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Abstract: Land use and landscape pattern highly affect water quality. Their relationship can assist
in land-use management and improve land-use efficiency. In this study, a water quality survey of
rivers and lakes was performed in 2020 to analyze the effects of land use and the landscape pattern
on the water quality of the rivers and lakes in the Baoan Lake basin and is expected to provide a
reference for land use planning. The results demonstrated that the effects of land use on water quality
were generally higher during the dry season than during the wet season; however, the opposite was
demonstrated for the landscape pattern index. Cropland and urban land were closely correlated with
deteriorating water quality, with contributions to total nitrogen, total phosphorous, and ammonia
nitrogen in the basin. The impact of the landscape pattern of the basin on water quality was controlled
by the original land-use type. In addition, the landscape configuration formed different land-use
types to produce different effects on water quality. The basin scale better explained the changes
in water quality, especially for construction land, followed by the 250 m and 500 m scales in the
buffer zone.

Keywords: Baoan Lake basin; land use; landscape pattern; water quality

1. Introduction

The water environment of a basin, as a link between different natural environmental
cycles, has an important effect on each component of the ecosystem [1,2]. People have been
living near water since ancient times and settlement has been dependent on river and lake
banks in most cases [3]. The water quality in rivers and lakes within a basin directly affects
human activities, such as drinking water, irrigation, and industrial production [4,5].

Land use and landscape pattern determine the distribution patterns of the ecosystem
and management styles of land use in the basins [6]. Land use and landscape pattern can
dramatically affect biological activities, material-energy transfer and exchange, as well as
the regional microclimate in basins [7,8]. Undoubtedly, land-use status is closely related to
the water quality of the rivers and lakes in the basins [4]. The different distribution patterns
of the same land type also exert different impacts on water quality in different basins [9].
In general, the relationship between land use, the landscape pattern, and the water quality
of basins is quite complex and understanding the relationship between water quality and
land use can assist policymakers in optimizing land management policies and improving
land-use efficiency [10].

In terms of land use, the influence of cropland, forest land, grassland, the body of water,
sandy land, and urban construction land on the water quality of rivers and lakes has been
investigated [11,12]. Previous studies have included coastland and inland areas [12,13], low-
altitude and high-altitude regions [14,15], as well as tropical and temperate regions [16,17].
In situ surveys and analytical studies have focused on certain basins. In addition, some
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analytical studies have been conducted for a target land type using methods to control the
variables [11,18]. Most of these studies deduced that cropland and construction land are
involved in the deterioration of water quality in rivers and lakes, whereas forest land and
grassland help to alleviate pollution. However, other studies have revealed more complex
patterns of related influences [19,20]. In terms of landscape pattern, researchers have
deduced that both landscape configuration and landscape scale share different effects [19].
The landscape configurations that affect the water quality of rivers and lakes include the
shape, size, number, density, and type of landscape patches; the length and curvature
of the landscape corridors; and the proportion and distribution pattern of the landscape
matrix [21,22]. For instance, He et al. used the space-for-time substitution method to
analyze the temporal and spatial changes in the Lixia River landscape pattern, as well as
their effects on water quality in the basin [23]. The landscape scale considers the target
river segment and riverbank as the catchment, and a buffer range can be established along
the riverbank to analyze which range scale better explains the change in water quality [24].
Studies on landscape configuration and scale remain uncertain, whereas different or even
opposite results have been reported in different studies [25,26].

The Baoan Lake basin is located at the junction of Huangshi City and Ezhou City,
Hubei Province, China. The main water bodies within the basin are Baoan Lake and
Sanshan Lake. Agricultural production constitutes the main economic behavior in the
Baoan Lake basin, where farmland and dikes are widely distributed. Agricultural activities
aggravate pollution in the basin, resulting in deteriorating water quality and a low rate of
high-quality standards in lakes [27]. In this study, the influence of land use and landscape
pattern status on the water quality of rivers and lakes in different seasons and at different
scales, is investigated in the Baoan Lake basin. The results will provide a reference for
territorial spatial planning, management, and remediation of the Baoan Lake basin, as well
as help to protect and restore the water environments in other basins.

2. Materials and Methods
2.1. Overview of the Study Area and Sample Locations

The Baoan Lake basin is located in the middle reaches of the Changjiang (Yangtze)
River basin, which is in the subtropical monsoon climate zone, with an average annual
precipitation of 1330 mm and average annual temperature of 16.8 ◦C. The perennial water
surface areas of Baoan Lake and Sanshan Lake are 45.1 km2 and 20.2 km2, respectively.
The inlet rivers of Baoan Lake mainly comprise the Huandiqiao Gang (HD River) in the
southeast and the Baoanxi Gang (XG) and Baoandong Gang (DG) in the south. Part of the
water of Sanshan Lake is fed by Baoan Lake during the flood season and the two lakes are
linked by a river port. The lake water converges from the north side into the Changgang
River, which flows into the Changjiang River [27]. In this study, six sample points were
evenly set within Baoan Lake and Sanshan Lake (Figure 1). One sample point was set
at each of the HD, XG, and DG inlets. Another reference point was set at the Xiushan
Reservoir (HD0) at the source of the HD. The overall range of the XG and DG was referred
to as XD for later analysis. According to the climate characteristics of the Baoan Lake basin,
March-August was classified as the wet season and the remaining months were classified
as the dry seasons.

2.2. Sample Collection and Measurement

Monthly filled surveys were conducted and samples were collected at the Baoan
Lake basin in 2020. Mixed water samples were collected 50 cm below the water surface
using a Plexiglas water picker and placed in acid-washed polyethylene bottles, which were
immediately brought back to the laboratory for analysis. The indicators measured included
pH, dissolved oxygen (DO), total nitrogen (TN), total phosphorous (TP), permanganate
index (CODMn), and ammonia nitrogen (NH3-N). Among them, pH and DO were mea-
sured using a multiparameter water quality monitor (YSI-EXO2), whereas the others were
measured with reference to Water and Wastewater Monitoring and Analysis Methods [28].
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Figure 1. Overview of land use in the study area and a distribution map of the sampling locations.
The main map on the right shows the scope of the Baoan Lake basin. The land in the basin is divided
into five types: cropland, forest, grass, water, and urban. The water in the figure is Baoan Lake or
Sanshan Lake. The scope marked by the red line on the lower side of the lake is the sub-basin selected
for this study, in which Baoanxi Gang (XG) and Baoandong Gang (DG) are collectively referred to as
XD. The small map on the left shows the 100–1000 m buffer zone range in the two sub-basins and its
scale is consistent with the main map.

2.3. Land-Use Data

The boundary of the Baoan Lake basin was extracted using DEM data at 30 m res-
olution. A Landsat 8 image for the summer of 2020 was downloaded from the United
States Geological Survey website (https://earthexplorer.usgs.gov/; accessed on 15 January
2022) that covered the whole area of Baoan Lake and had clear image quality with less
than 5% cloudiness. The land-use types were classified using the supervised classification
method, and five land-use types were identified in the Baoan Lake basin, including crop-
land, forest land (forest), grassland (grass), water bodies (water), and urban construction
land (urban).

2.4. Landscape Pattern Data

Based on the land-use classification data, the landscape pattern indices of the basin
were calculated using the Fragstats 4.2 software. In this study, the indices included the
patch density (PD), largest patch index (LPI), edge density (ED), landscape shape index
(LSI), shape index (SHAPE), contiguity index (CONTIG), perimeter-area fractal dimension
(PAFRAC), contagion (CONTAG), patch cohesion index (COHESION), landscape division
index (DIVISION), Shannon’s diversity index (SHDI), and aggregation index (AI). The
meaning and units of each index are shown in Table 1 [14,17].

2.5. Data Processing

The data were counted and plotted using Excel 2016 (Microsoft Corp., Redmond, WA,
USA) and Origin 2020 software (OriginLab Corp., Northampton, MA, USA), including
mean values, standard deviations, analysis of variance, and Pearson’s correlation coeffi-
cients. Two significant levels exist in the significance statement (p < 0.01 and p < 0.05),
where p > 0.05 denotes insignificant.

The overall technical framework of this study is shown in Figure 2.

https://earthexplorer.usgs.gov/
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Table 1. The landscape pattern index.

Name Acronym Describe Unit

patch density PD Number of landscape patches per unit area. PCs/km2

largest patch index LPI Proportion of the largest patch in the landscape area. %
edge density ED The ratio of the total length of patch boundary to the landscape area. 0.1 km/km2

landscape shape index LSI The degree of deviation between the shape of a patch in the area and a
circle or square of the same area -

shape index SHAPE The mean value of the ratio between the perimeter of the patch and the
square root of the area in the region. -

contiguity index CONTIG Refers to the proximity between patches. -
perimeter-area fractal dimension PAFRAC Calculation method of landscape patch regression degree. -

contagion CONTAG Describes the degree of agglomeration of each patch type. %
patch cohesion index COHESION Measures the physical connectivity of patch types. -

landscape division index DIVISION The closer the value is to 1, the more serious the degree of landscape
segmentation. -

Shannon’s diversity index SHDI Measures the diversity of patch types in the landscape. -
aggregation index AI Describes the degree of aggregation of spatial patterns. %

Figure 2. Technical framework. This research was divided into two parts. Part A included data
acquisition and processing. The text with background color in the box is the data content required or
developed during this step. Part B is the data analysis and discussion, and the text with background
color is the method.

3. Results
3.1. Status of Land Use and Landscape Pattern in the Baoan Lake Basin

The distribution status of land use in the Baoan Lake basin and its sub-basins is shown
in Table 2. The landscape pattern index status of each land type and basin is shown in
Figure 3. The cropland was dominant within the basin, accounting for 71.18% of the whole
basin, with a PD of 1.02/km2. Cropland was also uniformly distributed, maintaining a
70–75% land use ratio within the XG, DG, and HD sub-basins (Table 2). The land type with
the least area was grassland, with only 0.01% of the land in the entire basin belonging to
this type, which was primarily distributed in the built-up urban edges of the sub-basins of
DG and HD (Figure 1). In addition, more than half the grassland was distributed within
the sub-basin of DG (Figure 1). The range of the Baoan Lake basin was relatively small
with the water body (mainly Baoan Lake and Sanshan Lake) accounting for 14.11% of the
entire basin (Table 2). The forest land featured contiguous distributions in the eastern and
southern parts of the basin (Figure 1), and the highest ratios of 20.15% and 14.15% were
found in the sub-basin of DG and XG, respectively. However, the distribution of forest
land in the sub-basin of XG was more concentrated (Table 2). The corresponding LPI value
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was 10.89% and the AI value was 92.87%, which were higher than those of all the other
sub-basins and the entire Baoan Lake basin (Figure 3). The distribution of construction land
was similar to that of forest land but with a wider range, accounting for 8.49% of the entire
basin area. The distribution ratios of the construction land in the sub-basins of XG and DG
were lower than that of forest land, but higher than that of the HD sub-basin, accounting
for 14.49%, and the built-up urban area was also higher than that of the combined XG and
DG sub-basins (Table 2). However, the most concentrated distribution of towns was within
the XG sub-basin, with an LPI and AI of 5.44% and 81.12%, respectively. The distribution
of towns in the HD sub-basin was more scattered, with a PD value of 4.82/km2 (Figure 3).

Table 2. Land-use distribution in the Baoan Lake basin and its sub-basins.

Cropland Forest Grass Water Urban

B 71.18% 6.19% 0.013% 14.11% 8.48%
XG 75.23% 14.14% 0.000% 0.50% 10.11%
DG 70.26% 20.15% 0.074% 1.33% 8.17%
HD 77.21% 6.38% 0.014% 1.89% 14.49%

Note: B, XG, DG, and HD represent the Baoan Lake basin, Baoanxi Gang sub-basin, Baoandong Gang sub-basin,
and Huandiqiao Gang sub-basin, respectively.

Figure 3. Distribution of the landscape pattern indices in the Baoan Lake basin and its sub-basins. In
this figure, each index is patch density (PD), largest patch index (LPI), edge density (ED), landscape
shape index (LSI), shape index (SHAPE), contiguity index (CONTIG), perimeter-area fractal dimen-
sion (PAFRAC), contagion (CONTAG), patch cohesion index (COHESION), landscape division index
(DIVISION), Shannon’s diversity index (SHDI), and aggregation index (AI), respectively. B, XG, DG,
and HD represent the Baoan Lake basin, Baoanxi Gang sub-basin, Baoandong Gang sub-basin, and
Huandiqiao Gang sub-basin, respectively.

3.2. Water Quality Characteristics of the Lakes and Rivers Entering the Lake

The distribution of most of the indicators was relatively smooth within Baoan Lake
and Sanshan Lake. In terms of the dry–wet season change, the regularity of each indicator
was gradually highlighted (Figure 4). More precisely, the pH values of the two lakes
(7.98 ± 0.41 and 7.67 ± 0.17, respectively) were significantly higher during the dry season
than during the wet season (p < 0.01). The DO was also higher during the dry season than
the wet season within most of the areas of the lake, whereas the opposite trend occurred in
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Biandan Tang (Pond) (B1), which is located in the northern part of Baoan Lake. The TN,
TP, and CODMn values were all higher during the dry season and lower during the wet
season, with mean values of 1.07 ± 0.36 mg/L, 0.067 ± 0.029 mg/L, and 4.64 ± 0.38 mg/L
during the dry season, respectively. TN reached the maximum of 3.38 mg/L during the dry
season. The distribution of NH3-N during the dry and wet seasons was relatively uniform
(p = 0.48).

Figure 4. Distribution status of pH (a), DO (b), TN (c), TP (d), CODMn (e) and NH3-N (f) for Baoan
Lake and Sanshan Lake during the dry and wet seasons. In this figure, B1–B4 are the sampling points
in Baoan Lake, and B5–B6 are the sampling points in Sanshan Lake.

A fluctuating pH was more evident in the XG and DG than in the HD sub-basin. This
was attributed to the higher pH in the XG and DG sub-basins during the dry and wet
seasons (Figure 5), both of which shared higher pH values during the dry season than
during the wet season (p < 0.01). The DO level in the HD sub-basin was higher (15.1 mg/L)
than in the XG and DG sub-basins (p < 0.05). The TN of the sub-basins had mean values
of 2.75 ± 1.15 mg/L during the dry season and 2.47 ± 1.33 mg/L during the wet season
(Figure 5). The TP in the sub-basins was concentrated throughout the year with a mean
value of 0.075 ± 0.033 mg/L, whereas a high value of 0.500 mg/L occurred in the XG
sub-basin. The difference in CODMn during the dry and wet seasons was not significant
(p = 0.74), with the highest mean value of 5.74 ± 1.13 mg/L in the XG sub-basin and
the lowest mean value of 3.67 ± 0.63 mg/L at the inlet of the HD sub-basin (Figure 5).
The mean NH3-N level was 1.20 ± 0.80 mg/L throughout the year with a maximum of
6.32 mg/L in the HD sub-basin and a minimum of 0.09 mg/L in the DG sub-basin.

3.3. Relationship between Land Use, Landscape Pattern, and Water Quality in the Basin

The land types that most affected water quality at the basin scale were cropland, water,
and construction land, and the latter two had greater impacts on nitrogen in rivers and
lakes (Figure 6a, cropland: TN: r = 0.92, p < 0.01; NH3-H: r = 0.98, p < 0.01; construction
land: TN: r = 0.84, p < 0.01; NH3-H: r = 0.89, p < 0.01). This trend was more prominent
during the dry season (Figure 6c, cropland: TN: r = 0.97, p < 0.01; NH3-H: r = 0.92, p < 0.01;
construction land: TN: r = 0.94, p < 0.01; NH3-H: r = 0.98, p < 0.01). In addition, the two
land-use types also contributed more to TP in the basin during the dry season (Figure 6c,
cropland: r = 0.91, p < 0.01; construction land: r = 0.85, p < 0.01). The contribution of
cropland and construction land to the pollutants in the rivers and lakes during the wet
season decreased compared to that during the dry season. However, the effects of forest
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land on TP (r = 0.90, p < 0.01) and DO (r = −0.86, p < 0.01) tended to be more prominent
(Figure 6b).

Figure 5. Differences in pH (a), DO (b), TN (c), TP (d), CODMn (e) and NH3-N (f) of the inlet
rivers in Baoan Lake during the dry and wet seasons. In this figure, XG, DG, HD, and HD0 repre-
sent the Baoanxi Gang, Baoandong Gang, Huandiqiao Gang, and upstream points of Huandiqiao
Gang, respectively.

Figure 6. Relationship between land use, landscape pattern, and water quality in the Baoan Lake
basin throughout the year (a), during the wet season (b), and the dry season (c). PD, LPI, ED, LSI,
SHAPE, CONTIG, PAFRAC, CONTAG, COHESION, DIVISION, SHDI, and AI mean patch density,
largest patch index, edge density, landscape shape index, shape index, contiguity index, perimeter-
area fractal dimension, contagion, patch cohesion index, landscape division index, Shannon’s di-
versity index, and aggregation index, respectively. In this figure, a darker red indicates a higher
degree of positive correlation, and a darker green indicates a higher degree of negative correlation.
* and ** mean that the correlation was significant at p < 0.05 and p < 0.01, respectively.

The influences of different landscape pattern types on the input of different pollutants
varied substantially (Figure 6). PD was negatively correlated with most of the indicators
(Figure 6a, pH, CODMn: p < 0.05; TP: p < 0.01), that is, the higher the patch density, the
better the water quality. The LSI shared a similar effect with PD but with more of an effect
on DO with a correlation coefficient of 0.70 (Figure 6a, p < 0.05). The SHAPE, CONTIG,
and PAFRAC also had significant effects on DO (Figure 6a). The DIVISION index was
negatively correlated with the two kinds of nitrogen in the basin (Figure 6a, p < 0.01). The



Int. J. Environ. Res. Public Health 2022, 19, 6082 8 of 15

effects of this indicator may be similar to that of PD. The ED was negatively correlated
with CODMn. However, this correlation was not clear during either the dry or wet season
(Figure 6, p < 0.05).

The relationship between the landscape pattern indices and the water quality indica-
tors during the dry season was closer than that during the wet season. PD, LSI, SHAPE,
CONTIG, PAFRAC, and COHESION were correlated with more than three water quality
indices (Figure 6b,c). In addition, AI was correlated with CODMn and NH3-N during the
wet season, with correlation coefficients of 0.67 and 0.76 (Figure 6b, p < 0.05), respectively.
The relationship between water quality and the landscape pattern was more obvious during
the dry season. The three water quality indices (TN, TP, and NH3-N) were more closely
correlated during the dry season (Figure 6c, all significance of p < 0.01; TN&TP: r = 0.91;
TN&NH3-N: r = 0.94; TP& NH3-N: r = 0.84). Moreover, most of the landscape pattern
indicators were strongly correlated with the three types of water quality indicators such as
LPI, CONTAG, DIVISION, and SHDI. The PD was strongly correlated with most of the
water quality indicators during the wet season. A similar case occurred for CONTIG.

The impact of land use and landscape pattern on the water quality in the basin differed
among the sub-basins at different range scales (Figure 7). During the wet season, the land
use and landscape pattern status within the 100 m scale of the riverbank had no significant
effects on the water quality of the river (Figure 7a, p > 0.05), whereas the 250 m and 500 m
range scales had better effects. However, the overall effects were inferior to the entire basin
scale (Figure 7c,e). At the 250 m and 500 m range scales, cropland and forest land were the
main land-use types that highly affected water quality. No strong correlation was detected
with construction land and in most cases, they were negatively correlated. Most of the
landscape pattern indices were correlated with TN, such as PD, SHAPE, CONTIG, and
SHDI (Figure 7c,e, p < 0.05). At the 1000 m range scale, the effects of land use on water
quality were similar to the results generated at the entire basin scale, whereas the overall
correlation was not as high as that of the entire basin scale (Figure 7g). In contrast, the
relationship between the landscape pattern and water quality indicators at the 1000 m range
scale was not strong. Most of the landscape pattern indicators were significantly correlated
with a single water quality indicator. Similar results were observed for the 1000 m range
scale during the dry season (Figure 7h).

During the dry season, most of the land use and landscape pattern indices were
correlated with TP and NH3-N at the 100 m range scale, such as construction land, PD, ED,
CONTAG, SHDI, and AI (Figure 7b). The relationship between the water quality status in
the 500 m range scale during the dry season and the land-use status weakened compared
to that during the wet season, whereas a stronger correlation was observed at the 250 m
range scale (Figure 7d,f). At the two range scales, cropland and construction land remained
the main land-use types affecting water quality in the basin, and most of the landscape
pattern indices were significantly correlated with TP and NH3-N.
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Figure 7. Relationship between land use, landscape pattern, and basin water quality during the dry
and wet seasons, at different range scales. Scenarios include 100 m-wet season (a) and dry season
(b), 250 m-wet season (c) and dry season (d), 500 m-wet season (e) and dry season (f), 1000 m-wet
season (g) and dry season (h). PD, LPI, ED, LSI, SHAPE, CONTIG, PAFRAC, CONTAG, COHESION,
DIVISION, SHDI, and AI mean patch density, largest patch index, edge density, landscape shape
index, shape index, contiguity index, perimeter-area fractal dimension, contagion, patch cohesion
index, landscape division index, Shannon’s diversity index, and aggregation index, respectively. In
this figure, a darker red indicates a higher degree of positive correlation, and a darker green indicates
a higher degree of negative correlation. * and ** mean that the correlation was significant at p < 0.05
and p < 0.01, respectively.

4. Discussion
4.1. Influence of the Land-Use Type on Water Quality in the Baoan Lake Basin

The two main land-use types affecting water quality in the Baoan Lake basin were
cropland and construction land (Figure 6). More precisely, cropland constituted the most
dominant land-use type in the Baoan Lake basin, with a distribution ratio exceeding 70%
in the entire basin and each sub-basin. Cropland also played a matrix role in the overall
landscape pattern distribution of the entire basin, with the LPI of the entire basin reaching
70.39% (Table 2 and Figure 3). The large area of cropland also contributed pollutants to
the rivers and lakes. Previous studies have demonstrated that cropland is the surface
source of pollution that is aggravating eutrophication in rivers and lakes [17,29]. The model
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developed by Alnahit et al. suggests that when the area of cropland within the basin exceeds
43%, the TN and TP in the rivers and lakes of the basin will increase significantly [30].
Nitrogen, phosphorous, organic matter, and water pH are significantly affected by cropland
depending on the crop type, fertilizer type, and the local soil conditions [31–33]. Cropland
mainly contributed nitrogen and phosphorous to the Baoan Lake basin that is transported
into the lake and inlet rivers. The relationship between the two was stronger during the dry
season than during the wet season (Figure 6), demonstrating that the surface-source sink
flow of pollutants in the Baoan Lake basin cropland was not strongly correlated with the
interflow surge from precipitation. On the one hand, although the amount of precipitation
in the Baoan Lake basin was less during the dry season than that during the wet season, the
precipitation remained regular, which ensures the full release of nitrogen and phosphorous
in the cropland during each precipitation event. The interior cropland soil remained wet
for long periods during the wet season, whereas nitrogen and phosphorous nutrients were
diluted during the percolation process, thus indirectly weakening the relationship between
them [34]. On the other hand, the growing season for crops in the Baoan Lake basin was
mostly concentrated during the wet season. Large amounts of nutrients are absorbed by
crops during the wet season, thus weakening the contribution of cropland to the pollutants
in the rivers and lakes. The pollutants from crop harvesting and stalk decay were enriched
during the dry season and were more likely to increase the contribution of cropland to the
pollution in the rivers and lakes [35].

The contribution of urban construction land was similar to that of cropland, with
TN, TP, and NH3-N as the main contributing pollutants, and the effects were stronger
during the dry season than during the wet season (Figure 6). In contrast to cropland, the
correlation between construction land and water quality differed significantly between the
dry and wet seasons (Figure 6). The correlation between the cropland and water quality
of the rivers and lakes was weaker during the wet season than during the dry season
but a significant correlation was detected. Several water quality indicators were strongly
correlated with the distribution of construction land during the dry season. However, the
correlations were not significant during the wet season. Previous studies demonstrated that
precipitation efficiently collects surface pollutants from impervious surfaces in urban areas
and increases pollution in bodies of water after converging in the rivers and lakes [4,36,37].
However, in this study, precipitation was likely to show more complex effects on the water
quality of the rivers and lakes in the urban areas. On the one hand, the precipitation in the
Baoan Lake basin was more likely to dilute and weaken the contribution of construction
land pollutants in the rivers and lakes, indicating that the towns in the Baoan Lake basin
contribute more to the pollutants in the rivers and lakes through the pipe network. On the
other hand, the impact of construction land on the water quality of rivers and lakes within
the basin may be of larger spatial difference. Compared to cropland playing the “matrix”
role within the basin, construction land was more scattered using a “patch” form in the
basin. In this study, the HD and XD sub-basins were characterized by a high proportion of
urban construction land, which accounted for 14.49% in the HD sub-basin (Table 2). They
also had higher contributory levels of TN, TP, and NH3-N (Figure 6). The concentrations of
TN, TP, and NH3-N in the HD sub-basin during the dry season were significantly higher
than those during the wet season (Figure 4, p < 0.01), which was probably caused by the
lower pollutant concentration during the wet season due to dilution by precipitation as
previously analyzed. The differences in TN, TP, and NH3-N concentrations in the XD
sub-basin between the dry and wet seasons were not significant. These indicators were
slightly higher at some points during the wet season than the dry season. Therefore, the
pollutant input by construction land in the XD sub-basin was more prone to being affected
by precipitation.

Previous studies have demonstrated that forest land tends to be negatively correlated
with the pollutant levels in rivers and lakes, acting as an interceptor and purifier of the
pollutant input into rivers and lakes [9,38]. The results obtained by Rather et al. on the
Dal Lake basin in India and by Zhang et al. on the Three Gorges Reservoir area, show
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that forests efficiently intercept nitrogen, phosphorous, and organic matter that sinks in
lakes [15,39]. The relationship between forest land and the water quality of the rivers and
lakes in the Baoan Lake basin was not strong, but forest land was positively correlated with
TP during the wet season (Figure 6). The proportion of forest land in the Baoan Lake basin
was not high, with the main distribution at the boundaries of the sub-basins (Figure 1). At
the catchment scale of individual sub-basins, forest land was far away from the central
catchment river. Furthermore, the overall terrain of the Baoan Lake basin was relatively
flat and the input and interception of pollution for the forest land area remain in this area,
which may be why forest land had less impact on water quality in the basin.

4.2. Influence of the Landscape Pattern on Water Quality in the Baoan Lake Basin

The size, density, shape, distribution pattern, and diversity of landscape patches can
affect the water quality of a basin [10,40]. In this study, the PD, COHESION, DIVISION,
and SHDI indices were negatively correlated with the water quality in the rivers and lakes.
The LPI was positively correlated with water quality, which was similar to the results
obtained by Wang et al. in Taihu Lake, China (Figure 6) [13]. However, several studies on
the Danjiang River basin and the Three Gorges Reservoir area came to opposite conclusions.
They reported that several indicators (such as PD and SHDI) indicate the fragmentation
and diversity of the landscape in basins and that the use of fragmented and scattered land
aggravates soil erosion and surface runoff, further increasing the pollutants in the rivers
and lakes [22,39]. Such contradictory findings arise from the different land-use matrices in
the different study areas. The land-use types of the landscape matrix within the Danjiang
River and Three Georges Reservoir basins are forest land and grassland, whereas cropland
and construction land are embedded as small, scattered patches. Therefore, the increase in
patch fragmentation indicates an increase in non-point pollutant sources, which tend to
contribute more pollutants [29,41]. However, in this study, the main land-use type in the
Taihu Lake and Baoan Lake basins was cropland, whereas forest land was more embedded
in patch form. Therefore, the increase in fragmented patches drives more pollutant effects,
resulting in the negative correlation between the landscape pattern and water quality in
the rivers and lakes. The larger LPI value caused by cropland contributed more pollutants
to the rivers and lakes.

CONTIG reflects the connectivity between similar patch cell elements, whereas CON-
TAG reflects dispersed land use, with a higher value indicating a more concentrated
land-use type. They were both positively correlated with the water quality in the rivers and
lakes of the Baoan Lake basin (Figure 6), demonstrating that deteriorating water quality is
closely correlated with more concentrated land-use types in the basin, that is, the landscape
matrix type [42,43]. These findings are consistent with a previous analysis, which showed
that cropland, as the most concentrated land type distributed in a basin, is closely related
to deteriorating water quality.

In contrast to land use, the influence of the landscape pattern on water quality in the
Baoan Lake basin was higher during the wet season than during the dry season, which
is similar to the conclusions of Ruan et al. and Wu et al. [24,44]. The SHAPE and AI
indices were positively correlated with water quality deterioration during the wet season
(Figure 6), where SHAPE indicates the complexity of the patch shape and AI represents the
agglomeration of land-use types. These combined results demonstrate that fragmented and
complex land-use patterns tend to exacerbate deteriorating water quality, which provides a
reference for regulating land use and management [45].

In summary, the landscape pattern status of a basin often affects the water quality
of rivers and lakes by acting on the land-use types. The correlation between different
landscape distribution types and water quality (either with contributory or antagonistic
effects) was based on the original land type of the landscape pattern. The same landscape
distribution pattern based on two different land-use types may have different effects on the
water quality of the rivers and lakes [46].



Int. J. Environ. Res. Public Health 2022, 19, 6082 12 of 15

4.3. Influence of Different Offshore Scales on Water Quality

The influence of land use and the landscape pattern status on water quality in basins
at different range scales is often different, as reported previously [19]. For example, Mainali
et al. demonstrated that land use and the landscape pattern better explain the 100 m
buffer zone than the basin scale in the Han River basin in Korea [47]. Xu et al. performed
multiple studies on the Yuan River basin at 100, 300, and 500 m range scales [48]. They
deduced that the 300 m buffer zone scale best explained water quality. Several studies
focusing on the Dongjiang River basin, the Sarapuí River basin, and the Oregon State
River demonstrated that a basin scale better explains the changes in water quality than the
riverbank scale [19,49,50]. In this study, we deduced that the basin scale would have the
greatest effect on the water quality in the rivers and lakes, followed by the 250 m and 500
m range scales (Figure 7). The reason for the different results was likely related to the land
management patterns in the different areas [22].

Different land-use types also differ in terms of their optimal range of influence on
water quality in the basin [24]. In this study, the relationship between the water quality of
the rivers and lakes and cropland and forest land was close at the 250 m and 500 m scales,
whereas the relationship with urban construction land was weak, which is consistent with
a previous study [51]. As reported previously, towns in the Baoan Lake basin are relatively
concentrated in distribution, although the area accounts for a low proportion. Therefore,
the contribution of towns to river and lake pollution is not uniformly distributed along
the banks of the river and harbor. In contrast, cropland and forest land as matrices and
patches embedded in the matrix produce a more uniform distribution effect in terms of
their contributions to the water quality of the rivers and lakes in the offshore direction.

The effect of land use on the water quality in the rivers and lakes converged to that of
the entire basin scale at a range scale of 1000 m (Figure 7). This occurred because the 1000 m
buffer range covered most of the area in each sub-basin. However, the gap between the
1000 m buffer zone and the range of the sub-basin where it is located was often distributed
with more forest land types. Therefore, the effects of forest land on water quality in the
basin at a range scale of 1000 m may be underestimated. In addition, the relationship
between the landscape pattern and water quality in the basin at a range scale of 1000 m
was unclear because part of the landscape connection was directly cut when part of the
buffer zone boundary converged at the basin boundary.

5. Conclusions

In this study, the effects of land use and landscape pattern status on water quality in
the rivers and lakes of the Baoan Lake basin were analyzed in 2020 based on a field survey
and monitoring. Cropland and construction land were closely correlated with deteriorating
water quality in the rivers and lakes, and the correlations were stronger during the dry
season than during the wet season. However, the influence of the landscape pattern status
on water quality in the basin was stronger during the dry season than during the wet
season. The mechanisms influencing river and lake water quality were different under
different external conditions, so pollution prevention should not be carried out only for a
certain land type or for a certain time.

Many previous studies evaluated the water quality based on the land-use type and
landscape pattern of the original study area but did not discuss the effects of the various
types of landscape patterns separately, so there were contradictions between the conclusions
of different studies. The present study found that the effects of the landscape pattern in the
basin were controlled by the original land-use type, whereas the landscape configuration
patterns of different land-use types produced different effects.

Land use and the landscape pattern better explained the changes in water quality at
the basin scale, particularly for the urban construction land type, followed by the 250 m
and 500 m buffer scales. Therefore, land-use regulations on the banks of rivers and lakes
should be considered when carrying out water environment treatment and restoration, and
the restoration plan should be formulated from the river basin scale to improve the effects.
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