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Abstract: In recent years, the “planning as inference” paradigm has become central to the study of
behaviour. The advance offered by this is the formalisation of motivation as a prior belief about
“how I am going to act”. This paper provides an overview of the factors that contribute to this prior.
These are rooted in optimal experimental design, information theory, and statistical decision making.
We unpack how these factors imply a functional architecture for motivated behaviour. This raises
an important question: how can we put this architecture to work in the service of understanding
observed neurobiological structure? To answer this question, we draw from established techniques
in experimental studies of behaviour. Typically, these examine the influence of perturbations of
the nervous system—which include pathological insults or optogenetic manipulations—to see their
influence on behaviour. Here, we argue that the message passing that emerges from inferring
what to do can be similarly perturbed. If a given perturbation elicits the same behaviours as a
focal brain lesion, this provides a functional interpretation of empirical findings and an anatomical
grounding for theoretical results. We highlight examples of this approach that influence different
sorts of goal-directed behaviour, active learning, and decision making. Finally, we summarise their
implications for the neuroanatomy of inferring what to do (and what not to).

Keywords: Bayesian; information gain; experimental design; inference; message passing; anatomy;
active inference

1. Introduction

An important recent development in the study of motivated behaviour is the idea of planning
as inference [1,2]. In place of asking how we decide what we will do next, we ask how we infer
what we will do. This simple reformulation recruits the toolbox of statistical inference in service of
understanding motivation. Motivational drives are then simply the things that contribute to our prior
beliefs about how we will act [3]. These priors are updated to posterior beliefs based upon sensory
observations that afford evidence for or against alternative hypothetical behaviours. Characterising
motivational drives now becomes a problem of specifying a prior distribution over the ways in which
we might expect an individual to behave. Here, we review attempts to find the constituents of this
prior. Broadly, these are divided into exploratory and exploitative influences [4]. Exploratory drives
are grounded in information theory and experimental design [5–8], while exploitative influences are
frequently encountered in control problems in engineering [9,10]. We hope to provide some intuition
as to these contributing factors. However, the purpose of this article is not to provide principled
derivations for each of these contributions. Instead, our aim is to consider their influence over
behaviour, the consequences of their disruption, and their biological substrates.

Understanding the form of a prior belief tells us about the dependencies between variables
in a model or, more accurately, between the probability distributions describing these variables.
This dependency structure may be interpreted as a neuronal network [11,12], expressing how
populations of neurons interact with one another. While offering a plausible computational architecture
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for planning as inference, much of our work is still ahead of us. The outstanding challenge is to associate
this (behaviourally motivated) connectivity structure with the known anatomy of the nervous system.
This is where perturbations of these systems, either experimentally or following pathological insult,
offer solutions. If we understand the behavioural consequences of perturbations to a computational
neuronal network, we can use observations of those same behavioural consequences in biological
systems to constrain our understanding of functional anatomy.

Given their importance in planning, we highlight the role of frontal cortical and basal ganglia
regions [13–15]. We consider the role of connections between the frontal and posterior cortices in
contextualising information-seeking behaviour, the influence of the medial prefrontal cortices in
determining preferences, the role of the direct and indirect pathways of the basal ganglia in promoting
and suppressing policy execution, and the role of the nigrostriatal system in modulating the balance
between these pathways. This paper is organised as follows. Section 2 provides an overview of
inference and message passing in graphical models. Section 3 unpacks information-seeking behaviour
in terms of optimal experimental design and information gain. Section 4 focuses on utility-based
formalisms. Section 5 incorporates information seeking and utility into a prior belief about actions,
based upon an expected free energy measure. Sections 6 and 7 then deal with extensions of this
in deep models and in the optimisation of precision (or confidence). Throughout, we consider the
neurobiological manifestations of these ideas and the experimental perturbations that help to constrain
the computational neuroanatomy of planning as inference.

2. Graphical Models and Inference

We start with a brief review of Bayesian inference and its relevance to graphical (generative)
models [16–21]. The idea here is that sensory observations (o) may be explained by states of the world
(s) that generate them. As such, if we have a forward model that tells us the likelihood of making an
observation conditioned upon each possible state of the world and prior beliefs about these states, we can
use Bayes’ theorem to compute the posterior probability of states given the observation we make:

P(o
∣∣∣s)P(s) = P(o, s) = P(o)P(s

∣∣∣o) (1)

The left-hand side of Equation (1) shows the product of a likelihood and prior. This is equivalent
to the joint probability of observations and states (shown after the first equality) and the product of
the marginal likelihood of observations (also known as Bayesian model evidence) with the posterior
probability of states given observations (shown on the right-hand side). The marginal likelihood may be
seen as an objective function for Bayesian statistics and, more broadly, for autonomous self-organising
or “self-evidencing” [22] systems. Self-evidencing systems are those who act to maximise Bayesian
model evidence for their internal model of the world. As evidence is a function of data, this means
acting to change sensory input to be consistent with that anticipated under a model. This is a very
general way of describing systems that maximise an objective function defined in relation to sensory
input, as such objectives may be reinterpreted as un-normalised log probability measures. In addition,
it offers a normative standard for theoretical research that we implicitly appeal to throughout this
article [23]. It will be convenient in what follows to use a softmax functional (or its continuous
equivalent) to express these relationships more concisely:

P(s
∣∣∣o) = σs[ln P(o, s)]

P(o
∣∣∣s) = σo[ln P(o, s)]

σa[b(a)] ,
exp(b(a))

Z

Z ,
{ ∫

exp(b(a))da, i f a ∈ R∑
a exp(b(a)), i f a ∈ {0, . . . , N}

(2)

The softmax functional (σ) exponentiates and normalises its argument. We will use a subscript to
indicate which variable we are normalising with respect to. Normalisation ensures consistency with a
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probability distribution, which must sum to one. In what follows, we will sometimes deal with data
that have already been observed, and sometimes with data that have yet to be observed. We will use
o< to mean data that have already been collected and will occasionally use the shorthand Q(s) = P(s| o<)
for concision.

With these preliminaries in place, we can start to think about the implications this has for
the neural architectures that solve particular types of inference problem. Figure 1 shows a simple
graphical representation of a generative model and an interpretation of the computations required
to find posterior distributions in terms of the passing of local messages [11,12,24]. The graphical
representation on the right shows the dependencies implicit in the Bayes optimal updating of beliefs.
This is divided into three parts: learning, inference, and prediction [25]. Neurobiologically, we can
interpret the relationship between learning and inference as the distinction between neuronal firing and
synaptic plasticity. The change in post-synaptic neuronal firing (s) in response to pre-synaptic sensory
input (o<) depends upon the synaptic gain (θ). Similarly, changes in synaptic efficacy (under Hebbian
assumptions [26,27]) depend upon the pre- and post-synaptic activity. The importance of prediction
will become clearer in the next section, where we consider the role anticipated sensory data have on
alternative behavioural strategies. Practically, the computations shown in Figure 1 rely upon (mean-field)
approximations that simplify the message passing. However, our primary focus here is on characterising
priors for policy selection, and we will gloss over the details of these inference schemes and assume exact
Bayesian inference is tractable. While there may be subtle differences resulting from the application of
different message-passing schemes [11,24,28], this will not influence the computational anatomy at the
level of description adopted in this paper, which rests upon conditional dependencies or Markov blankets
in a generative model. Markov blankets are statistical constructs that partition sets of random variables.
A Markov blanket of a subset of variables comprises the variables outside this subset that, if known,
would render all other variables uninformative about the subset of interest [29].
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Figure 1. This schematic illustrates inference through message passing. The graphic on the left in blue
shows a factor graph expressing a simple generative model. This shows factors of a generative model
as squares and variables in circles. The generative model shown here says simply that observations (o)
are generated by hidden states (s) via a likelihood distribution with parameters (θ). The graphic on the
right shows that this model may be inverted to find the probability of states given past observations (o<),
as indicated by the arrow from the o< circle to the s circle, and prior beliefs about states, as indicated
by the arrow from s to s. The former depends upon beliefs about the parameters of the likelihood
mapping—this is shown through the circular arrowhead going from θ to the connection between the o<

circle and the s circle. Similarly, beliefs about parameters are updated based upon prior beliefs about
parameters and observations contextualised by beliefs about states. We will consistently use bold in
subsequent figures to represent sufficient statistics of probability distributions.
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3. Information and Experimental Design

3.1. Mutual Information

An important aspect of behaviour is the drive towards exploration or information seeking [30].
This is sometimes framed as “active learning” [31] or “active inference” [25]. Simply put, curiosity
influences what we do. This tells us that we have a prior belief that those policies leading to greater
information gain are more probable. As such, we need to find a way of scoring the amount of
information available under each policy. Fortunately, information theoretic measures have been
developed for this purpose [6,32,33]. Specifically, they arise in the field of optimal experimental
design [5]. If we are trying to design the best scientific experiment, our aim is to collect those data
that best inform our beliefs about alternative hypothetical states of the world. Formalising this,
the optimality of an experimental design can be quantified through the mutual information (I) between
the hypotheses and observations recorded as a consequence of the experiment (π):

I(π) = DKL[P(o, s
∣∣∣π)∣∣∣∣∣∣P(o∣∣∣π)P(s∣∣∣π)] (3)

The mutual information scores the KL-Divergence or relative entropy between the joint distribution
of states and observations under a given experiment or policy, and the product of the marginal
distributions of states and observations. This is the average of the log ratio of two probability
distributions. It is greater than zero unless the two distributions are equal. If states and observations
are independent of one another under a given policy, these distributions will be identical and the
mutual information will be zero. This implies a poor experiment, as the observations made under that
design are irrelevant as far as our beliefs about states are concerned. This has been most intensively
studied in the setting of active vision [33–36], where saccadic eye movements are seen as experiments
to gather visual data [33,37]. Empirically, the importance of Equation (3) in human behaviour has
been demonstrated through eye-tracking studies [38,39], which showed that visual foraging is better
explained with this quantity than without it. Mutual information can be further interpreted in various
ways through two alternative factorisations of the first argument. The first of these yields an expression
in terms of the expected divergence between a prior and posterior distribution:

P(o, s
∣∣∣π) = P(s

∣∣∣o,π)P(o
∣∣∣π)

⇒ I(π) = EP(o|π)DKL[P(s
∣∣∣o,π)

∣∣∣∣∣∣P(s∣∣∣π)] (4)

Equation (4) says that the expected information gain can be thought of as the divergence between
our prior beliefs and the posterior beliefs we expect following a new observation. In other words, it is
the degree to which we believe we will update our beliefs if we perform an experiment (or behave a
certain way). The alternative factorisation lets us express the mutual information as the difference
between two entropies:

P(o, s
∣∣∣π) = P(o

∣∣∣s,π)P(s
∣∣∣π)

⇒ I(π) = EP(o,s|π)[ln P(o
∣∣∣s,π) − ln P(o

∣∣∣π)]
= H[P(o

∣∣∣π)] − EP(s|π)

[
H[P(o

∣∣∣s,π)]
] (5)

Shannon entropy (H) is defined as an average negative log probability. It is a measure of the
dispersion or uncertainty in a probability distribution. Equation (5) is useful in expressing the important
aspects of good experimental design. The first term expresses the uncertainty in the data anticipated
following an experiment. The more uncertain we are, the better the experiment. Intuitively, there is no
point in performing an experiment if we already know what the data will look like. The second term
subtracts the conditional entropy of observations given states. If this uncertainty is very high, it means
that there is a great deal of noise in the process generating observations from states. This would be a
poor experiment as we could not be confident that our data would be informative about their causes.



Entropy 2020, 22, 536 5 of 20

By subtracting the conditional entropy (or ambiguity) from the total predictive uncertainty, we are left
with the resolvable uncertainty—i.e., information gain.

3.2. Attention Networks and Disconnection

To understand the biological substrates of information-seeking behaviour, it is worth thinking about
situations in which this is impaired. A cardinal example of this is visual neglect—a neuropsychological
syndrome in which the left-hand side of space is ignored relative to the right [40]. Neglect has been
demonstrated in a variety of paradigms [41–45], including in the domain of saccadic eye-movements.
This failure of left-sided exploration may be understood by considering the function of the brain’s
attention networks [46]. These networks comprise the areas connected by a white matter tract known
as the superior longitudinal fasciculus [47–50] that runs between the front (frontal cortex) and back
(temporal and parietal cortices) of the brain. This tract is divided into three parts. The first of these
connects dorsal frontal regions associated with gaze direction to dorsal regions of the posterior cortices.
The second connects the same frontal areas to more ventral posterior cortices. The third connects
ventral regions in the frontal and posterior cortices.

Interpreting this functionally, in terms of the graphic in Figure 1, if we associate dorsal frontal
regions with beliefs (s) about gaze direction, it follows that these areas must be connected to regions
representing the sensory consequences (o) of gaze-direction, with the synaptic efficacies of neurons
mediating these connections encoding beliefs about parameters (θ). Clearly, the sensory consequences
are largely in the visual domain. This is consistent with the frontal–posterior connectivity of the
first two branches of the superior longitudinal fasciculus, as it is the posterior cortices that are most
associated with early visual pathways. Activity in dorsal visual pathways is associated with where
an object in visual space is located, while activity in ventral pathways is associated with the identity
of that object. The implication here is that the first and second branches of the fasciculus correspond
to the likelihood distribution that predicts where and what (respectively) is seen conditioned upon a
gaze-direction. In other words, the second branch is the structural manifestation of “what I would see
if I looked there” [51].

Under this view, the experiments we could perform comprise alternative eye-movements, which
alter the gaze direction. Clearly there will not be a great deal of uncertainty to resolve about the
gaze-direction itself, as this is precisely determined by (dorsal) visual and proprioceptive sensory
data. However, there is still uncertainty in beliefs about the parameters encoding beliefs about what
will be seen at each location. This is supported by evidence that the coupling between these areas is
modified during the visual exploration of simple arrays [52]. Extending the expected information
gain to beliefs about parameters (see Figure 2), this implies eye movements that maximally alter the
efficacy of synapses between dorsal frontal and ventral posterior cortical regions (i.e., of those axons
travelling in the second branch of the superior longitudinal fasciculus) afford the most promising
experiments. Under the view that the brain selects behavioural policies that maximise information
gain, this provides a clear explanation for neglect syndromes [53,54]. If we disconnect the fasciculus in
the right hemisphere, it becomes impossible to change the efficacy of the (now absent) connections.
This implies any saccades towards the left visual field—depending upon the right frontal cortex—are
poor experiments relative to rightward saccades. This provides a possible explanation for an important
clinical syndrome and constrains the computational anatomy of active learning.
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Figure 2. The graphic in this figure shows the anatomy that underwrites the saccadic exploration of a
visual scene. This is framed in terms of the connections between the dorsal frontal cortex and more
ventral regions of the posterior cortices (i.e., those neurons whose axons run in the second branch of the
superior longitudinal fasciculus). When these connections are damaged in the right hemisphere, this
causes visual neglect, a condition in which the left-side of space is ignored. The “active learning” panel
offers an explanation for why this is. When an axon is cut, the efficacy associated with that connection
can no longer be changed by making new observations. Scoring eye-movements (π) in terms of their
information gain, this means there is little point looking at the left side of space as there is a greater
expected change in efficacy associated with saccades to the right.

4. Utility and Steady State

4.1. KL-Control

The formulation above deals with a purely curious agent, who suffers no consequences and derives
no extrinsic value from the outcomes it encounters (e.g., [55]). However, this is clearly not applicable
to real creatures, who benefit from those outcomes in a distribution conducive to survival and are at
risk from those that deviate from this [56]. Drawing from statistical physics [57–59], biological systems
exist at non-equilibrium steady state. This means that there is a distribution over the states in which
we expect to find them that stays consistent over time (at least, at a given timescale). Any deviation
from this steady state is corrected by a move back towards more probable configurations. This has the
appearance of goal-directed behaviour, in the sense that creatures act to ensure consistency with this
distribution. The association between observations that are probable under steady state and “goals”
rests upon the (circular) definition of goals as simply those things we act to attain [60,61].

The implication of the above from a motivational point of view is that we can score alternative
behaviours in terms of their consistency with the steady state distribution. This means we should
penalise those policies for which the predicted distribution over outcomes diverges from that
anticipated under a steady state (C). This turns out to have the same form as KL-control schemes from
engineering [9,10]:

V(π) = −DKL[P(o
∣∣∣π)∣∣∣∣∣∣P(o∣∣∣C)]

= H[P(o
∣∣∣π)] + EP(o|π)[ln P(o

∣∣∣C)] (6)

The first line of Equation (6) says that the value (V) associated with a policy is the negative of the
KL-Divergence between the distribution of outcomes under policies and under a desired (or steady state)
distribution. The second line unpacks this in terms of a posterior predictive entropy and the expected
log probability under the preferred distribution. Intuitively, the first term says that if everything
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is equally preferred, we should seek out those observations about which we are most uncertain.
The second term is interpretable as a utility or expected reward function. From this perspective,
the reward function is the log probability (plus or minus some additive constant). This suggests a
bidirectional translation between probabilistic and reward-driven conceptions of behaviour.

4.2. Prefrontal Cortex

If we think about the kinds of paradigm common in animal and human research, the expression
above is often enough to characterise behaviour. As an example, we consider the consequences
of prefrontal cortical lesions and the ways in which these may be unpacked in terms of the above.
The reasons for choosing this brain area are threefold. First, it has been consistently associated
with decision-making and planning [62]. Second, there are dissociable phenotypes of prefrontal
dysfunction [63]. Third, many animal experiments make use of gustatory stimuli (e.g., fruit juice)
as “rewards” to motivate particular kinds of behaviour in response to auditory or visual cues [64].
The prefrontal cortex is uniquely placed to synthesise exteroceptive and interoceptive data to direct
behaviour [65–68]. The relevance of this is that one of the most obvious settings in which Equation (6)
applies is homeostasis [56]. This depends upon interoceptive data, which must be kept within tight
bounds by the autonomic nervous system. In other words, the steady state density for interoceptive
data is very precise (i.e., has low variance) [69–71]. Generalising homeostasis to allostasis [72,73],
decisions made based upon external stimuli must also be motivated by ensuring interoceptive data fall
within prescribed ranges [74].

To make this more concrete, it is worth thinking about the kinds of experimental setting used in
studying prefrontal function. Paradigms include oculomotor delay-period tasks in primates [64] or
contextual decision making in rodent tasks [75]. Common to these is that an exteroceptive stimulus is
presented that indicates a task context. This might be visual, indicating the target location for a future
saccade, or could be an auditory tone, indicating which lever to press. This is typically followed by a
delay-period, in which the inferred context must be retained [76–78]. Finally, a choice must be made
and communicated (e.g., through performing a saccade to a target location or pressing the appropriate
level). Under each context, the choice has different consequences. If the chosen saccade location or
level corresponds to the “correct” choice under the experimental context, the animal is rewarded.
The reward often takes the form of fruit juice or milk, which have desirable interoceptive consequences.

Framed as a generative model [79], this says that we make use of hidden states comprising
the task context and choice to predict outcomes that include exteroceptive and interoceptive stimuli.
Exteroceptive stimuli depend only upon the task context, while the task context and choice conspire to
predict the interoceptive input—as the juice is only received following the correct saccade. A prior
belief that the juice will be obtained (in the C-distribution) ensures that policies leading to a high
probability of juice are scored as more probable. Inverting this model means beliefs about context are
inferred on the basis of exteroceptive data and act to contextualise the mapping from beliefs about
choices to their interoceptive consequences [80]. The distinction between the two sets of beliefs is
consistent with prefrontal connectivity, with medial prefrontal cortices highly connected to interoceptive
regions (including the amygdala and insula cortex) [81–84] and lateral prefrontal cortices connected to
exteroceptive cortices [85,86]—including via the superior longitudinal fasciculus discussed in Section 3.

The consequence of this is that lesions to different parts of the prefrontal cortex are accompanied by
dissociable behavioural phenotypes. This offers a simple way of thinking about the distinction between
medial and lateral prefrontal syndromes [79]. The formulation here suggests that lateral lesions should
impair the ability to infer (and retain) beliefs about the experimental context—thereby precluding
value-seeking behaviour, as the association between choices and their anticipated consequences
are inappropriately contextualised [63]. In contrast, medial lesions are more likely to directly
impair predictions about the interoceptive consequences of choice behaviour [87,88]. Despite normal
intelligence and ability to contextualise which choice coheres with the context, such patients are
apathetic and lack the motivation to select the “correct” answer [89–91]. The disconnection of desirable
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interoceptive consequences from beliefs about choices could underwrite the “insensitivity to future
consequences” [92] associated with such patients.

5. Planning as Inference

5.1. Expected Free Energy

In Sections 3 and 4, we saw that it is possible to score alternative behavioural policies in terms of
their expected information gain (I) or the divergence between anticipated and preferred outcomes
(V). In this section, we formulate the two in terms of a single quantity, known as expected free energy
(G) [25]. This is defined as follows:

G(π) = H[P(o
∣∣∣π)] + EP(o|π)[ln P(o

∣∣∣C)] − EP(s|π)

[
H[P(o

∣∣∣s,π)]
]

= I(π) + EP(o|π)[ln P(o
∣∣∣C)]

= V(π) − EP(s|π)

[
H[P(o

∣∣∣s,π)]
] (7)

Equation (7) makes the point that maximising the expected free energy favours both
information-seeking and goal directed behaviours [93]. The second and third lines show how
the measures of the preceding sections may be carved out of this single quantity. The key observation is
that Equations (5) and (6) both include the predictive entropy. The implication here is that exploration
and exploitation are overlapping as opposed to additive imperatives. Framing this in terms of a
prior belief, we can use the softmax functional to convert these log probability measures into a
normalised probability distribution. From this, we can also express the form of the posterior probability
over policies:

P(π) = σπ[G(π)]

⇒ ln Q(π) = G(π) + ln P(o<
∣∣∣π) + const.

⇒ Q(π) = σπ[G(π) + ln P(o<
∣∣∣π)] (8)

The conditional probability of observations given policies (i.e., the marginal likelihood associated
with a policy) holds the key as to why G is referred to as “expected free energy”. The reason for this
name comes from its similarity with a quantity in Bayesian statistics known as “variational free energy”
(F ) [94,95]. The similarity between the two is clearest in the following arrangements:

G(π) = EP(o|π)[ln P(o
∣∣∣C)] + EP(o,s|π)[ln P(s

∣∣∣o,π) − ln P(s
∣∣∣π)]

F (π) = ln P(o<|π) + EQ(s|π)[ln P(s
∣∣∣o<,π) − ln Q(s

∣∣∣π)]︸                                    ︷︷                                    ︸
=0

(9)

While the form is similar, it is important to note their differences. The most prominent is that
variational free energy is a function of (past) observations, while expected free energy averages over
the (future) observations expected under a given policy. Variational free energy is an important
quantity in Bayesian statistics as its maximisation (through changing Q) yields approximations to
the posterior probability and to the marginal likelihood. In Section 2, we defined Q to be equal to
the exact posterior. However, this need not be the case in general. Variational inference rests upon
tractable parameterisations of this distribution that approximate the posterior, without having to be
exact. Specifically:

P(s|o<,π) = argmax
Q(s|π)

F (π)

Q(s
∣∣∣π) = P(s

∣∣∣o<,π)
⇒ F (π) = ln P(o<

∣∣∣π)
⇒ P(π

∣∣∣o<) = σπ[F (π) +G(π)]

(10)

The inclusion of F in this expression, accounting for observations that have already been made,
provides us with an additional reason we might infer a course of action. This is that our sensory data
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tell us we are already doing so. In summary, this subsection highlights free energy and expected free
energy as important quantities for motivated behaviour. The former is a measure of the consistency of
a hypothesis (here—about how to act) with observed data. It is used to optimise beliefs relative to data.
The latter turns this on its head and optimises data relative to beliefs. It generalises the discussion of
information-seeking (explorative) behaviour from Section 3 and goal-directed (exploitative) behaviour
from Section 4 under the same umbrella.

5.2. Perseveration

At this point, it is worth unpacking an interesting consequence of Equation (10). This is that
it implies a certain sort of behavioural momentum. Once a policy has started to be enacted, the
evidence attained in favour of that policy promotes its continuation. This provides an interesting
perspective on a common consequence of frontal lobe damage. Patients with lesions in their frontal
cortex often exhibit perseveration [96,97], or the repetition of a phrase or gesture that has ceased to
be appropriate. Equation (10) hints at why this might be. If frontal lesions impair the computation
of the expected free energy—for example, by impairing the prediction of likely outcomes as in
Figure 3—Equation (10) becomes dominated by the variational free energy, which supports any policy
that has already been initiated.
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Figure 3. This schematic deals with the anatomy that underwrites many common experiments of
prefrontal cortical function. This is formulated in line with lateral to medial functional gradients such
that lateral cortices receive sensory information derived from exteroceptive sensory streams (e.g., visual
and auditory cortices [85,86]), while medial and orbitofrontal regions receive input from interoceptive
streams (e.g., the insula and amygdala [81–84]). This medial-to-lateral interoceptive-to-exteroceptive
axis has been characterised as the “hot” and “cold” axis [98]. The relevance of this is that inferences
about the context afforded by the external world influence the relationship between alternative
choices a creature might make (policy-dependent states) and the interoceptive consequences of those
choices. For example, an experimental stimulus could provide a clue as to which option results in a
gustatorily rewarding outcome. As we said above, interoceptive outcomes are the most tightly regulated.
This implicates medial regions like the orbitofrontal cortex in this aspect of motivated behaviour.

As an example, imagine asking someone to copy what you do and clapping three times. While
the instruction might be sufficient to initiate the behaviour, a patient who is less able to predict
the consequences of their behaviour in relation to desired outcomes will be unable to maintain the
differentiation of alternative policies based upon the expected free energy. They will end up relying
upon the variational free energy term instead. As visual, auditory, and proprioceptive data provide
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evidence for “clapping”, they may continue to clap even once they have completed the required three.
Regardless of the choice of prior beliefs for a policy, it is interesting that perseverative behaviour is an
almost inevitable consequence of planning as inference.

6. Deep Generative Models

6.1. Temporal Hierarchies

The generative models outlined above may be generalised to account for variables that evolve
over multiple timescales. A canonical example of this is language, as we decompose speech or writing
into very fast units (phonemes or letters) that are predicted by slower units (words), themselves
predicted by slower (sentences), slower (narratives), and slower (stories) units [99]. This deep structure
may be formalised through a generative model by repeating the structure we have seen in Figure 1
such that lower-level states act as if they were observations from the perspective of high-level states.
Figure 4 illustrates the message passing associated with this sort of hierarchy. Note the similarity with
Figure 2 but the repetition of that motif in a hierarchical structure. Evidence in favour of such temporal
hierarchies in the brain is abundant [100–103].
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 Figure 4. This graphic shows the form of message passing implied by a deep temporal model.
This image focuses upon inference about states but emphasises the importance of inferences about
policies in contextualising message passing between hierarchical levels. Each level is indexed with
a bracketed superscript. At each level, ascending messages from the level below constrain activity
based upon sensory data (either vicariously or directly—in the case of level 1). This enables inferences
about the states conditioned upon a policy. This may be averaged under beliefs about the policy at
that level. The resulting inference about states provides the ascending message to the higher level.
Inferences about states conditioned upon a policy form descending messages, averaged under beliefs
about the policy at the same level. Note the asymmetry of message passing—characteristic of cortical
connectivity [104,105]—in the ascending and descending directions as a result of this averaging.

Temporal hierarchy offers two additional constraints on behaviour that we must consider in a
general setting. The first is that the steady state distribution may be local in time. Over a very fast
timescale, it is approximately ergodic, but it may change gradually over a slower timescale. This
implies the relationship between C and o must be contextualised by the higher level. Similarly, prior
experience may have found some experimental designs more fitting in some contexts than others.
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More informally, creatures develop habits [106]. To account for this, we can include an additional term
(E) that provides this contextualisation and is a function of slowly evolving states. This is termed an
empirical prior and contributes to the prior in Equation (8) in an analogous manner to the expected free
energy. Empirical priors arise in hierarchical models where more abstract inferences (e.g., “I am in a
car”) act as prior beliefs for more concrete inferences over faster timescales (e.g., “I am driving”). There
is a sense in which this plays the role of a state-action policy of the sort found in reinforcement learning
schemes [107], as it specifies what to do conditioned upon a (slowly evolving) state. Heuristically, the
relationship between E and G is a point of connection with the relationship between “model-free”
and “model-based” systems [108] but, formulated this way, commits to the idea that they are both
explicitly model-based. Another perspective is that empirical priors mediating a top-down control
over behaviour represent a form of cognitive control [109].

Because they share the posterior predictive entropy, it makes little sense to carve up the I and
V terms introduced in Sections 3 and 4, and combined in Section 5. However, there is a natural
separation between these and E. This lets us differentially weight this context-dependent term against
the expected free energy, using a “precision” or inverse temperature (where temperature quantifies
dispersion or variance) parameter, β:

P(π(i)) = EP(β(i))

[
P(π(i)

∣∣∣β(i))]
Q(π(i)) = EQ(β(i))

[
Q(π(i)

∣∣∣β(i))]
P(π(i)

∣∣∣∣β(i)) = EP(s(i+1))

[
σπ(i)

[
β(i)E(i)(π(i), s(i+1)) +G(i)(π(i), s(i+1))

]]
Q(π(i)

∣∣∣∣β(i)) = EQ(s(i+1))

[
σπ(i)

[
β(i)E(π(i), s(i+1)) +F (i)(π(i), s(i+1)) +G(i)(π(i), s(i+1))

]] (11)

Interpreting these equations, we see that posterior beliefs about the policy depend upon an
average (under posterior beliefs about the precision) of the conditional probability of the policy given
the precision and the data [25]. This is shown in the second line. This suggests a modulatory influence
of the precision that, referring to the fourth line, weights the balance between the empirical prior
relative to F and G. The empirical prior depends upon higher level states directly, while the free
energies depend upon these only via beliefs about states at the same level.

6.2. Direct and Indirect Pathways

Equation (11) may be regarded as a relatively general expression of behavioural motivation.
It accounts for the influence of slowly changing contexts of the sort that can form habits, for a
behavioural momentum that entails the continuation of current policies and maximisation of the
expected free energy. The last of these incorporates both exploitative and explorative motivations.
How do we now interpret this prior in terms of its neurobiological substrates? The simplest way of
doing this is to think about the consequences of changing the free parameter (β) and what we might
expect to happen.

When β is very large, inference about policies is tightly constrained by inferences at the slower
timescale. The temporal coarseness of this influence implies that its effects must be relatively
non-specific. As opposed to selecting a specific policy, the E potential emphasised by β effectively
acts to make all context-inappropriate policies implausible. As such, we can think of this potential as
contributing to inference about what not to do. Those policies unlikely to be suppressed by this term
include those that are common in nearly all contexts—for example, the maintenance of postural tone.
In short, a very large β predicts staying still. In contrast, when β is very small, the expected free energy
term dominates Equation (11). This implies the promotion of behavioural policies, even when the
slower timescale suggests they are inappropriate. In other words, behaviour may appear impulsive.

This raises the question as to where in the brain we find a variable that at one extreme leads
to the cessation of behaviour and at the other leads to its promotion. The obvious candidate here
is striatal dopamine. Its depletion in severe Parkinson’s disease leads to akinesia while exogenous
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dopamine agonists promote impulsive behaviours, such as gambling [110–112]. The physiological
role of this substance is to modulate the balance between the “direct” and “indirect” pathways
through a set of subcortical structures known as the basal ganglia [113]. The former is involved in
behavioural promotion and the latter in suppression. This has been demonstrated through optogenetic
manipulations [114] that target either the D1-receptor expressing medium spiny neurons (MSNs) of
the direct pathway or the D2-receptor expressing MSNs of the indirect pathway. The optogenetic
activation of these neurons in rodents induces the associated behavioural phenotypes (activity versus
freezing). Framing this in terms of planning as inference, the direct pathway infers what to do, while
the indirect infers what not to. This implies dopamine may act as the inverse of the β parameter.

Figure 5 shows a schematic coronal section through the basal ganglia, with the message passing
implied by Equation (11) mapped to the direct and indirect pathways. This highlights the consistency
with conceptual models of basal ganglia function. For example [115], it has been suggested that the
direct pathway mediates a fast and focused inhibition of the globus pallidus internus, followed by a
broader and slower excitation. These cause the excitation and inhibition of the targets of the globus
pallidus, respectively. This is thought to ensure a “centre-surround” pattern that facilitates only the
appropriate motor programmes. This is consistent with the fast processes computing the expected
free energy facilitating action, with the broader contextualisation of the slower pathway mediating
empirical priors. Comparing with Figure 4, the anatomy of Figure 5 predicts the involvement of the
temporally slower (i.e., frontal) regions in targeting indirect pathway neurons, but both fast and slow
influences over the direct pathway. This is consistent with the anatomical distribution of cortical
inputs to the basal ganglia [116] and with the morphology of D1- and D2-expressing MSNs, the former
exhibiting larger dendritic arbours [117]. As such, the anatomy of Figure 5 is endorsed by evidence
from optogenetics, clinical pathology (e.g., Parkinsonism), and cellular morphology.
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Figure 5. This coronal section through the basal ganglia shows how inferences over different timescales
interact in informing policy priors. Here, the distinction between the E and G potentials has been
cartooned as the distinction between the direct and indirect pathways, the softmax parameter β
influencing the balance between the two. Note that the softmax ensures a form of reciprocal inhibition,
such that a large weight on E implies a diminishing effect of G. This is the reason we show the
softmax parameter as influencing both the direct and indirect pathways. By facilitating one, the other is
implicitly suppressed.
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7. Precision Optimisation

7.1. Reciprocal Messages

In the above, we made use of a posterior distribution over the precision term. This acts to balance
behavioural promotion or suppression, so is central to the theme of this article. As such, it is worth
thinking about where this posterior comes from. Like any other parameter in the models dealt with
here, this may be optimised. The form of the posterior depends upon beliefs about policies and on
priors over the precision:

Q(β(i)) = EQ(π(i))

[
Q(β(i)

∣∣∣π(i))]
Q(β(i)

∣∣∣∣π(i)) = σβ(i)
[
ln Q(π(i)

∣∣∣β(i)) + ln P(β(i))
] (12)

The simplicity of this expression rests upon the fact that the precision only influences data via the
policies. The interesting thing about Equation (12) is that it emphasises the reciprocity of Bayesian
message passing. It implies that the modulatory influence of precision on policies is complemented by
a modulatory influence of (beliefs about) policies on beliefs about precision. By inspection of Equations
(11) and (12), we see that large values of β are more probable (a posteriori) when the free energy is
more consistent with the empirical prior than with the expected free energy. As highlighted above,
the empirical prior, determined by coarse-grained contextual information, is often less precise than
the distribution under the expected free energy alone. The implication is that the precision of the
empirical prior will drop as confidence in the policy increases and the expected free energy dominates.
Under the dopaminergic theory of precision outlined in the previous section, this implies greater
confidence in “how I am acting”, due to either an increase in potential information gain or extrinsic
value, leads to a drop in empirical prior precision and an increase in dopaminergic signalling. This is
exactly what is found [118] but often interpreted in terms of “reward prediction error” [119] perhaps
due to the prevalence of experimental designs that use extrinsic value (i.e., rewards) to motivate
behavioural compliance.

7.2. Nigrostriatal Loops

As indicated above, the influence of beliefs about precision on beliefs about policies implies
reciprocation. This is interesting from a neuroanatomical standpoint as, under the anatomy of Figure 5,
it mandates connectivity loops between the striatum and substantia nigra, as depicted in Figure 6.
This is a characteristic feature of nigrostriatal organisation [120], with multiple hierarchically arranged
loops. While this is a distributed network whose components evolve in parallel, it is sometimes
useful to decompose it as if it were sequential to aid intuition. Here, the narrative starts with the
cortical input to the striatal MSNs, which is used to compute the expected free energy and empirical
priors over policies. Along the axis of the striatum, these calculations happen in parallel at each level
of the temporal hierarchy. Beliefs about the policies based upon these quantities depend upon the
precision (β). Messages passed from the striatum to the globus pallidus internus—both directly and
indirectly—must therefore be averaged under current beliefs about the precision. This manifests as
a dopaminergic modulation of the balance between the two pathways. Once beliefs about policies
are updated to their posteriors (in the globus pallidus), these are used to modulate projections from
the striatum directly to the substantia nigra (pars compacta), updating beliefs about the precision and
completing the loop.
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Figure 6. This graphic emphasises the reciprocity of Bayesian message passing. The structure from
Figure 5 has been incorporated and extended to deal with inference about the precision. Here, the
influence of the precision over the mapping from the expected free energy and empirical priors to
the policies is reciprocated, such that the precision is itself updated based upon an expectation under
posterior beliefs about the policy. This is depicted here in terms of a series of hierarchical nigrostriatal
loops, each of which deals with a separate timescale of inference.

A final point to add to this is that the priors over precision may themselves be context
dependent [121]. This implies β(i) sits in the Markov blanket of s(i+1) and vice versa. As such, associating
the former with the dopaminergic midbrain and the latter with frontal cortical regions implies reciprocal
connectivity between the two. Interestingly, the presence of axonal terminals originating in the ventral
tegmental area has been used as a means of defining the prefrontal cortex [122]. This connectivity may
be seen as evidence in favour of the brain’s use of a generative model that conditions policy-precision
on higher level states.

8. Discussion

We have formalised a series of hypotheses for why someone might engage in a particular behaviour.
These hypotheses may be categorised into four groups, some of which may be subdivided further.
The first is curiosity. Curiosity can be broken down into curiosity about the dependencies between
things (novelty seeking) or about the things themselves (salience attribution) [123]. Each of these may
be further subdivided into seeking hard-to-predict sensory data (i.e., maximising a predictive entropy)
and an aversion to ambiguity. The second reason for doing something is that it may be motivated
by desired or anticipated sensations. We saw that this overlaps with information-seeking behaviour.
The third reason someone engages in a behaviour is that they have already started doing so, and the
resulting sensory data reinforces their inference that this is what they are doing. Finally, behaviour
may be driven by inferences at slower timescales that specify a range of plausible (and implausible)
options given the context in which someone finds themself.

It is important to outline these alternatives explicitly, as they form a hypothesis space for
behavioural sciences. Their mathematical formalisation enables explicit comparison of the evidence
each affords for a given behaviour. For example, Mirza et al. [38] compared the evidence for models
that included or excluded the information-seeking terms (Equation (3)) in the expected free energy
(Equation (7)) in relation to data collected in a simple behavioural task. This demonstrated the
superiority of explanations of behaviour that appeal to curiosity. Similar comparisons, for any given
behaviour, may be made to assess the contribution of any of the terms above.
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This article has focused upon the biological substrates of these priors. By unpacking the conditional
dependencies in the implicit generative model, we saw that the connectivity structures that emerge
may be associated with neuroanatomical constructs. Understanding the computational anatomy of
motivation is vital in studying behavioural disorders or variants in a biologically grounded way.
As an example of the utility of this approach, we briefly (and superficially) highlight its application in
understanding behavioural variations in personality disorders from a functional biological perspective.
Personality disorders such as antisocial personality disorder or “psychopathy” are not typically thought
of in terms of their underlying biology. When they are, the focus tends to be at the genetic or molecular
level [124].

The computational anatomy outlined above lets us pose hypotheses at a systems level, going
from structure to behaviour. In the context of psychopathy, the expression of behavioural traits
including remorselessness and grandiosity, in terms of a formal model, facilitated clear links between
behaviour and neuroanatomical variations [125]. Both traits may be thought of in terms of beliefs
about self-worth, associated with the medial and orbitofrontal prefrontal cortices (as evidenced by
neuropsychological lesion studies and neuroimaging [126,127]). Drawing from the account of medial
prefrontal inference outlined in Section 4, a plausible internal model for self-worth is that it predicts
data related to the approval of others—that we might expect to be associated with structures like the
amygdala (consistent with functional neuroimaging measurements of responses to stimuli that are or
are not socially informative [128])—over which we have preferences. In addition, self-worth is policy
dependent. Behaving charitably increases our sense of worth, while it is diminished by behaving with
cruelty or indifference. This appeals to the depiction of beliefs averaged under policies in Figure 4 and
the associated cortico-striatal loops.

Once we have this model in mind, we see how the loss of white matter integrity in the uncinate
fasciculus—connecting the orbitofrontal cortex to the amygdala—in psychopathy [129] could lead to a
diminished remorsefulness in the face of social disapproval. This is like a selective form of the apathy
in medial prefrontal syndromes outlined in Section 3. When this is combined with the disruption
of prefrontal cortico-striatal (functional or structural) connectivity [130,131], people become resistant
to the attenuation of inferred self-worth normally induced by engaging in antisocial behaviours.
This offers an explanation for grandiosity. The example of psychopathy is a useful illustration of how
“planning as inference” takes us past a purely descriptive account of unusual behaviour. It lets us
formulate neurobiological theories.

9. Conclusions

In this paper, we have outlined the formalism of planning as inference—as expressed under active
inference. This amounts to specifying motivation in terms of contributions to a prior belief about what
to do next. Following Bayesian inference, posterior beliefs about how to act comprise contributions
from information and value-seeking objectives, supplemented with a behavioural momentum that
promotes the continuation of a policy that has been started. These all promote activity but are balanced
by empirical priors that rule out those policies that are inappropriate in a given context. This balance
between doing and not doing is modulated by a precision parameter. Such modulatory influences are
highly consistent with the modulation of direct and indirect basal ganglia pathways by dopamine.
Ultimately, we may interpret the role of this substance as weighting inferences about what to do against
those about what not to.
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