/m3) can be obtained for different application purposes,
i.e., insulation, structural, filling grade, partition, etc. [9,10]. The compressive strength
of LFC decreases rapidly with a decrease in its dry density [11]. The fracture energy of
the FC notched beam is relatively high, around 18 to 25 N/m, with compressive strength
of 6.4–14 MPa [12]. It has been estimated that the entrained air bubbles can replace up
to 50% of the total concrete volume, which results in less consumption of cement and
natural aggregates [13]. The entrained air voids exhibit a strong plasticizing effect, thus
increasing the workability of foamed concrete [14]. The strength of FC can also be affected
by the shape and size of the sample specimen, loading direction, pore formation method,
and curing method [15]. The LFC has been identified as a light, economic, durable, and
sustainable construction material [16]. The possibility of replacing concrete volume with
entrained air bubbles has enhanced the sustainability feature and reduced the consumption
of cement and aggregates in concrete production.

For the production and practical application of sustainable LFC, the optimization of
the main ingredient of mix design is very important. The mix design will significantly
affect the behavior and performance of LFC [17–19]. The strength of LFC is dependent on
mix design ingredients, i.e., cement and sand content, water to binder ratio, foam volume,
and curing method [20–22]. All the significant properties of concrete, such as durability,
permeability, resistance to abrasion, etc., can be represented in terms of its compressive
strength [23]. The durability and safety of the concrete elements are evaluated in terms of
concrete compressive strength and is considered as the most important parameter [24]. The
presence of entrained air voids in LFC makes it difficult to estimate the concrete strength
accurately. Normally, the strength of concrete samples in the laboratory is calculated by
casting and crushing concrete samples of standard dimension after the stipulated time of
curing [25]. However, this is a hit-and-trial method that requires extensive laboratory work
and is uneconomical and time-consuming.

Nowadays, the evolution in the artificial intelligence (AI) and machine learning (ML)
techniques has made it possible to predict and estimate the different physical and mechan-
ical properties of concrete [26–30]. The strength of concrete can be forecasted accurately
against different parameters by using different ML techniques, such as classification, regres-
sion, and clustering [31–33]. The ML technique provides accurate and reliable results as
compared to previous regression methods [34]. Different ML techniques, such as random
forest (RF), decision tree (DT), deep learning (DL), gene expression programming (GEP),
artificial neural network (ANN), and support vector machine (SVM), use pattern recogni-
tion ability to resolve a complex engineering problem. In the case of RF and DT, tree-like
structures are used to predict the response. The RF technique randomly chooses the im-
portant parameters and DT utilizes the whole database with interested parameters and
builds multiple prediction trees. The maximum voters with averaged prediction value give
an accurate result. The nonlinear computational approach of ANN can resolve complex
engineering problems by developing input and output relations without using any specific
equation and can solve complex problems having imprecise or incomplete information.
SVM is designed to handle nonlinear regression problems with high generalization ability
and provides a globally optimal solution. GEP is an advanced form of genetic algorithm
based on Darwinian evolution theory and solves complex engineering problems in the
form of non-linear parse tree-like structures called expression trees and provides an explicit
numerical expression for the practical application of the developed model. Among all the
ML techniques, the DL approach uses a robust design algorithm to resolve complex and
rigorous engineering problems, and provides better prediction results. Siddique et al. [35]
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studied the incorporation of bottom ash in self-compacting concrete by using the ANN
approach. Similarly, Dantas et al. [36] utilized the ANN technique to evaluate the strength
of recycled concrete made from construction wastes. Chou et al. [37] employed SVM and
ANN techniques to estimate the load-bearing capacity of concrete. In the research work
of Zhang et al. [38], the RF regression method is used to predict and assess the strength of
concrete, and the significant input parameters are also discussed.

The ML approach utilizes the pattern recognition technique by using both a database
and statistical analysis. The required information is extracted from a large dataset and
establishes different relations to simplify the complex pattern and provide a simple resolu-
tion. In the ML approach, there are two types of techniques used for prediction modeling.
The first is the standard technique, where a single separate ML model is used for prediction.
In the second technique, the newly developed ensemble learning algorithms, i.e., bagging,
RF, and boosting, are used. Studies suggest that the ensemble learning model results are
more adamant and reliable than individual ML models [39]. The individual standard ML
approach, i.e., ANN, SVM, GEP, etc., forms the weak learners. In the ensemble learning ap-
proach, the training data are used to train several weak learners, which are then integrated
into a strong learner. The high-performing ML techniques are used to model the complex
concrete nature by incorporating ensemble learning algorithms and classifier generators.
The increasing popularity of the ensemble learning approach has been witnessed in the
latest prediction modeling studies due to its accuracy in results as compared to individual
standard learners [40].

This research aims to evaluate and compare the prediction capability of network and
tree-based ML models, i.e., SVM and RF. This study also addressed the enhancement in
the performance of models by using ensemble techniques, such as bagging, boosting, and
modified ensemble learner (RF). The novelty and significance of the present study are
concerned with the prediction and estimation of LFC compressive strength against different
combinations of input ingredients, i.e., cement content, sand content, water to cement ratio,
and volume of foam, by implementing the ensemble algorithm over individual learners.
Different statistical regression and error tools along with the 10-K fold cross-validation
approach were used to assess the performance, reliability, and generalization capability of
the prediction models.

2. Data Collection and Analysis
2.1. Development of Data

The required data to develop the ML models was collected from the experimental
results of seven different past published literature [2,13,41–45]. The collected database is
comprised of 191 data points where the basic mix design ingredients, i.e., cement content
(kg/m3), sand content (kg/m3), water-cement ratio, and foam volume (dm3/m3) are
taken as input, and the 28-day compressive strength of LFC as an output variable. All
the compressive strength test results used in this study are cube specimens having the
dimensions of (15 × 15 × 15) cm3. Table 1 illustrates the statistical description of the
collected data, which contain the maximum and minimum ranges, average values, and
standard deviation (SD) of all the input and output variables. To obtain a reliable prediction
model for the compressive strength of LFC, it is suggested to use the proposed expression
within the specified range. The statistical analysis shows that the data covers a large range
of mixed design ingredients, and the SD shows the distribution of the data along with its
mean value. The greater the SD value, the greater the distribution will be. The distribution
histogram of different input variables against the strength of LFC is shown in Figure 1.
The histogram shows that the collected data are highly diverse and well distributed. The
performance of the AI model is highly dependent on the distribution and dispersion of
available data [46]. The collected data of 191 data points were randomly distributed into
training and testing data. Here, 80% of data (152 data points) was used to train and
develop the ML model, and the other 20% of data (39 data points) was used to evaluate the
performance of the prediction model.
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Table 1. Statistics of collected data.

Variable Unit Role Minimum Maximum Average Standard Deviation

Cement content (kg/m3) Input 292.2 992.8 661.578 174.62
Sand content (kg/m3) Input 0 1355 699.622 233.629

water/cement - Input 0.3 0.84 0.42623 0.10244
Foam volume (dm3/m3) Input 47 690 245.431 121.496

Compressive strength (MPa) Output 1.09 48.88 23.9598 13.5282
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2.2. Pre-Processing of Data

In AI, the pre-processing of data is a key step that is used to evaluate the relation of
input and output parameters before the development of any ML models. This step is used
to check the validity of the collected data and to assess the trend followed by the output
parameter under the influence of the inputs. To avoid any complexity in the assessment
of the final ML model, the correlation between the input and output variable is evaluated
before the development of the AI model [47]. The Pearson correlation coefficient (r) was
evaluated to find out the relation between the given variables [48]. The Pearson correlation
(r) matrix of given variables is shown in Table 2 and was calculated by using the statistical
software Minitab-16. Here, the ±1 shows a strong correlation and 0 means no relation
between the input and output parameters. The positive sign shows a direct relation, and
the negative sign means there exists an inverse relationship between the variables. Figure 2
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shows the relationship of mix design parameters and the strength of LFC in the form of
contour maps, which show that all the input parameters followed the global trend. For
example, cement and sand content show a direct relation as shown in Figure 2a,b. Whereas,
w/c and foam volume followed the inverse relation as illustrated in Figure 2c,d. The dark
colors of contour maps show the intensity of input variables within a range. The results of
pre-processing manifest that all the input parameters hold a strong correlation with the
compressive strength of LFC and have also followed the global trend. Hence, the collected
data are valid and can be used for the development of ML models.
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Figure 2. Contour maps of input variables (a) cement content; (b) sand content; (c) w/c ratio;
(d) foam volume against the compressive strength.

Table 2. Pearson-correlation matrix for mix design parameters.

Cement Sand w/c Foam Compressive-Strength

Cement 1
Sand 0.026 1
w/c −0.576 −0.285 1

Foam −0.770 −0.485 0.388 1
Compressive Strength 0.777 0.402 −0.631 −0.748 1

3. Methodology

The AI models are developed by training the available data and are calibrated and
validated with the laboratory test results. The pattern recognition ability of the AI tech-
nique transforms the complex pattern of available data into a simplified pattern to resolve
complex engineering problems. Table 3 illustrates the summary of different ML algorithms
used in recent years for predicting the various properties of concrete. In this study, the
ML approaches are chosen to evaluate and compare the prediction performance of tree
and network-based decision-making techniques. The ensemble learning algorithms were
applied to individual ML models to further enhance the prediction capability of the devel-
oped models. Furthermore, the validity of the models is evaluated by using a 10-K fold
cross-validation method and different statistical evaluation tools.
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Table 3. Summarize machine-learning algorithm by researchers.

Sr. No Machine Learning Method Abbreviation Data Set Prediction Property Year Waste Materials References

1. Gene expression programming GEP 298 Compressive Strength 2021 FA [29]

2. Support Vector Machine SVM 15 Compressive strength 2021 Normal concrete [49]

3. Individuals with
ensemble modeling

ANN, bagging
and boosting 1030 Compressive strength 2021 FA

GGBFS [30]

4. Data Envelopment
Analysis DEA 114

Compressive strength,
Slump test,
L-box test,

V-funnel test

2021 FA [50]

5. Gene expression programming GEP 160 Post-fire behavior 2020 GGBFS [51]

6. Gene expression programming GEP 351 Compressive Strength 2020 GGBFS [52]

7. Multivariate MV 21 Compressive strength 2020 Crumb rubber with SF [53]

8.
Support Vector Machine

Adaptive-Network-based
Fuzzy Inference System

SVM-ANFIS 120 Deflection 2020 RC beam [54]

9. Conventional
Artificial-Neural Network C-ANN 220 Compressive Strength 2020 Foamed concrete [55]

10. Gene Expression
Programming GEP 357 Compressive strength 2020 Superplasticizers [56]

11. Adaptive neuro-fuzzy
inference system ANFIS with ANN 7 Compressive strength 2020 POFA [57]

12. Gene expression programming
and random forest GEP and RF 357 Compressive strength 2020 - [58]

13. Gene expression programming GEP 277 Axial capacity 2020 - [32]

14. Support vector machine SVM - Compressive strength 2020 FA [59]

15. Support vector machine SVM 115

Slump test,
L-box test,

V-funnel test,
Compressive strength

2020 FA [60]

16. Ensemble models RT, RF, GBRT,
ensemble GBRT 126 Unconfined

compressive strength 2019 Cemented Paste Backfill [61]
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Table 3. Cont.

Sr. No Machine Learning Method Abbreviation Data Set Prediction Property Year Waste Materials References

17. Artificial Neural-Network ANN 264 Thermal properties 2019 Silica fume [62]

18. Random forest RF 131 Compressive strength 2019
FA

GGBFS
SF

[38]

19. Artificial neuron-network ANN 205 Compressive strength 2019

FA
GGBFS

SF
RHA

[63]

20.

Intelligent rule-based
enhanced multiclass support

vector machine and
fuzzy rules

IREMSVM-FR with
RSM 114 Compressive strength 2019 FA [64]

21. Adaptive neuro-fuzzy
inference system ANFIS 55 Compressive strength 2018 - [65]

22. Multivariate adaptive
regression spline

M5
MARS 114

Compressive strength
Slump test
L-box test

V-funnel test

2018 FA [66]

23. Random Kitchen
Sink Algorithm RKSA 40

V-funnel test
J-ring test
Slump test

Compressive strength

2018 FA [67]

24. Artificial neuron-network ANN 69 Compressive strength 2017 FA [68]

25. Artificial neuron-network ANN 114 Compressive strength 2017 FA [69]

26.
Support Vector Machine

Random forest
AdaBoost

SVM
RF
AB

288 Compressive Strength 2017 Blast furnace slag and
waste tire rubber powder [70]

27. Artificial neuron-network ANN 169 Compressive strength 2016

FA
GGBFS

SF
RHA

[71]
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Table 3. Cont.

Sr. No Machine Learning Method Abbreviation Data Set Prediction Property Year Waste Materials References

28. Biogeographical-based
programming BBP 413 Elastic modulus 2016

SF
FA

SLAG
[72]

29. Artificial Neural Network
Multi Linear Regression ANN and MLR 1288 Compressive strength 2015 Clinker mortar [73]

30. Gene expression programming GEP 168 Tensile Strength 2012 Normal concrete [74]

31. Artificial neuron-network ANN 80 Compressive strength 2011 FA [35]

32. Artificial neuron-network ANN 300 Compressive strength 2009 FA [75]
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3.1. Machine Learning Approach
3.1.1. Random Forest (RF) Regression Models

The RF technique uses both the classification and regression approaches and has been
used by different researchers [38,76]. Though DT and RF both work on tree-based decision
methods but there is a major difference between them. In DT modeling, a single tree is
developed, but the RF technique results in the construction of several trees which are called
forests, and the arbitrarily chosen data are assigned to them. The data are provided in
matrix form and the different dimensions of rows and columns are selected [77]. Large
datasets can be more effectively handled by RF than any other ML technique. There are
three main steps in RF regression model development. First, the training dataset is used
to assemble the trained regression trees. Then, the mean value is evaluated for single
regression tree outcomes, and finally, validation datasets are used to validate the predicted
results. The new trained data set, which is comprised of boot-strap data, is calculated
from the original data set. The removal and swapping of data points occur and result in
the formulation of a new dataset called out-of-bag datapoints, which assembles all the
removed data points. In the end, the two by third data points are used for the estimation
of the regression function and the developed regression model is validated against the
remaining out-of-bag data points. The process continues until the required accuracy is
achieved. The deletion of data points in the out-of-bag dataset and using them in validation
is a distinctive feature of the RF technique [29]. Finally, the gross error is computed for all
expression trees, which manifests the accuracy and effectiveness of each developed tree.

3.1.2. Support Vector Machine (SVM) Models

The SVM is a supervised learner that analyzes the data for classification and regression
problems. The SVM approach can generalize and resolve practical problems, such as non-
linearity, high input dimensional spaces, and small database problems. To achieve better
accuracy, the SVM can transform input space into a high dimensional space with the help of
a non-linear transformation, which is defined by an inner product function. The non-linear
regression problems are solved efficiently by using SVM regression models [78]. For the
classification of data, the regression data are first mapped into the n-dimensional space
function. The non-linear kernel functions are used which meet the high dimensional space
to enhance the classification and distinction of the original input space data. Equation (1)
shows the linear function in space in terms of f(x,w).

f (x, w) =
n

∑
j=1

wjgj(x) + b (1)

where w, gj(x), and b refer to weight vector transformation, non-linear input space, and bias
term respectively. The loss function Lε is a measurement of estimation quality and is given
in Equation (2).

Lε = Lε(y, f (x, w) =

{
0, i f |y− f (x, w)| ≤ ε

|y− f (x, w)|, otherwise
(2)

In the SVM regression approach, the new higher dimensional feature space is com-
puted from the linear regression function by lowering the ||w ||2, which also reduces the
complexity of model at the same time. The non-negative slack variables ξi + ξ∗i establish
the function, where i = 1,2, 3 . . . , n will identify samples from the π-intensive field. The
simplified SVM regression model is constructed from the functions given in Equation (3).

min 1
2 ||w ||2 + C ∑n

i=1
(
ξi + ξ∗i

)
subjected to


yi − f (xi, w) ≤ ε + ξ∗i
f (xi, w)− yi ≤ ε + ξ∗i
ξi, ξ∗i ≥ 0, i = 1, 2, . . . , n

(3)
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The optimized problem can be changed into a resolved dual problem and is given in
Equation (4).

f (x) =
nsv

∑
i=1

(αi + α∗i )K(x, xi) subject to 0 ≤ α∗i ≤ C, 0 ≤ αi ≤ C (4)

where nsv = number of support vectors. The kernel function is given in Equation (5).

K(x, xi) =
m

∑
i=1

(gi(x) + gi(xi)) (5)

To find the support vector along with the function space, the kernel functions, i.e.,
linear, polynomial, radial basis, or sigmoid function, are chosen by the training set. It
should also be noted that the kernel parameters are also affected by the implemented
software and the chosen function.

3.2. Ensemble Algorithms Using Bagging and Boosting

The ensemble learners enhance the prediction capability and accuracy of the ML
techniques. In ensemble techniques, the training data are combined and aggregated from
several weak predictive models to reduce the concern of over-fitting. The formation of
an optimal predictive model is achieved from the combination of qualified sub-models
(weak predictive models) by using the combining, averaging, and voting approach. In
ensemble modeling, bagging is an effective technique that utilizes the bootstrap retesting
approach and assembles benefits. In this process, the part models are substituted by the
initial training set. There is a possibility that the product models may contain some data
points several times and some data points may be ignored. The outputs of component
models are averaged to obtain the final output.

Similarly, in the boosting technique, the cumulative models are developed, and several
components are formed having higher precision than individual models. In the boosting
technique, the sub-models are assembled in finals model based on the weighted average of
the dependent sub-models. In this research, the SVM regression technique is employed as a
base learner along with ensemble algorithms, i.e., bagging, boosting, and RF technique, to
predict the compressive strength of LFC. In the current study, the ensemble learners (1 each)
with 1, 2, 3, . . . . . . . . . , 20 sub-model components were employed to select the optimum
range of base learners, and the best construction was chosen based on the coefficient of
correlation (R) values. The performance of various ensemble models against different
sub-model components is shown in Figure 3. Figure 3a shows the SVR-bagging ensemble,
where 9 sub-models develop a strong correlation, and the prominent effect of sub-models
on boosting and RF ensemble models is shown in Figure 3b,c. This initial analysis shows
an enhancement in the individual learner performance with the incorporation of ensemble
learners. The chosen architectures for ensemble learners are described in Table 4.

Table 4. Analysis method for optimum sub-models.

Approach Ensemble Method ML Technique Ensemble Models Optimum Estimator R-Value

Individual - Support vector regression - - 0.88
Ensemble learner Bagging SVR-Bagging (1, 2, 3, . . . ., 20) 9 0.98
Ensemble learner Boosting SVR-Boosting (1, 2, 3, . . . ., 20) 5 0.95

Modified ensemble - Random Forest (1, 2, 3, . . . ., 20) 2 0.98
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3.3. 10-K Fold Cross-Validation and Statistical Evaluation

The 10-K fold cross-validation algorithms are used to minimize the random sampling
of training and hold-out data sets. A reliable variance within the optimal computational
time is obtained from the 10 K-fold validation approach [79]. In this study, a statistical
10-K fold approach was applied to evaluate the performance of developed models, which
distributes a data set into ten equal subsets. For model development and validation, a
unique data subset for training and testing was taken with other data subsets in each of the
ten rounds. The algorithm accuracy in 10-validation rounds for ten models is expressed as
an average accuracy.

Furthermore, different statistical regression and error tools were used to evaluate
and gauge the performance of the developed models and are given in Equations (6)–(8).
Different researches suggest that the models having a high value of R2 and low values of
statistical error are considered accurate and reliable [46,80].

R =
∑n

i=1(ai− a)(pi− p)√
∑n

i=1(ai− a)2 ∑n
i=1(pi− p)2

(6)

MAE =
∑n

i=1|ai− pi|
n

(7)

RMSE =

√
∑n

i=1(ai− pi)2

n
(8)

where ai = ith actual value and pi = ith prediction value. a = average of actual output values,
p = average of the prediction output, and n = the total number of data points.

4. Model Results and Discussion
4.1. Results of Support Vector Machine Regression with Ensemble Learner

Figure 4 shows the prediction results of SVM regression and the ensemble models
along with the prediction error distribution graphs. The individual SVM model yields a
correlation of R2 = 0.78 and the ensemble model yields R2 = 0.96 and R2 = 0.91 for bagging
and boosting models, respectively, as shown in Figure 4a,c,e. From Figure 4b, the error
distribution graph shows an average error of 4.96 MPa for the SVM regression model and
that for bagging and boosting, an average error of 2.05 MPa and 2.72 MPa was recorded,
respectively, as shown in Figure 4d,f. The result also shows that 80% of the individual SVM
model results have error values less than 6 MPa, and that for both bagging and boosting,
92% of the model results have error values less than 5 MPa. It is observed from the results
that the ensemble learning models have a strong prediction capability as compared to the
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individual SVM regression model. Moreover, the robustness of the models is also depicted
by statistical analysis. Table 5 represents the statistical evaluation of the models.
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Table 5. Statistical evaluation of different ML modeling approaches.

ML Technique Approach MAE (MPa) RMSE (MPa) R2

Support vector regression Individual 4.96 6.68 0.78
SVR-Bagging Ensemble learner 2.05 2.54 0.96
SVR-Boosting Ensemble learner 2.72 4.12 0.91

Random Forest Modified ensemble learner 1.84 2.52 0.96
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4.2. Results of Random Forest Regression

Random forest is a modified ensemble ML technique that combines the bagging
ensemble learner and random feature selection, which is user-friendly and can be employed
for the development of reliable prediction models. Better accuracy in the prediction of
compressive strength of LFC has been achieved by employing the RF technique and
is shown in Figure 5. Figure 5a shows a strong correlation of R2 = 0.96 between the
experimental and RF prediction values. From Figure 5b, it can be seen that 90% of the data
points have error values less than 5 MPa and have a maximum and minimum error value of
6.65 MPa and 0.015 MPa, respectively. An average prediction error value of 1.85 MPa was
recorded for the RF regression model. The low values of prediction errors and high value
of the coefficient of determinant (R2) manifest that the performance of prediction models
can be enhanced with the application of ensemble and modified ensemble techniques and
better accuracy can be achieved.
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The statistical evaluation of the developed ML models is illustrated in Table 5. The
individual SVR model performance is enhanced with the application of ensemble tech-
niques and the coefficient of regression R2 is increased from 0.81 for SVR to 0.96 for the
SVR-bagging model. Similarly, after the application of ensemble learners, the statistical
error values also reduced significantly. For example, the MAE value for SVR is recorded
as 4.96 MPa, which is reduced to 2.05 MPa for SVR-bagging ensemble learners. The
modified ensemble learner (RF) outperforms all the ML techniques used in this research
and yields R2 = 0.96 along with the least statistical error values of MAE = 1.84 MPa and
RMSE = 2.52 MPa, proving to be a more efficient technique with adamant results.

4.3. 10-K Fold Cross-Validation and Statistical Evaluation

A desired level of accuracy is required for the validity of prediction models. The
10 K-fold cross-validation method is used to ensure the accuracy of the model by shuffling
the available data. By using this technique, the bias associated with a random sampling of
training data set is minimized. This technique divides the experimental data samples into
equal ten subsets and utilizes the nine subsets for developing and shaping the strong learner.
Meanwhile, the last subset is utilized to gauge the validity of the developed model. The
validation process repeats for ten times, and at the end, the average accuracy is obtained
from the ten times repetition. The generalization performance and the reliability of the
model are well represented by 10 K-fold cross-validations [79]. The cross-validation tests for
individual non-linear, ensemble, and modified ensemble models are represented in Figure 6.
The results show that with the application of ensemble techniques, the performance of
the model is enhanced from a weak to strong relation along with adamant results. The
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results of 10 K-fold cross-validations are assessed by using the coefficient of determinant R2

(regression tool) along with MAE and RMSE (statistical error tools). In Figure 6a, fluctuation
in the value R2 is observed for the 10 K-fold validation of different ML techniques, but still,
a high level of accuracy is maintained in each fold. For example, the range of R2 values for
SVR-Bagging, SVR-Boosting, and RF is 0.84–0.96, 0.82–0.96, and 0.86–0.95, respectively. The
accuracy of the cross-validation was also assessed in terms of MAE and RMSE and is given
in Figure 6b,c, respectively. The average value of MAE for SVR-bagging, SVR-Adaboost,
and RF are 5.6 MPa, 5.8 MPa, and 4.2 MPa, respectively, as shown in Figure 6b. Figure 6c
shows the RMSE values of 10 K-fold validation and gives an average value of 5.7 MPa,
5.6 MPa, and 5.7 MPa for SVR-bagging, SVR-Adaboost, and RF, respectively. The results of
the 10 K-fold cross-validation method reflect the accuracy and reliability of the concerned
developed models.
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5. Conclusions

The different machine learning approaches, individual learner and ensemble learners,
are used to predict and estimate the compressive strength of lightweight foamed concrete.
The conclusions based on this analysis are given as follow.

(1) The performance of the individual SVR learner has significantly increased with the
application of bagging and boosting ensemble learners. The modified ensemble
learner (RF) has enhanced the performance of the prediction model by 23% when
compared to the individual SVR learner and yields a high correlation of R2 = 0.96.

(2) In the 10-fold cross-validation method, all the ensemble learning approaches main-
tained high accuracy along with the lowest statistical error values of MAE and RMSE.

(3) The statistical evaluation was performed using MAE, RMSE, and R2. The modified
ensemble learner (RF) approach shows a reduced error of about 62% for both MAE
and RMSE as compared to individual SVR learners.

(4) The SVR-bagging reports 58% and 61% lower error values of MAE and RMSE, respec-
tively, as compared to individual SVR learners, and an enhancement of 20% in the
robustness of the performance was observed, yielding R2 = 0.96.

(5) The SVR-boosting approach records 45% and 38% lower values of MAE and RMSE,
respectively, and yields R2 = 0.91 with a 17% enhancement in model performance as
compared to individual SVR learners.
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Notations

LFC lightweight foamed concrete
SVM support vector machine
ML machine learning
AI artificial intelligence
RF random forest
R2 coefficient of determinant
MAE mean absolute error
GHG greenhouse gases
CO2 carbon dioxide
DT decision tree
DL deep learning
ANN artificial neural network
r Pearson correlation
SVR support vector regression
CS compressive strength
RMSE root mean square error
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31. Ahmad, A.; Farooq, F.; Ostrowski, K.A.; Śliwa-Wieczorek, K.; Czarnecki, S. Application of novel machine learning techniques for
predicting the surface chloride concentration in concrete containing waste material. Materials 2021, 14, 2297. [CrossRef] [PubMed]

32. Javed, M.F.; Farooq, F.; Memon, S.A.; Akbar, A.; Khan, M.A.; Aslam, F.; Alyousef, R.; Alabduljabbar, H.; Rehman, S.K.U.; Ur
Rehman, S.K.; et al. New prediction model for the ultimate axial capacity of concrete-filled steel tubes: An evolutionary approach.
Crystals 2020, 10, 741. [CrossRef]

33. Ahmad, A.; Ahmad, W.; Aslam, F.; Joyklad, P. Compressive strength prediction of fly ash-based geopolymer concrete via
advanced machine learning techniques. Case Stud. Constr. Mater. 2022, 16, e00840. [CrossRef]

34. Li, Z.; Yim, S.H.-L.; Ho, K.-F. High temporal resolution prediction of street-level PM2. 5 and NOx concentrations using machine
learning approach. J. Clean. Prod. 2020, 268, 121975. [CrossRef]

35. Siddique, R.; Aggarwal, P.; Aggarwal, Y. Prediction of compressive strength of self-compacting concrete containing bottom ash
using artificial neural networks. Adv. Eng. Softw. 2011, 42, 780–786. [CrossRef]

36. Dantas, A.T.A.; Batista Leite, M.; De Jesus Nagahama, K. Prediction of compressive strength of concrete containing construction
and demolition waste using artificial neural networks. Constr. Build. Mater. 2013, 38, 717–722. [CrossRef]

37. Chou, J.-S.; Tsai, C.-F.; Pham, A.-D.; Lu, Y.-H. Machine learning in concrete strength simulations: Multi-nation data analytics.
Constr. Build. Mater. 2014, 73, 771–780. [CrossRef]

38. Zhang, J.; Ma, G.; Huang, Y.; Sun, J.; Aslani, F.; Nener, B. Modelling uniaxial compressive strength of lightweight self-compacting
concrete using random forest regression. Constr. Build. Mater. 2019, 210, 713–719. [CrossRef]

39. Ahani, I.K.; Salari, M.; Shadman, A. An ensemble multi-step-ahead forecasting system for fine particulate matter in urban areas. J.
Clean. Prod. 2020, 263, 120983. [CrossRef]

40. Ahmad, M.R.; Chen, B.; Yu, J. A comprehensive study of basalt fiber reinforced magnesium phosphate cement incorporating
ultrafine fly ash. Compos. Part B Eng. 2019, 168, 204–217. [CrossRef]

41. Abd, A.M.; Abd, S.M. Modelling the strength of lightweight foamed concrete using support vector machine (SVM). Case Stud.
Constr. Mater. 2017, 6, 8–15. [CrossRef]

42. Asadzadeh, S.; Khoshbayan, S. Multi-objective optimization of influential factors on production process of foamed concrete using
box-behnken approach. Constr. Build. Mater. 2018, 170, 101–110. [CrossRef]

http://doi.org/10.1061/(ASCE)0899-1561(2008)20:2(111)
http://doi.org/10.1680/macr.2005.57.1.21
http://doi.org/10.1016/j.cemconres.2006.01.011
http://doi.org/10.1016/S0008-8846(00)00430-0
http://doi.org/10.1016/j.wasman.2008.01.015
http://doi.org/10.1016/j.conbuildmat.2017.11.069
http://doi.org/10.1016/j.conbuildmat.2019.117000
http://doi.org/10.3390/ma14174934
http://www.ncbi.nlm.nih.gov/pubmed/34501024
http://doi.org/10.1016/j.conbuildmat.2021.125021
http://doi.org/10.1155/2021/6618407
http://doi.org/10.1016/j.jclepro.2021.126032
http://doi.org/10.3390/ma14092297
http://www.ncbi.nlm.nih.gov/pubmed/33946688
http://doi.org/10.3390/cryst10090741
http://doi.org/10.1016/j.cscm.2021.e00840
http://doi.org/10.1016/j.jclepro.2020.121975
http://doi.org/10.1016/j.advengsoft.2011.05.016
http://doi.org/10.1016/j.conbuildmat.2012.09.026
http://doi.org/10.1016/j.conbuildmat.2014.09.054
http://doi.org/10.1016/j.conbuildmat.2019.03.189
http://doi.org/10.1016/j.jclepro.2020.120983
http://doi.org/10.1016/j.compositesb.2018.12.065
http://doi.org/10.1016/j.cscm.2016.11.002
http://doi.org/10.1016/j.conbuildmat.2018.02.189


Materials 2022, 15, 3166 17 of 18

43. Abdulrahman Hilal, A.; Thom, N.; Dawson, A. The use of additives to enhance properties of pre-formed foamed concrete. Int. J.
Eng. Technol. 2015, 7, 286–293. [CrossRef]

44. Mounanga, P.; Gbongbon, W.; Poullain, P.; Turcry, P. Proportioning and characterization of lightweight concrete mixtures made
with rigid polyurethane foam wastes. Cem. Concr. Compos. 2008, 30, 806–814. [CrossRef]

45. Pan, Z.; Hiromi, F.; Wee, T. Preparation of high performance foamed concrete from cement, sand and mineral admixtures. J.
Wuhan Univ. Technol. Sci. Ed. 2007, 22, 295–298. [CrossRef]

46. Gandomi, A.H.; Roke, D.A. Assessment of artificial neural network and genetic programming as predictive tools. Adv. Eng. Softw.
2015, 88, 63–72. [CrossRef]

47. Azim, I.; Yang, J.; Javed, M.F.; Iqbal, M.F.; Mahmood, Z.; Wang, F.; Liu, Q.F. Prediction model for compressive arch action
capacity of RC frame structures under column removal scenario using gene expression programming. Structures 2020, 25, 212–228.
[CrossRef]

48. DeGhett, V.J. Effective use of pearson’s product-moment correlation coefficient: An additional point. Anim. Behav. 2014, 98, e1–e2.
[CrossRef]

49. Lv, Z.; Jiang, A.; Jin, J.; Lv, X. Multifractal analysis and compressive strength prediction for concrete through acoustic emission
parameters. Adv. Civ. Eng. 2021, 2021, 6683878. [CrossRef]

50. Balf, F.R.; Kordkheili, H.M.; Kordkheili, A.M. A new method for predicting the ingredients of self-compacting concrete (SCC)
including fly ash (FA) using data envelopment analysis (DEA). Arab. J. Sci. Eng. 2021, 46, 4439–4460. [CrossRef]

51. Fakhrian, S.; Behbahani, H.; Mashhadi, S. Predicting post-fire behavior of green geopolymer mortar containing recycled concrete
aggregate via GEP approach. J. Soft Comput. Civ. Eng. 2020, 4, 22–45. [CrossRef]

52. Shahmansouri, A.A.; Bengar, H.A.; Ghanbari, S. Compressive strength prediction of eco-efficient GGBS-based geopolymer
concrete using GEP method. J. Build. Eng. 2020, 31, 101326. [CrossRef]
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73. Beycioglu, A.; Emiroglu, M.; Kocak, Y.; Subaşi, S. Analyzing the compressive strength of clinker mortars using approximate
reasoning approaches—ANN vs. MLR. Comput. Concr. 2015, 15, 89–101. [CrossRef]

74. Severcan, M.H. Prediction of splitting tensile strength from the compressive strength of concrete using GEP. Neural Comput. Appl.
2012, 21, 1937–1945. [CrossRef]

75. Prasad, B.K.R.; Eskandari, H.; Reddy, B.V.V. Prediction of compressive strength of SCC and HPC with high volume fly ash using
ANN. Constr. Build. Mater. 2009, 23, 117–128. [CrossRef]

76. Han, Q.; Gui, C.; Xu, J.; Lacidogna, G. A generalized method to predict the compressive strength of high-performance concrete by
improved random forest algorithm. Constr. Build. Mater. 2019, 226, 734–742. [CrossRef]

77. Han, J.; Pei, J.; Kamber, M. Data Mining: Concepts and Techniques; Elsevier: Amsterdam, The Netherlands, 2011; ISBN 0123814804.
78. Zhang, J.; Huang, Y.; Aslani, F.; Ma, G.; Nener, B. A hybrid intelligent system for designing optimal proportions of recycled

aggregate concrete. J. Clean. Prod. 2020, 273, 122922. [CrossRef]
79. Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. Int. Jt. Conf. Artif. Intell. 1995,

14, 1137–1145.
80. Babanajad, S.K.; Gandomi, A.H.; Alavi, A.H. New prediction models for concrete ultimate strength under true-triaxial stress

states: An evolutionary approach. Adv. Eng. Softw. 2017, 110, 55–68. [CrossRef]

http://doi.org/10.1080/19648189.2016.1246693
http://doi.org/10.1016/j.autcon.2015.12.026
http://doi.org/10.12989/cac.2015.15.1.089
http://doi.org/10.1007/s00521-011-0597-3
http://doi.org/10.1016/j.conbuildmat.2008.01.014
http://doi.org/10.1016/j.conbuildmat.2019.07.315
http://doi.org/10.1016/j.jclepro.2020.122922
http://doi.org/10.1016/j.advengsoft.2017.03.011

	Introduction 
	Data Collection and Analysis 
	Development of Data 
	Pre-Processing of Data 

	Methodology 
	Machine Learning Approach 
	Random Forest (RF) Regression Models 
	Support Vector Machine (SVM) Models 

	Ensemble Algorithms Using Bagging and Boosting 
	10-K Fold Cross-Validation and Statistical Evaluation 

	Model Results and Discussion 
	Results of Support Vector Machine Regression with Ensemble Learner 
	Results of Random Forest Regression 
	10-K Fold Cross-Validation and Statistical Evaluation 

	Conclusions 
	References

