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Abstract

Motivation: In proteomics, database search programs are routinely used for peptide identification from tandem
mass spectrometry data. However, many low-quality spectra cannot be interpreted by any programs. Meanwhile,
certain high-quality spectra may not be identified due to incompleteness of the database or failure of the software.
Thus, spectrum quality (SPEQ) assessment tools are helpful programs that can eliminate poor-quality spectra before
the database search and highlight the high-quality spectra that are not identified in the initial search. These spectra
may be valuable candidates for further analyses.

Results: We propose SPEQ: a spectrum quality assessment tool that uses a deep neural network to classify spectra
into high-quality, which are worthy candidates for interpretation, and low-quality, which lack sufficient information
for identification. SPEQ was compared with a few other prediction models and demonstrated improved prediction
accuracy.

Availability and implementation: Source code and scripts are freely available at github.com/sor8sh/SPEQ, imple-
mented in Python.

Contact: binma@uwaterloo.ca

1 Introduction

Tandem mass spectrometry (MS/MS) is the main approach used for
protein identification in proteomics studies (Hernandez et al., 2006).
In this technique, high-performance liquid chromatography is coupled
with tandem MS to identify peptides from complex mixtures of pro-
teins (Aebersold and Mann, 2003). First, proteins are digested into
smaller peptides using enzymes, such as Trypsin. The resulting pepti-
des are then subject to liquid chromatography tandem mass spectrom-
etry ( LC–MS/MS) analysis. Each of these experiments may produce
thousands of MS/MS spectra, each supposedly corresponding to a
peptide. A database search engine, such as MS-GFþ (Kim and
Pevzner, 2014), Comet (Eng et al., 2013), MaxQuant (Cox and
Mann, 2008), PEAKS DB (Zhang et al., 2012) or Mascot (Perkins
et al., 1999) is usually used to identify the peptide for each spectrum.
Here, experimental spectra produced using the mass spectrometer are
compared with theoretical spectra predicted from peptides in a pro-
tein database. Other approaches can be used to interpret the experi-
mentally produced spectra, such as de novo sequencing, where
identification is made without a database and instead by interpreting
the peaks of an experimental spectrum. Several programs, such as
PEAKS (Ma et al., 2003), Novor (Ma, 2015), PepNovo (Frank and
Pevzner, 2005) and pNovo 3 (Yang et al., 2019), have been developed
for de novo sequencing.

The aforementioned database search analysis inevitably causes
false-positive and false-negative identifications. With much research,
the false positives can now be reliably controlled by the false-
discovery rate (FDR). Usually, a target-decoy method (Elias and
Gygi, 2007; Moosa et al., 2020) is used to establish a score thresh-
old. Only the peptide-spectrum matches (PSMs) with scores above
the threshold are reported by the analysis. An FDR of 1% is often
used to ensure that there are (on average) at most 1% false identifi-
cations in the reported PSMs.

However, the false negatives of the database search are rarely
studied. Typically, 50% or more of the MS/MS spectra cannot be con-
fidently identified by database search. Many of these unidentified spec-
tra are due to poor spectrum quality, e.g. the spectrum does not
contain enough information for any meaningful interpretation. But an
unknown portion of these unidentified spectra are actually high-quality
spectra. Their missing is solely because of the limitation of the data
analysis, such as inadequate software, sub-optimal search parameters,
unspecified post-translational modifications (PTMs) and incomplete se-
quence databases (Nesvizhskii et al., 2006). These spectra can be
regarded as the false negatives of the data analysis. A SPEQ score that
labels the high-quality spectra would be useful in dealing with these
false-negative spectra, as elaborated in the following.

First, the amount of the unidentified high-quality spectra may
potentially provide a proxy to estimate the level of false negatives. If
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proved to be true by future research, this approach can be attractive
as there is no established method in proteomics to estimate the false-
negative rate of a data analysis. Certain statistical approaches such
as PeptideProphet (Keller et al., 2002) may be used to estimate the
false negatives caused by the correctly assigned but low-scoring
PSMs. However, the ones caused by the unassigned or wrongly
assigned spectra remain unknown. Second, a small portion (such as
1%) of the uninterpreted spectra with the highest-quality score can
be analyzed by a more time-consuming method or by a human ex-
pert manually to troubleshoot for the reasons for their missing. The
identified reasons can be used by a data analyst to adjust the search
strategy, by a tool developer to improve the software or by a lab sci-
entist to improve the MS experiment. A similar idea called Preview
was described earlier by Kil et al. (2011), where a subset of spectra
are searched to determine the best search parameters before the full
search. The SPEQ score would be helpful here to select the subset.
Third, when the quality score function is sufficiently developed to
have a nearly perfect accuracy, one can safely discard the low-
quality spectra at the very beginning of the data analysis. This
should improve both the speed of the downstream data analysis, and
reduce the false positives caused by the low-quality spectra.

In recent years, several related quality assessment tools have been
developed. Bern et al. (2004) used a set of handcrafted features and a
support vector machine to conduct spectral quality assessments.
Salmi et al. (2006) combined previous work with more handcrafted
features and used a decision tree and random forest to conduct classi-
fication. Meanwhile, Flikka et al. (2006) utilized multiple machine
learning classifiers to classify spectra based on 17 manually extracted
features. Similarly, Nesvizhskii et al. (2006) used a linear discriminant
function to combine 15 scoring features selected by a human expert
into one discriminant score. Na and Paek (2006) proposed a new
score function based on Cumulative Intensity Normalization to filter
spectra based on their score. To describe the quality of tandem mass
spectra, Wu et al. (2008) first proposed a method that mapped each
tandem spectrum into a feature vector before using fisher linear dis-
criminant analysis to construct the classifier. More recently, Ma et al.
(2011) evaluated spectral quality via sequence tagging. Handcrafted
features played a primary role in these studies, which subsequently
combined them with other classification methods. Thus, the challenge
was to find the most optimal set of spectral features that could separ-
ate as many spectra containing useful information from noisy spectra
as possible. Moreover, none of these software tools have been actively
maintained, causing them either not anymore available or fail to

work on today’s computer systems or for the data produced with
today’s mass spectrometers.

Figure 1 illustrates how the spectra of different qualities can be
classified. These scans are manually selected as examples to high-
light some of the differences between low- and high-quality spectra
but may not represent all the differences. In these examples, if a sig-
nificant peak was defined as a peak with a relative intensity of
around 5% or higher, as seen in Figure 1, the high-quality spectra
consisted of many peaks, and the number of significant peaks in that
spectrum was relatively high compared with the low-quality spec-
trum. Moreover, the m/z differences between significant peaks in a
high-quality spectrum encode meaningful information in terms of
the mass of different amino acid residues. In contrast, the low-
quality spectrum had fewer peaks, and the significant peaks were
sparse. These observable differences can be combined with other
proteomic features to build a program for spectrum qualification.
However, handcrafting all these features is tedious, particularly be-
cause different types of mass spectrometers may require different
features.

In this manuscript, we present SPEQ, a new method to predict
the SPEQ by using a deep neural network (DNN) model. In com-
parison to earlier machine learning-based methods, DNN does not
require the features to be handcrafted. Instead, the input of the new
model is just the whole spectrum, and the model’s training will auto-
matically extract beneficial features from the training data.
Therefore, in contrast to previous related works, the extracted fea-
tures differ for each type of dataset and are related to specific char-
acteristics, such as the instrument or experimental methods used to
generate the dataset. In addition, as one of the main characteristics
of the deep learning method, SPEQ benefits from the availability of
large proteome training datasets and offers better performance with
relatively less development time compared with other methods.
SPEQ’s performance and usefulness were tested in different scen-
arios to demonstrate that:

1. SPEQ has a better prediction accuracy than the other models

tested.

2. Most of the high-quality but unidentified spectra have a confi-

dent de novo sequence tag, suggesting they are indeed spectra of

peptides.

3. A small portion of the unidentified spectra with the highest-qual-

ity score can be examined to troubleshoot a data analysis, lead-

ing to the identification of more spectra.

Fig. 1. The first row (I, II and III) shows three scans that were assigned confidently by MS-GFþ (�1% FDR). In the second row (IV, V and VI), three scans that were not

assigned confidently by MS-GFþ are shown. Scans in the first row are considered high-quality samples, while the bottom row contains low-quality samples
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2 Materials and methods

In this section, we describe the datasets that are used in our experi-
ments, including the data preprocessing steps and the testing proced-
ure. Details about the implemented neural network used in SPEQ
are also presented.

2.1 Testing data
We used four datasets generated using different high-resolution
instruments in the present study.

2.1.1 Quadrupole time-of-flight dataset

This dataset was previously used by Flikka et al. (2006) for the de-
velopment of their SpectrumQuality tool, and was downloaded
from http://services.cbu.uib.no/software/spectrumquality. This data-
set (quadrupole time-of-flight (Q-TOF) N-terminal in the original
paper) contains 10 055 MS/MS spectra from extreme amino-
terminal peptides of proteins, measured with a Q-TOF mass
spectrometer. Mascot was used to search the human proteins IPI
database and IPI-derived N-terminally truncated databases for the
peptide identification. Spectra with a score equal to or above the
Mascot identity threshold, when the confidence level was set to
95%, were considered as ‘good’, while all other spectra were labeled
‘bad’. The same SPEQ labels made by Flikka et al. (2006) were kept
and used in the present article. This gives 1683 positive and 8372
negative spectra in this dataset.

2.1.2 Orbitrap human dataset

This proteome dataset was first provided by Bruderer et al. (2017)
and is available with identifier PXD005573 (Fig4_HeLa-
1m_DDA_R01_T0.raw) at the ProteomeXchange repository. It is a
data-dependent acquisition dataset obtained on a Q Exactive HF in-
strument using a HeLa lysate. ProteoWizard (Chambers et al., 2012)
was used to centroid each profile spectrum before converting the
dataset from a raw mass spectrometer output file to an XML file.

Two different database search programs, MS-GFþ and Comet,
were used to search the UniProt Homo sapiens proteome
(UP000005640) for the peptide identification. The search parame-
ters are the following: precursor tolerance ¼ 20 ppm; fixed PTM ¼
Carbamidomethyl on C; variable PTM ¼ Oxidation on M,
Acetylation at protein N-term and Deamidation on N and Q; en-
zyme ¼ Semi-tryptic. A decoy database generated with the de-Bruijn
method (Moosa et al., 2020) was also searched together to deter-
mine the FDR. A spectrum is considered high quality if a database
peptide can be identified with <1% FDR by either MS-GFþ or
Comet. This gives 95 646 positive and 123 702 negative spectra in
this dataset.

2.1.3 NIST dataset

This dataset consists of a Homo sapiens hair peptide spectral library
and was downloaded from https://chemdata.nist.gov/dokuwiki/
doku.php?id=peptidew:cdownload. It is created from data generated
by an Orbitrap Fusion Lumos instrument. A total of 6280 spectra
with 2240 unique peptide sequences are available in this dataset.
Using MS-GFþ, these spectra were then searched against the FASTA
file provided along with the spectral library (with 20 183 proteins in
it). The search parameters are the same as used in the Orbitrap
human dataset. Spectra with a peptide identification with <1%
FDR were labeled as high quality. This gives 3932 positive and 2348
negative spectra in this dataset.

2.1.4 Orbitrap mouse dataset

The last dataset used in this study was first published by McDonagh
et al. (2014) and is available with identifier PXD001054
(BMD_2013_07_31_Gastro_Aged_2.mgf) at the ProteomeXchange
repository. Similar to the second dataset, this dataset is also
obtained on a Q Exactive instrument. However, the proteins in this
dataset are from the Mus musculus (Mouse) species. The dataset has
22 686 spectra, which were searched against the UniProt Mus

musculus proteome (UP000000589) with MS-GFþ. The search
parameters are the same as used in the Orbitrap human data, except
that the precursor tolerance is set to 10 ppm to match the original
publication (McDonagh et al., 2014). Spectra with a peptide identi-
fication with <1% FDR were labeled as high quality. This gives
3648 positive and 19 038 negative spectra in this dataset.

2.2 SPEQ method
2.2.1 Vector representation

As an input, SPEQ takes a spectrum in Mascot Generic Format
(MGF). In an MGF file, for each spectrum, the peak list is provided
as tuples, where a peak is an (m/z value, raw intensity) tuple. The in-
tensity is first converted to a value between 0 and 100 by normaliz-
ing against the intensity of the most abundant peak in the spectrum.
Then we transform each peak list into a vector by binning the m/z
range using a 1.000507 m/z as the bin width and a 0.4 m/z as the off-
set. Each dimension of the vector corresponds to the maximum rela-
tive peak intensity of all the peaks in the same m/z bin. If a bin has
no peak in it, then the dimension of the vector is set to 0. A similar
procedure was used in Comet (Eng et al., 2015) to convert the spec-
trum to a vector representation. By choosing this data representa-
tion, we could induce the m/z distance between peaks of a spectrum
to the model, which is related to the quality of the spectrum. In add-
ition, we also include the precursor’s charge state and m/z as input
of the model.

2.2.2 Neural network

A DNN was used to predict the quality of a spectrum from its vector
representation. The implementation was conducted in Python 3.7
(https://www.python.org). We used the Pyteomics toolkit
(Goloborodko et al., 2013) to read the MGF files and TensorFlow
(Abadi et al., 2015) to build the SPEQ model. As shown in Figure 2,
the model used in SPEQ consisted of a one-dimensional convolu-
tional module for automatic feature extraction. This was connected
to a fully connected neural network that was used to conduct the
classification.

The first part contained an embedding layer on top of three con-
volutional blocks, where each block had a dropout layer connected
to a 1D convolutional layer and a 1D MaxPooling layer at the end.
This part was designed to process the vector representation and ex-
tract features from the peaks of the input spectrum. The parameters
of each convolutional layer (first layer: kernel size 11 with strides 5,
second layer: kernel size 51 with strides 10, third layer: kernel size 3
with strides 1) were selected so that the important information with-
in a spectrum was best induced to the model. In the next part, the
output of the first part was concatenated to the two additional fea-
tures: the precursor’s charge state and m/z. The obtained vector was
fed to a three-layer fully connected neural network. After applying a
sigmoid activation function on the last layer, we obtained P, which
is the probability of a spectrum being high quality; it can also be
interpreted as the quality score for the input spectrum. After apply-
ing a threshold on this probability, the output was assigned a label
of ‘good’ or ‘bad’ for the input spectrum. The model was compiled
with the Adam optimizer (Kingma and Ba, 2014), and was trained
using a binary cross-entropy loss function.

2.3 Other methods tested
Three other methods, a baseline model, SpectrumQuality and Bern’s
model were tested together with the SPEQ method. The baseline
model simply uses the number of peaks in the spectrum as the qual-
ity score. SpectrumQuality is the method published by Flikka et al.
(2006) and the software was downloaded from http://services.cbu.
uib.no/software/spectrumquality.

The Bern’s model was previously published by Bern et al. (2004).
In this model, each input is a histogram of m/z differences from a
spectrum. The histogram is a 187-length vector, where an element i
is the bin of m/z difference of [i� 0:5; iþ 0:5] (187 is the maximum
mass of an amino acid residue). As mentioned by Bern et al. (2004),
due to the time complexity of the algorithm used in the proposed
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data representation, this method requires significant training and
testing time. The software that uses the Bern’s model has not been
published by the author and is not available for use. Therefore, the
results presented here are derived from our implementation based
on the model described by Bern et al. (2004). To obtain a score for
each sample, we used the Epsilon-Support Vector Regression (SVR)
package available in scikit-learn (Pedregosa et al., 2011), with radial
basis functions as the kernel. In the SVR model, the width param-
eter, c, must be set. This value was set to 500 in the study by Bern
et al. (2004). However, this led to very low classification perform-
ance in our experiments (area under the receiver operating charac-
teristic (ROC) curve around 50%). Instead, c was set to ‘auto’ first.
A linear search was also performed to find the best c. These two
approaches gave a very similar performance. The better perform-
ance of the two was used in each comparison.

2.4 Testing procedure
SPEQ’s performance was evaluated in three different aspects. First,
the prediction accuracy of SPEQ and other models was compared. A
5-fold cross-validation was used to measure the prediction accuracy.
More specifically, the dataset was first divided into five parts
fD1; . . . ;D5g. Following this, each part (Di) was used once as the
test set, while the four other partitions (Dj : i 6¼ j) were combined
and used as the training set. This process was conducted five times,
and the final reported performance of the model was the average of
these five processes. The dividing procedure ensured that spectra
with the same m/z and z were in the same part. This way, repeated
scans of the same precursor were not simultaneously present in the
training and testing set. Moreover, a cross-species validation was
also performed, where the models were trained on the Orbitrap
human dataset and tested on the independent Orbitrap mouse data-
set. The results of this accuracy test are provided in Section 3.1.

Second, the unidentified spectra from a database search analysis
were subject to additional analyses to check whether they can be
interpreted by other analytical methods. In this test, the Orbitrap
human dataset was first searched with MS-GFþ with the parameters
provided in Section 2.1.2. Using the labels generated from the MS-
GFþ search, we trained the SPEQ model and used the model to as-
sign a quality score (SPEQ score) to all the spectra. The unidentified
spectra were further searched with the Comet software with the
same parameters. The spectra unidentified by the first two analyses
were de novo sequenced with the Novor software (Ma, 2015). A de
novo sequence that contains at least five amino acids with a high
confidence score (>70) is regarded as a confident de novo tag. It is
expected that a higher SPEQ score in the spectra unidentified by the
first search is associated with a higher percentage of spectra assigned
by either Comet or de novo sequencing. The results of this test are
provided in Section 3.2.

The third test is to demonstrate the usefulness of the SPEQ score
in ‘troubleshooting’ a data analysis. In this test, the Orbitrap human
dataset was first searched with MS-GFþ with the parameters pro-
vided in Section 2.1.2. It was suspected that many of the

unidentified spectra were because they contain a PTM unspecified in
the search parameter. However, searching with too many variable
PTMs on the whole dataset is prohibitively slow. To troubleshoot,
SPEQ was used to score all the unidentified spectra. The top 1% of
these unidentified spectra according to the SPEQ score were selected
to conduct a search with many additional variable PTMs. From the
identified peptides, a few most common PTMs were selected. Then
a third-round search was conducted to identify more peptides using
all of the unidentified spectra and these few additionally selected
variable PTMs. The results of this ‘troubleshooting’ test are pro-
vided in Section 3.3.

3 Results

3.1 Prediction accuracy
Figures 3–5 show the ROC curves of the predictions made by each
model on the Q-TOF, Orbitrap human and NIST datasets, respect-
ively. The area under curve (AUC) of the ROC curve for each
method is also provided in the figures. The figures clearly show that
SPEQ’s prediction accuracy outperforms all other tools in all data-
sets. Note that, SpectrumQuality’s curve has only one data point.
This is because it does not output a quality score, but only classifies
the spectrum into two classes. Also, SpectrumQuality failed to make
any valid prediction on the Orbitrap human dataset (Fig. 4) and the
NIST dataset (Fig. 5). Instead, it assigned high quality to every spec-
trum. This is likely because both datasets were obtained from
Orbitrap instruments, while the model was developed based on data
from the Q-TOF instruments.

All models’ performances were low for the NIST dataset. This is
likely because the spectra in the NIST dataset have already been

Fig. 2. The architecture of the DNN model. A feature extraction part using three Conv1D modules is connected to a three-layer FC module. A Conv1D is a 1D convolutional

layer, and an FC is a fully connected network. The inputs of the model are the vector representation of the MS/MS spectrum, and the mass to charge ratio (m/z) and charge

state (z) of the precursor ion

Fig. 3. ROC curves and AUC of different tools on the Q-TOf dataset
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selected when they were collected in the spectrum library, and lack
extremely low-quality spectra. It is a harder task to distinguish be-
tween the high and medium-quality spectra than between the high
and low-quality spectra.

Figure 6 shows the ROC curves and their AUC of different meth-
ods on the Orbitrap mouse dataset. The SpectrumQuality tool failed
to make any valid prediction here and is not included in the figure.
To produce the curves, the SPEQ and Bern’s methods were either
trained on the same dataset and tested with a 5-fold cross-
validation, or trained on the Orbitrap human dataset. Not surpris-
ingly, for both models, the cross-validation test on the same dataset
produced better accuracy than training on a different dataset.
Nevertheless, SPEQ achieved a decent prediction accuracy when
training and testing were performed on different datasets. Also,
SPEQ’s performance is better than both the Bern’s method and the
baseline method in both testing scenarios.

3.2 Unidentified high-quality spectra
Figure 7 shows the results of the test for the unidentified spectra (as
described in Section 2.4). After searching the 52 285 spectra in the
Orbitrap human dataset using MS-GFþ, 20 885 spectra failed to be
confidently identified. These unidentified spectra were subject to a
second database search with Comet and de novo sequencing with
Novor. The histogram of Figure 7A shows the number of spectra in
each SPEQ score interval, and the distribution of the four categories
of spectra:

• identified in the first search by MS-GFþ,

• not identified in the first search but identified by Comet in the se-

cond search,
• not identified by the first two searches but containing a confident

de novo sequence tag, and
• not interpreted by any of these analyses.

Figure 7B is the same as Figure 7A except that the y-axis
becomes the percentage in each SPEQ score interval. To plot these
figures, the logit of the probability predicted by SPEQ was used as
the SPEQ score for a more proper division of the score intervals.

As can be seen, the percentage of spectra confidently identified
by at least one engine grew as the quality score provided by SPEQ
increased. This suggests that high-scoring spectra not identified by
the first search engine can often be further interpreted in other anal-
yses, while low-score spectra are usually not interpretable. It is more
likely for a spectrum containing valuable information to obtain a
higher score compared with an uninterpretable scan.

Moreover, when the score is high enough (e.g. �1.5), the major-
ity of the spectra not identified by any of two database search tools
contain confident de novo sequencing tags. This strongly suggests
that these spectra are indeed produced by peptides, but unidentified
because of the inadequate data analysis.

3.3 SPEQ-directed troubleshooting
For the troubleshooting test (as described in Section 2.4), using the
Orbitrap human dataset, the first search with MS-GFþ used the fol-
lowing variable PTMs.

• Oxidation on M,
• Acetyl at protein N-term and
• Deamidated on N and Q.

Note that, the original publication (Bruderer et al., 2017) of the
dataset used only the first two variable PTMs in this list. But adding
the third PTM resulted in more identifications in the first search,
which identified 31 400 of the 52 285 spectra. Among the 20 885
unidentified spectra, the top 1% spectra (according to their SPEQ
score) were searched again with the following variable PTMs:

• Oxidation on M,
• Deamidated on N and Q,
• Carbamidomethyl at peptide N-term,
• Pyro-Glu at peptide N-term on Q and E,

Fig. 5. ROC curves and AUC of different tools on the NIST dataset

Fig. 6. ROC curves and AUC of different methods on the Orbitrap mouse dataset.

The SPEQ (trained) and Bern (trained) curves were obtained when the models were

trained with the same Orbitrap mouse dataset and tested with 5-fold cross-valid-

ation. The SPEC (transferred) and Bern (transferred) curves were obtained when the

models were trained with the Orbitrap human dataset and tested with the Orbitrap

mouse dataset

Fig. 4. ROC curves and AUC of different tools on the Orbitrap human dataset
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• Acetyl at protein N-term,
• Acetyl on K,
• Methyl on K and
• Phospho on S, T and Y.

The search took 3.75 min and identified 24 confident peptides
with PTMs listed above. Three of the most common PTMs in these
peptides were:

• Pyro-Glu at peptide N-term on Q,
• Carbamidomethyl at peptide N-term and
• Deamidated on N and Q.

Because deamidation was used in the first search already, for the
24 peptides identified here, deamidation always appeared together
with another PTM in the same peptide.

A third search was conducted to search with these three most
common PTMs and the 20 885 unidentified spectra. The search fin-
ished in 12.06 min and confidently identified 829 spectra that con-
tain at least one of these three PTMs. To compare, searching all the
20 885 unidentified spectra with the longer list of PTMs took
78.44 min and identified 863 spectra.

The results here demonstrate that the SPEQ score can indeed be
used to select a small portion (1%) of the unidentified spectra for
troubleshooting, and the factors identified by the troubleshooting
can be used to adjust the search strategy in additional searches to
identify more peptides.

4 Discussion

In this work, we present SPEQ, a software tool that uses deep learn-
ing to predict the quality of an MS/MS spectrum. The prediction ac-
curacy of SPEQ was evaluated by the ROC curves on several
different datasets. SPEQ performed better (with higher AUC) than
the other tools compared (Figs 3–5). This is still the case when the
testing and training data are from independent experiments of two
different species (Fig. 6).

The use of deep learning may be an important reason for the im-
provement of SPEQ. With sufficiently large training data, deep
learning can automatically discover the features important for the
prediction. This is in contrast to the traditional machine learning
that requires the tool developers to handcraft features. Handing off
the feature extraction to the learning algorithm not only saves the
developers’ time, but also allows the learning algorithm to discover

new features that the tool developers may not be able to. This is par-
ticularly interesting in a cross-disciplinary area such as bioinformat-
ics, where sometimes the tool developer may not be the most
knowledgeable domain expert to handcraft the features. Also, this
makes the model more adaptive to different types of MS instruments
and experimental methods.

Experiments were also carried out to demonstrate the potential
usefulness of SPEQ in proteomics data analysis. In general, a quality
assessment tool helps the proteomics data analysis in two ways.
First, it provides some hope in dealing with the false negatives. The
proteomics research community has established a standard way (the
FDR) to control false positives of a data analysis. However, there is
no established way to know the level of false negatives in a data ana-
lysis. The results of Figure 7 show a strong correlation between the
SPEQ score and the percentage of the false-negative spectra (i.e. the
spectra that were not identified by the initial database search but
identifiable with additional efforts). This suggests that the quality
score assigned by SPEQ (or by another tool) can potentially be used
to estimate the level of false negatives. However, more research is
needed to prove this can indeed provide an accurate estimation.

Second, the quality score can be used to direct the allocation of
resources (either computing power or human experts’ time) to focus
on the high-quality spectra, which have the best chance to be inter-
preted by the data analysis effort. This is demonstrated in the article
with the ‘troubleshooting’ experiment, where the top 1% of the un-
identified spectra were analyzed with a much more extensive and
costly search by selecting a long list of variable PTMs. This revealed
that some peptides contain PTMs that had not been specified in the
original database search. By adding back the most frequent PTMs
found by the troubleshooting, more spectra were identified. This
troubleshooting practice is in line with the Preview idea proposed by
Kil et al. (2011), where only a subset of spectra was searched first to
determine the best search parameters for the full search. The quality
score can be also used here to select the best subset of spectra for the
pre-search.

While SPEQ improved the prediction accuracy relative to other
tools, its accuracy is still not ideal. For example, there is still a big
gap between 1 and the AUC of SPEQ (0.7688) on the Orbitrap
human dataset. Since the spectra were labeled according to whether
they are confidently identified by database search, the false negatives
of the database search would have created mislabels in the training
and testing data. The mislabels in the testing data could have an ad-
versary effect on the AUC. In another word, the actual performance
of SPEQ (and other tools) may be better than indicated here.
Meanwhile, if the number of mislabeled spectra in the training data

A B

Fig. 7. (A) The number of identified and unidentified spectra in different intervals of the quality score assigned by SPEQ. (B) The relative ratio of identified and unidentified

spectra in different intervals of the SPEQ score. The SPEQ score used in this figure is the logit of the probability predicted by SPEQ. The black, dark gray and light gray bars

represent the spectra identified by MS-GFþ, Comet but not MS-GFþ, and Novor but not the other two tools, respectively. The white bars represent the spectra unidentified by

any of the three tools
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can be reduced, the machine learning algorithm will learn a better
model too. Other possible ways to improve the model include differ-
ent neural network structures, larger training data and other learn-
ing strategies such as transferred learning. In fact, if the scoring
function can be sufficiently developed in the future, the low-quality
spectra can be excluded from the analysis from the very beginning.
This will not only improve the data analysis speed, but also reduce
the false positives created by these low-quality spectra.

Overall, we have developed the SPEQ tool for spectrum quality as-
sessment based on deep learning, and demonstrated its usefulness.
Further improvement of the quality score by the bioinformatics com-
munity is needed, and will greatly enhance the usefulness of the qual-
ity assessment. The availability of SPEQ may help other proteomics
data analyses and support other bioinformatics researchers to further
improve the accuracy of SPEQ assessment. SPEQ is written in Python
and the source code is freely available at github.com/sor8sh/SPEQ.
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