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Abstract: A new xanthone glycoside, sporormielloside (1), was isolated from an EtOAc extract of an
endolichenic fungal strain Sporormiella irregularis (No. 71-11-4-1), along with two known xanthones
(2, 3). Their structures were determined by detailed spectroscopic analysis (IR, MS, and 1D- and
2D-NMR), a chemical method, and a comparison of NMR data with closely related compounds
previously reported. According to the structures of isolated compounds, their plausible biosynthetic
pathway was deduced.
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1. Introduction

Sporormiella is a genus belonging to the family of Sporormiaceae with more than 80 species
distributed across boreal and temperate regions of the world [1–4]. Some species of the genus are
saprobes, and others are endophytic in living plants, fungi, and lichens [5–8]. Previous chemical
investigation of this genus led to isolation of polyketides (such as xanthones (sporormiellins A–C,
sporormiellones A, B, microsphaeropsone A, brocaenol B) [5,9], chromones (corymbiferone C,
corymbiferan lactone E, corymbiferone) [5], macrocyclic lactone (sporostatin) [10], organic acids
(including zaragozic acid B, L731-127, L731-128, sporovexins A, B, and sporminarins A, B) [11–13]),
triterpenoids (including FR171456, FR173945 [14,15], and (2aR,2a1R,3S,5aR,6bS,9S,10aR,12bS)-9-
hydroxy-2a1,3,6b,10,10,12b-hexamethyl-1,2,2a,2a1,3,5a,6,6b,7,8,9,10,10a,11,12,12b-hexadecahydro-4H-
cyclopenta[de]naphtho[2,1-g]chromen-4-one [16]), steroids (including 22E-3,7-epoxy-5,10:8,9-
disecoergosta-9(10),22-diene-5,8-dione, 22E-5α,6α-epoxyergosta-8(14),22-diene-3β,7α-diol, 22E-5α,6α-
epoxyergosta-8(9),22-diene-3β,7α-diol, 22E-7α-methoxy-5α,6α-epoxyergosta-8(14),22-dien-3β-ol,
22E-3β-hydroxy-5α,6α-epoxyergosta-22-en-7-one, 22E-ergosta-7,22-diene-3β,5α,6β-triol, 22E-6β-
methoxyergosta-7,22-diene-3β,5α-diol, 22E-5α,8α-epidioxyergosta-6,22-dien-3β-ol and 22E-ergosta-
4,6,8(14),22-tetraen-3-one [17]), and the nitrogenous compounds (including terezines A–D [18],
similin B [19], sporovexin C [12], and (2Z,4E,6E)-3-hydroxy-N-(1,11a,11b-trihydroxy-3,6,9-
trioxodecahydro-1H-pyrazino[1,2-a]pyrrolo[2,1-c]pyrazin-10-yl)octadeca-2,4,6-trienamide [20]).

In our previous chemical investigation of this genus Sporormiella, a series of xanthones
(sporormiellins A–C, sporormiellones A, B, and microsphaeropsone A) were isolated from S. minima
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(No. 66-3-4-2) [9]. Notably, sporormiellin A is the first discovered tetrahydrofuran-fused furochromone
with an unprecedented tetracyclic skeleton. As a part of our continuing search for more xanthones, a
chemical investigation of another species (S. irregularis (No. 71-11-4-1)) from this genus was carried
out, which led to isolation of a new xanthone glycoside, sporormielloside (1), along with two known
biogenetically related compounds, calyxanthone-8-methyl ether (2) and endocrocin (3). Compound 2
is a known compound; however, there is no reference reporting its NMR data. Therefore, the details of
the isolation and structural elucidation of these isolated compounds are reported herein.

2. Results and Discussion

Compound 1 was obtained as a yellow amorphous powder. The quasi-molecular ion at
m/z 451.1240 [M + H]+ by HRESIMS indicated the molecular formula of 1 was C21H22O11 with
11 degrees of unsaturation. The 1H-NMR spectrum (DMSO-d6, Figure S1) displayed six exchangeable
protons (δH 11.76 (1H, br s), 11.64 (1H, br s), 5.14 (1H, d, J = 4.9 Hz, 21-OH), 5.01 (1H, d, J = 4.8 Hz,
31-OH), 4.92 (1H, d, J = 5.1 Hz, 41-OH), and 4.26 (1H, t, J = 5.6 Hz, 61-OH)), three aromatic protons
(δH 6.92 (1H, br s, H-3), 6.65 (1H, br s, H-15), and 6.58 (1H, s, H-7)), five sp3 methine protons (including
one anomeric proton δH 4.84 (1H, d, J = 7.6 Hz, H-11)), one sp3 methylene group (δH 3.60 (1H, ddd,
J = 11.6, 5.6, 1.8 Hz, H-61a) and 3.39 (1H, ddd, J = 11.6, 5.8, 5.6 Hz, H-61b)), and two methyl groups
(δH 3.92 (3H, s, 8-OCH3), 2.39 (3H, br s, H-1)). The 13C-NMR and DEPT-135 spectra (Figure S2)
of 1 showed 21 carbon signals including a ketone carbonyl (δC 183.6), twelve aromatic carbons
(δC 160.1, 159.9, 157.6, 155.5, 149.3, 148.5, 125.1, 111.2, 107.9, 104.7, 101.3, and 95.5), two methyl carbons
(including one oxygenated (δC 56.7)), and a set of hexose moiety carbons (δC 103.6, 77.3, 76.5, 74.2, 69.9,
and 61.1). According to the analysis of coupling constants (3JH-21,H-31 = 8.6 Hz, 3JH-31,H-41 = 8.6 Hz, and
3JH-41,H-51 = 9.6 Hz), the analysis of 1H-1H COSY (Figure 1), and a comparison with the previously
reported [21,22] 13C-NMR data of the glucopyranoside unit, the hexose moiety of 1 was identified
as glucopyranoside (Glu). After acid hydrolysis and derivatization of 1, the HPLC analysis revealed
the presence of D-glucoses and compared them with derivatives obtained by the same method with
standard monosaccharides [23]. The Glu unit in 1 was attached to the aglycone via a β-linkage
on the basis of the coupling constant of the anomeric proton located at δH 4.84 (1H, d, J = 7.6 Hz,
H-11). The connection position of Glu unit to aglycone was established at C-9 on the basis of the
HMBC correlation from H-11 to C-9. Combined with the molecular formula and chemical shifts of
1H and 13C, the structure of aglycone was established based on the key HMBC correlations from
H-1 to C-2/C-3/C-15, from H-3 to C-4/C-12/C-13/C-15, from H-15 to C-3/C-13/C-14, from H-7 to
C-6/C-8/C-9/C-11/C-12, from 8-OCH3 to C-8, and the key ROESY correlations between 8-OCH3 and
H-7/H-11 (as shown in Figure 1). Therefore, the structure of 1 was elucidated as shown in Figure 2,
which was a new xanthone glycoside called sporormielloside. The assignments of all proton and
carbon resonances are provided in Table 1.
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1

δC, Mult δH, Mult, (J in Hz) 1H-1H COSY HMBC ROESY 
1 21.9, CH3 2.39, br s 3, 15 2, 3, 15  
2 149.3, qC     
3 107.9, CH 6.92, br s 1, 15 1, 4, 12, 13, 15  
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6 157.6, qC     
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Table 1. The 1H-NMR (400 MHz) and 13C-NMR (100 MHz) data of compound 1 (in DMSO-d6).

No.
1

δC, Mult δH, Mult, (J in Hz) 1H-1H COSY HMBC ROESY

1 21.9, CH3 2.39, br s 3, 15 2, 3, 15
2 149.3, qC
3 107.9, CH 6.92, br s 1, 15 1, 4, 12, 13, 15
4 155.5, qC
6 157.6, qC
7 95.5, CH 6.58, s 6, 8, 9, 11, 12 8-OCH3
8 160.1, qC
9 125.1, qC

10 148.5, qC
11 101.3 qC
12 183.6, qC
13 104.7, qC
14 159.9, qC
15 111.2, CH 6.65, br s 1, 3 1, 3, 13, 14

8-OCH3 56.7, CH3 3.92, s 8 7, 11

6-OH * 11.76, br s
14-OH * 11.64, br s

11 103.6, CH 4.84, d, (7.6) 21 9 31, 51, 8-OCH3
21 74.2, CH 3.32, overlapped 11, 31, 21-OH 11, 31, 41

31 76.5, CH 3.24, td, (8.6, 4.8) 21, 41, 31-OH 21, 41 11, 51

41 69.9, CH 3.16, m 31, 51, 41-OH 31, 51, 61

51 77.3, CH 3.09, ddd, (9.6, 5.8, 1.8) 41, 61a, 61b 11, 41 11, 31

61 61.1, CH2
3.60, ddd, (11.6, 5.6, 1.8), a
3.39, ddd, (11.6, 5.8, 5.6), b

51, 61b, 61-OH
51, 61a, 61-OH

21-OH 5.14, d, (4.9) 21

31-OH 5.01, d, (4.8) 31

41-OH 4.92, d, (5.1) 41

61-OH 4.26, t, (5.6) 61a, 61b

*: The assignment maybe exchanged.

Compound 2 was obtained as a yellowish amorphous powder. The quasi-molecular ion
at m/z 323.0527 [M + Na]+ by HRESIMS indicated the molecular formula of 2 was C16H12O6

with 11 degrees of unsaturation. The 1H-NMR spectrum (DMSO-d6, Figure S7) displayed two
exchangeable protons (δH 13.23 (1H, br s), 12.33 (1H, brs)), four aromatic protons (δH 7.20 (1H,
d, J = 2.4 Hz, H-9), 6.99 (1H, d, J = 2.4 Hz, H-7), 6.88 (1H, br s, H-3), and 6.67 (1H, br s, H-15)), and
two sp3 methyl groups (δH 3.96 (3H, s, 8-OCH3), 2.41 (3H, s, H-1)). The 13C-NMR and DEPT-135
spectra (Figure S8) showed 16 signals, assigned two carbonyl carbons (a ketone one (δC 179.2) and a
carboxylic acid/ester one (δC 168.8)), twelve sp2 aromatic carbons, and two methyl carbons (including
an oxygenated one (δC 56.6)). Combined with the molecular formula and chemical shifts of 1H and
13C, the key HMBC correlations from H-1 to C-2/C-3/C-15, from H-3 to C-4/C-13/C-15, from H-15 to
C-3/C-13/C-14, from H-7 to C-5/C-8/C-9/C-11, from H-9 to C-7/C-8/C-10/C-11, from 8-OCH3 to C-8,
and the key ROESY correlations between 8-OCH3 and H-7/H-9 (as shown in Figure 1) established the
planar structure of 2, which was a methyl esterified derivative of calyxanthone [24] at C-8. Therefore,
the structure of 2 was elucidated as the same as that of the known compound (calyxanthone-8-methyl
ether). The assignments of NMR data of 2 are provided in Table 2.
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Table 2. The 1H-NMR (400 MHz) and 13C-NMR (100 MHz) data of 2 (in DMSO-d6).

No.
2

δC, Mult δH, Mult, (J in Hz) 1H-1H COSY HMBC ROESY

1 21.9, CH3 2.41, br s 3, 15 2, 3, 15
2 148.8, qC
3 107.2, CH 6.88, br s 1, 15 1, 4, 13, 15
4 155.2, qC
5 168.8, qC
6 136.5, qC
7 111.8, CH 6.99, d, (2.4) 9 5, 8, 9, 11 8-OCH3
8 164.8, qC
9 101.2, CH 7.20, d, (2.4) 7 7, 8, 10, 11 8-OCH3
10 157.6, qC
11 109.7, qC
12 179.2, qC
13 105.9, qC
14 160.5, qC
15 111.2, CH 6.67, br s 1, 3 1, 3, 13, 14

8-OCH3 56.6, CH3 3.96, s 8 7, 9
5-OH * 13.23, br s

14-OH * 12.33, br s

*: The assignment maybe exchanged.

Compound 3 was obtained as a yellow amorphous powder. The quasi-molecular ion
at m/z 313.0345 [M ´ H]´ by HRESIMS indicated the molecular formula of 3 was C16H10O7

with 12 degrees of unsaturation. The 1H-NMR and 13C-NMR spectrum (DMSO-d6) are the same
as that of endocrocin [25].

Based on the structural features of compounds 1–3, the plausible biosynthetic pathway of
them was deduced (Scheme 1). The C16-octaketide produced by non-reducing polyketide synthase
undergoes cyclization to yield atrochryone carboxylic acid [26], which is either autoxidized to
endocrocin (3) or undergoes dehydration first followed by decarboxylation and spontaneous
oxidation to give emodin [27,28]. The resulting emodin will be enzymatically transformed into
intermediate a by oxidative ring opening between C-4 and C-5 [26,29], and subsequent dehydration
will give intermediate b. Compound 2 may be derived from intermediate b via methylation. After
decarboxylation and oxidation, intermediate b may transform into intermediate c, and 1 may be
derived from intermediate c via methylation and glycosylation [26].
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3. Materials and Methods

3.1. Chemicals

L-cysteine methyl ester hydrochloride, o-tolyl isothiocyanate, D-glucose (D-Glc), L-glucose (L-Glc),
and DMSO-d6 were purchased from Sigma-Aldrich Chemical Co. Ltd. (Saint Louis, MO, USA).
Methanol (MeOH) was purchased from Yuwang Industrial Co. Ltd. (Yucheng, China). Formic acid
(HCOOH) was obtained from Kemiou Chemical Reagent Co. Ltd. (Tianjin, China).

3.2. General Experimental Procedures

UV data were recorded using a JASCO V-550 UV/vis spectrometer (Jasco International Co. Ltd.,
Tokyo, Japan). IR data were recorded on a JASCO FT/IR-480 plus spectrometer (Jasco International
Co. Ltd.). Optical rotations were measured on a JASCO P1020 digital polarimeter (Jasco International
Co. Ltd.). The ESIMS spectra were performed on a Bruker amaZon SL mass spectrometer (Bruker
Daltonics Int., Boston, MA, USA), and the HRESIMS spectra were obtained on a Waters Synapt G2
mass spectrometer (Waters Corporation, Milford, MA, USA). 1D and 2D NMR spectra were acquired
with Bruker AV 400 spectrometers (Bruker BioSpin Group, Faellanden, Switzerland) using the solvent
signals (DMSO-d6: δH 2.50/δC 39.5) as internal standards. The analytical HPLC was performed on a
Dionex HPLC system equipped with an Ultimate 3000 pump, an Ultimate 3000 DAD, an Ultimate 3000
Column Compartment, an Ultimate 3000 autosampler (Thermo Fisher Scientific Inc., Sunnyvale, CA,
USA), and an Alltech (Grace) 2000ES evaporative light scattering detector (Alltech International Inc.,
Vienna, VA, USA) using a Phenomenex Gemini C18 column (4.6 mm ˆ 250 mm, 5 µm) (Phenomenex
Inc., Los Angeles, CA, USA). Semi-preparative HPLC was performed on a Dionex HPLC system, which
was equipped with an Ultimate 3000 pump, and an Ultimate 3000 RS variable wavelength detector
using a Phenomenex Gemini C18 column (10.0 mm ˆ 250 mm, 5 µm) (Phenomenex Inc.). The medium
pressure liquid chromatography (MPLC) was performed on ODS (60–80 µm, YMC Co. Ltd., Tokyo,
Japan) and equipped with a dual pump gradient system, a UV preparative detector, and a Dr Flash II
fraction collector system (Lisui E-Tech Co. Ltd., Shanghai, China). The organic solvent was evaporated
with an EYELA rotary evaporator N-1100 system (Tokyo Rikakikai Co. Ltd., Shanghai, China).

3.3. Fungus Material

The strain numbered as 71-11-4-1 was isolated from the lichen Usnea mutabilis Stirt, which was
collected in Zixishan Mountain, Yunnan province, China, in November 2006. The strain was identified
as S. irregularis based on the morphological characters by one of our authors (L.-D.G.). The fungal
strain was cultured on slants of potato dextrose agar (PDA) at 25 ˝C for 5 days. Agar plugs were used
to inoculate nine Erlenmeyer flasks (250 mL), each containing 100 mL of potato dextrose broth (PDB).
The nine flasks of the inoculated media were incubated at 25 ˝C on a rotary shaker at 200 rpm for
five days to prepare the seed culture. Fermentation was carried out in 30 Erlenmeyer flasks (500 mL),
each containing 70 g of rice. Distilled H2O (105 mL) was added to each flask, and the rice was soaked
overnight before autoclaving at 121 ˝C for 30 min. After cooling to room temperature, each flask was
inoculated with 10 mL of the spore inoculum and incubated at 25 ˝C for 40 days.

3.4. Extraction and Isolation

The culture was extracted four times with EtOAc, and the organic solvent was evaporated in a
vacuum to afford the dry crude extract (29.05 g). The crude extract was dissolved in 90% v/v aqueous
MeOH (500 mL) and partitioned against the same volume of cyclohexane to afford a cyclohexane
fraction (C, 13.42 g) and an aqueous MeOH fraction (W, 12.38 g). The aqueous MeOH fraction
(W, 12.38 g) was separated by MPLC eluting with MeOH–H2O (30:70, 50:50, 70:30, and 100:0, v/v)
to afford four fractions (W1 to W4). Fraction W3 (753.4 mg) was further separated by MPLC with
a gradient of MeOH–H2O to yield 9 subfractions (W3a–W3i) and 1 (11.7 mg). Fraction W2 (1.14 g)
was further separated by MPLC with a gradient of MeOH–H2O to yield 19 subfractions (W2a to
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W2s). Subfraction W2m (50.0 mg) was purified by semi-preparative HPLC with MeOH–H2O–HCOOH
(80:20:0.1, v/v) at a flow rate of 3 mL/min to yield 2 (4.0 mg). Subfraction W2i (66.1 mg) was purified
with semi-preparative HPLC using MeOH–H2O–HCOOH (60:40:0.1, v/v) at flow rate of 3 mL/min to
yield 3 (9.0 mg).

Sporormielloside (1) (Figure 2): Yellow amorphous powder; rαs25
D = –46.3 (c = 0.08, CHCl3–MeOH = 1:2);

UV (MeOH) λmax (log ε) 206 (4.66), 232 (4.24), 256 (4.42), 336 (4.13) nm; IR (KBr) υmax 3421, 2906,
2360, 2339, 1632, 1608, 1515, 1370, 1267, 1209, 1160, 1122, 1071, 1024, 552 cm´1; ESIMS (positive):
m/z 473 [M + Na]+, 923 [2M + Na]+; HRESIMS (positive): m/z 451.1240 [M + H]+ (calcd. for C21H23O11,
451.1240); 1H- and 13C-NMR data see Table 1.

Calyxanthone-8-methyl ether (2) (Figure 2): Yellowish amorphous powder; UV (MeOH) λmax (log ε)
202 (4.53), 236 (4.62), 251 (4.51), 302 (4.37) 351 (3.96) nm; IR (KBr) υmax 3446, 3248, 2360, 2335, 1739,
1650, 1600, 1571, 1504, 1455, 1423, 1394, 1273, 1217, 1179, 1154, 1128, 1016, 829, 687 cm´1; ESIMS
(positive): m/z 301 [M + H]+, 323 [M + Na]+; ESIMS (negative) m/z 299 [M ´H]´, 255 [M - COOH]-;
HRESIMS (positive): m/z 323.0527 [M + Na]+ (calcd. for C16H12O6Na, 323.0532); 1H- and 13C-NMR
data see Table 2.

Endocrocin (3) (Figure 2): Yellow amorphous powder; UV (MeOH) λmax (log ε) 203 (4.55), 226
(4.65), 375 (3.50), 440 (4.26) nm; IR (KBr) υmax 3377, 2361, 2339, 1715, 1671, 1622, 1384, 1255, 1206, 1171,
756 cm´1; ESIMS (negative) m/z 313 [M ´H]´; HRESIMS (negative): m/z 313.0345 [M ´H]´ (calcd.
for C16H9O7, 313.0348).

3.5. Acid Hydrolysis

Acid hydrolysis was performed according to the method described by Tanaka et al. with standard
monosaccharides [23]. Compound 1 (1.0 mg) was hydrolyzed with 2 M of HCl for 1 h at 90 ˝C. After it
was extracted with EtOAc twice, the H2O layer was evaporated in vacuo to furnish a monosaccharide
residue using a rotary evaporator. The residue was dissolved in pyridine (1.0 mL) containing L-cysteine
methyl ester hydrochloride (1.0 mg) and heated at 60 ˝C. After 1 h, 10 µL of o-tolyl isothiocyanate was
added to the reaction mixture and further reacted at 60 ˝C for 1 h. Then, the reaction mixture was
directly analyzed by the Dionex HPLC system and detected by an UV detector (at 254 nm). Analytical
HPLC was performed on the Phenomenex Gemini C18 column with isocratic elution of CH3CN–H2O
(40:60, v/v) for 40 min at a flow rate of 0.8 mL/min. The standard monosaccharides of D-Glc and L-Glc
were subjected to the same method.

4. Conclusions

Xanthones are commonly found in higher plants, fungi, and lichens [30,31]. However, only eight
xanthone aglycones have been isolated from Sporormiella. Xanthone glycosides are mainly isolated
from plants such as Gentianaceae and Guttiferae [32,33] but are rarely reported from fungi, except
for Phomopsis sp. ZH76 [34], Paecilomyces cinnamomeus BCC 9616 [35], and Aschersonia coffeae Henn.
Bcc 28712 [36]. The isolation of sporormielloside (1), which is the first report for xanthone glycoside
isolated from Sporormiella. Owing to a lack of any references to calyxanthone-8-methyl ether (2) in the
literature, moreover, the assignments of NMR data of 2 are provided here for the first time.

Supplementary Materials: Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/21/
6/764/s1.
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