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1  | INTRODUC TION

Recent advances in DNA sequencing technology, which reduced 
costs and increased throughput and accuracy, have driven sub-
sequent advances in population genomics methods for detecting 
traces of natural selection in DNA fragments. In a recombining chro-
mosome, a subgenomic region under natural selection typically ex-
hibits different levels of variation and differentiation than the rest of 
the genome (Li & Ralph, 2019). Hence, it can be considered an anom-
aly that deviates from the overall population structure (François, 
Martins, Caye, & Schoville, 2016; Haasl & Payseur, 2016). Identifying 
such anomalies in molecular data is of great significance since the re-
spective footprints of localized natural selection can provide insight 

into the adaptation process of a population to its environment 
through different generations.

One of the most frequently used statistics to detect genomic re-
gions under selection is the Fixation Index (FST), which was introduced 
to quantify population differentiation based on the Wright–Fisher 
model (Wright, 1949). Several FST variants are widely employed in 
population genomics (Hudson, Slatkin, & Maddison, 1992; Weir & 
Cockerham, 1984; Weir & Ott, 1997) because high FST values can 
be an indication of local adaptation. However, when the population 
history deviates from the Wright–Fisher model, or when evolution-
ary history is described by a hierarchical population structure model, 
hypothesis testing becomes a challenge because the FST distribution 
that accounts for the neutral demographic model of the population 
under study is not known. In this case, FST-based methods that do 
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In recent years, genome-scan methods have been extensively used to detect 
local signatures of selection and introgression. Most of these methods are either 
designed for one or the other case, which may impair the study of combined cases. 
Here, we introduce a series of versatile genome-scan methods applicable for both 
cases, the detection of selection and introgression. The proposed approaches are 
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parameters, such as recombination rates, population background histories, selection 
strengths, the proportion of introgression and the time of gene flow. We find that 
kNN-based methods perform remarkably well compared with the state-of-the-art. 
Finally, we demonstrate how to perform kNN-based genome scans on real-world 
genomic data using the population genomics R-package popgenome.
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not take the genome-wide population structure into account may 
yield unreliable results, as mentioned in several previous stud-
ies (Bonhomme et al., 2010; Excoffier, Hofer, & Foll, 2009; Foll & 
Gaggiotti, 2008; Lotterhos & Whitlock, 2014; de Villemereuil, 
Frichot, Bazin, François, & Gaggiotti, 2014).

To better account for the genome-wide population structure, FST 
was introduced as a model parameter in the Bayesian approaches and 
inferred via computationally intensive Markov Chain Monte Carlo 
(MCMC) simulations. In such approaches, a common migrant pool is 
modelled as a Dirichlet distribution, and the genome-wide neutral sig-
nal is captured in a logistic regression model with a specific parameter 
shared by all populations. One of the most prominent methods is im-
plemented in the bayescan software (Foll & Gaggiotti, 2008), which is 
built upon the works of Beaumont and Nichols (1996) and Beaumont 
and Balding (2004). It has been reported, however, that these meth-
ods still suffer from a high false discovery rate (FDR; De Villemereuil 
& Gaggiotti, 2015; Duforet-Frebourg, Bazin, & Blum, 2014; Duforet-
Frebourg, Luu, Laval, Bazin, & Blum, 2015). Alternative approaches 
were developed to address some of these shortcomings. The method 
implemented in bayenv2 (Günther & Coop, 2013), for instance, uses 
correlations to environmental variables to improve the detection of 
local adaptation. An extension of this method is introduced in baypass 
(Gautier, 2015), which includes several modifications of the underlying 
Bayesian model assumptions.

The majority of the aforementioned methods consider pop-
ulation differentiation based on allele frequencies. Methods that 
detect adaptive evolution using haplotype frequencies are imple-
mented in the hapf

lk
 software (Fariello, Boitard, Naya, SanCristobal, 

& Servin, 2013). The employed models in hapf
lk

 account for linkage 
disequilibrium (LD), while their parameters are inferred via an expec-
tation–maximization (EM) algorithm. More recent and less computa-
tionally demanding approaches rely on principal component analyses 
(PCAs; Duforet-Frebourg et al., 2015; Luu, Bazin, & Blum, 2017). The 
pcadapt software, for instance, does not assign individual samples 
to populations since the overall population structure is captured by 
the principal components. Pfeifer and Lercher (2018) recently pre-
sented blockfest, a Bayesian approach that enables the grouping of 
individual SNPs (single nucleotide polymorphisms) into blocks. This 
approach facilitates the computation of region-wide FST, which can 
be used to detect signatures of local adaptation that span a genomic 
region with multiple SNPs. A composite approach is proposed by 
Lotterhos et al. (2017). The authors combine the outcome of well-es-
tablished tests for selection by mapping the corresponding scores 
into a multidimensional space and apply a series of diverse multivar-
iate distance metrics for enhancing a composite selection measure.

Localized deviations from the genome-wide population structure 
may also be introduced by other evolutionary forces, such as intro-
gressive hybridization. During introgressive hybridization, species 
exchange genetic information, a process that may serve as the pri-
mary source for the adaptation of populations to their environment 
(Hedrick, 2013). Detecting introgressed regions has great signifi-
cance since it can shed light on the effects of hybridization among 
species. Several approaches have been proposed for this purpose. 

The most widely applied one is the ABBA-BABA family of methods, 
which is based on a four-taxon system where the fourth taxon serves 
as the outgroup (Durand, Patterson, Reich, & Slatkin, 2011; Green 
et al., 2010; Martin, Davey, & Jiggins, 2014; Pfeifer & Kapan, 2019). 
Since an outgroup is not always available, approaches based on 
fewer taxa have also been introduced (Geneva, Muirhead, Kingan, & 
Garrigan, 2015; Hahn & Hibbins, 2019; Hibbins & Hahn, 2019). Hahn 
and Hibbins (2019), for instance, recently presented the D3 statistic, 
which relies on pairwise dxy measurements.

Both selection and introgression introduce patterns that can 
be considered anomalies with respect to the genome-wide popula-
tion structure. Various machine-learning (ML) methods are particu-
larly designed for detecting anomalies. In this work, we deploy the 
pairwise FST and dxy measures as features in kNN-based (k-nearest 
neighbours) ML approaches, and assess their power in detecting se-
lection and introgression in whole-genome data. The ML family of 
kNN methods are among the most prominent unsupervised tech-
niques and are already widely applied in several areas of data-driven 
research to detect anomalies. The underlying idea of our approach is 
influenced by the population branch length statistics (PBS) method 
(Yi et al., 2010), but supports an arbitrary number of branches. We 
also employ pairwise FST, which is less prone to confounding factors 
such as background population histories than the global FST that is 
calculated by the mean divergences between multiple populations. 
Since FST estimates may lead to false positives when diversities 
within populations are low, which can potentially mislead the de-
tection of introgression (Cruickshank & Hahn, 2014), we additionally 
employ the pairwise nucleotide differences (dxy) as a feature for de-
tecting introgression.

We perform a wide range of coalescent simulations to evaluate 
the ability of the kNN-based approaches to detect selection and 
introgression under different evolutionary scenarios, such as pop-
ulation bottlenecks, recombination rates, population background 
histories, selection strengths, the proportion of introgression and 
the time of gene flow. Finally, we showcase the use of the kNN ap-
proaches to detect positively selected regions in the human genome 
by analysing the data made available by the 1,000 Genomes Project 
(1000 Genomes Project Consortium & others, 2015). We find that 
the kNN-based methods are highly suited for the detection of local 
adaptation acting on a region comprising multiple SNPs. In that case, 
we observe a substantial gain of accuracy compared with the state-
of-the-art, as measured by the trade-off between precision and re-
call. We also observe that the kNN-based methods perform well for 
the detection of introgressed genomic regions, making our approach 
a promising tool for the detection of adaptive introgression as well.

2  | MATERIAL S AND METHODS

2.1 | Using FST as features in kNN methods

The principal idea of the kNN approach (Cover & Hart, 1967; 
Fix, 1951) is to classify distant data points with respect to their 



     |  1599PFEIFER Et al.

neighbourhood as outliers. This is achieved by relying on distance 
metrics such as the Euclidean distance. Computed are all distances 
from any given point, where k is a prespecified positive integer. In 
this work, we use population pairwise FST to define the location of 
the data points in a multidimensional space. FST between two popu-
lations is calculated by

where Hw is the mean of nucleotide differences within two populations 
and Hb is the mean of nucleotide differences between two populations. 
In case of multiple SNPs, we calculate the ratio of average nucleotide 
differences within and between two populations, as suggested by 
Hudson et al. (1992) and Bhatia, Patterson, Sankararaman, and Price 
(2013). In our framework, the population pairwise FST estimates rep-
resent a genomic region as a data point that is embedded into an m-di-
mensional numerical space, where m is the total number of possible 
population pairwise comparisons (m=np(np−1)∕2), and np is the total 
number of populations being analysed. Thus, the population structure 
of each genomic region is represented by an FST vector of length m. 
A kNN outlier score for a genomic region x is calculated according to 
Equation 2

where |Nk(x)| is the total number of k genomic regions in the nearest 
neighbour set, while dk(x, o) quantifies the dissimilarity between ge-
nomic regions x and o. We employ the Euclidean distance between 
feature vectors FST(x) and FST(o) as a dissimilarity measure, which is 
computed using Equation 3,

Note that any feature, for example pairwise dxy, could have eas-
ily been used to compute the required dk(x, o) distances. Building 
upon the basic kNN approach, Angiulli and Pizzuti (2002, 2005) pro-
posed a weighted-kNN approach that considers the overall distance 
between a data point and its neighbours by computing the sum of 
distances instead of the arithmetic mean. Hautamaki, Karkkainen, 
and Franti (2004) introduced ODIN (outlier detection using indegree 
number), a method that infers outliers based on a kNN graph. To 
the best of the authors' knowledge, the most widely used method 
for quantifying local outlierness is LOF (local outlier factor; Breunig, 
Kriegel, Ng, & Sander, 2000), which is based on the concept of local 
reachability density (lrd) of the k-nearest neighbours. In LOF, a data 
point is considered to be an outlier when its density is much smaller 
than the densities of its neighbours. The lrd is defined as

while LOF is calculated using Equation 5

Various modifications to LOF and the corresponding concept of 
lrd have been proposed over the years. Schubert, Zimek, and Kriegel 
(2014) described the simplified LOF, which employs the basic kNN 
distances instead of local reachability distances. Tang, Chen, Fu, 
and Cheung (2002) introduced the connectivity-based outlier factor 
(COF), which adapts the density estimation of simplified LOF to ac-
count for the ‘connectedness’ of the neighbourhood via a minimum 
spanning tree (MST). Kriegel, Kröger, Schubert, and Zimek (2009) im-
plemented LoOP (local outlier probabilities), a tool that adopts nor-
malized local density scores based on the quadratic mean, leading to 
scores that are strictly within the [0,1] interval. Zhang, Hutter, and 
Jin (2009) introduced the local distance-based outlier factor (LDOF), 
which quantifies the amount of data points that deviate from their 
scattered neighbourhood based on the relative distance between a 
data point and its neighbours. The ABOD (angle-based outlier detec-
tion) approach by Kriegel, Schubert, and Zimek (2008) addresses the 
so-called 'curse of dimensionality' problem by comparing the angles 
between pairs of distance vectors. Latecki, Lazarevic, and Pokrajac 
(2007) presented the local density factor (LDF) that replaces the 
LOF density estimation by variable-width Gaussian kernel density 
estimation (KDE). INFLO (influenced outlierness) by Jin et al. (2006) 
also takes into account the reverse nearest neighbourhood set when 
calculating local density scores.

The provided list of methods of anomaly detection algorithms is 
by no means comprehensive. Presenting a complete list is beyond 
the scope of the current article. In this work, however, we employ 
the majority of the aforementioned kNN approaches, which were 
also previously studied in Campos et al. (2016). In their study, they 
analysed the performance of the aforementioned kNN approaches 
on biomedical data sets available from the UCI repository (Bache 
& Lichman, 2013). They found that kNN (Cover & Hart, 1967), the 
weighted kNN (Angiulli & Pizzuti, 2005) and the original LOF (Breunig 
et al., 2000) are the state-of-the-art of outlier detection algorithms.

2.2 | Setting parameter k

In supervised classification problems, whereby the labels of the 
classes are known a priori, parameter k is typically inferred via cross-
validation. It is well known, however, that choosing an appropriate 
k value in a purely unsupervised setting is a challenging task, since 
it highly depends on the data being analysed. This challenge espe-
cially arises in studies that aim to detect local outliers. In the data 
mining literature, local outliers are discussed as data points whose 
immediate neighbours are closer together compared with the rest. 
Our approach in this study deploys kNN-based methods with the 
aim to detect global outliers to distinguish between signals of neu-
tral evolving genomic regions and outlier regions subject to local 
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selection or introgression. Therefore, the outcome of our analyses is 
expected to be robust to the choice of k.

Nevertheless, any chosen k value should belong to what we refer 
to as a stable k region, that is a range of k values that yield highly 
correlated kNN scores. To address this requirement, we propose the 
following approach. First, calculate the kNN scores s i for nk = 100 
sequentially sampled values of k from [2, nr − 1], where nr is the total 
number of genomic regions

Second, calculate Kendall's tau correlation coefficients (τ)

with

where concordant/discordant refers to the elements between two 
vectors s i and s j which agree/disagree on their ranks. Third, from 
the correlation vector corr infer the longest connected k region with 
corr > 0.90, and define the median of that region as the optimal k. We 
also provide a diagnostic plot, available from our GitHub repository, for 
a manual inspection of the correlation vector corr.

Thereafter, the final outlier scores per genomic region are com-
puted based on the chosen and henceforth fixed k value. We are 
now able to detect genomic regions comprising anomalous popula-
tion structure, yet it remains unclear which population or population 
pair causes the outlierness. To this end, we propose the following 
practical approach. Once the outlier regions are detected, based on 
kNN outlier scores, we calculate the medoid of the pairwise FST vec-
tors. We have empirically determined that the medoid is the most 
informative data point for our purpose because it reflects the overall 
population structure. Subtracting the medoid from the outlier pair-
wise FST vectors reveals which population or population pairs are 
affected by selection or introgression. We refer to the resulting vec-
tors as the ΔFST selection effects. Positive ΔFST entries suggest local 
adaptation, whereas negative values point to introgression (reduced 
divergence due to gene flow) or other types of selection that sig-
nificantly reduce the divergence between populations, for example 
balancing selection.

2.3 | Experimental set-up

We conducted simulations under local adaptation and introgression 
using the msms software (Ewing & Hermisson, 2010). For the case of 
local adaptation, we generated 950 neutral regions and 50 regions 
under selection, resulting in a total number of nr = 1,000 regions. 
We have built three populations, each comprising 100 samples. The 

number of SNPs per region was 50, and the effective population size 
was Ne = 10,000. In our baseline model, the first coalescent event 
of populations P1 and P2 was fixed at t12 = 0.1 × 4Ne, and the second 
coalescent event was set to t123 = 0.9 × 4Ne generations ago. The 
selection strength for homozygotes was s = 0.1 = 2,000/2Ne, where 
selection started at ts=0.1×4Ne generations ago in population P1. 
The recombination rate was r = 0.01. We varied recombination rates 
and the time of coalescence with population P3 (t123). We also con-
sidered differences in selection strength and the time of selection.

We benchmarked the proposed methods for their ability to dis-
tinguish between local adaptation and genetic footprints left by bot-
tleneck scenarios. A simplified description of our selection model is 
illustrated in Figure 1. The main calls to the MSMS program can be 
found in the Supporting Information Section 1.1.

To generate introgression events, we again made use of the msms 
software with the same background population history as in the se-
lection case. We simulated 950 neutral regions and 50 regions under 
introgression with three populations including 100 samples each. 
In our baseline model, the coalescent times were t12=0.1×4Ne and 
t123=0.9×4Ne generations ago. The scaled mutation rate was set to 
θ = 1. We introduced P3 → P2 introgression tGF=0.01×4Ne genera-
tions ago with a fraction of introgression f = 0.3. The recombination 
rate was fixed to r = 0.01 in all simulations. We varied the proportion 
and the time of introgression. A schematic representation of the in-
trogression model is illustrated in Figure 2.

For the selection cases, we compared our kNN approaches with 
the methods implemented in the R-package pcadapt (Luu et al., 2017), 
blockfest (Pfeifer & Lercher, 2018) and hapf

lk
 (Fariello et al., 2013). To 

ensure a fair comparison with pcadapt and FLK, when conducting re-
gion-specific selection, we simulated the same number of SNPs for 
all regions and computed the sum of log-p-values in order to assign 
a region-specific score. Keeping the number of SNPs constant en-
sured that the results are not biased by the size of a particular region. 
The number of principal components was set to K = 2 for pcadapt, 
and the number of clusters was set to K = 1 for the FLK method.

(6)si=kNNk(i)(X) ∀i=1,…, nk,X∈
{
x1,…, xnr

}
.

(7)
corri=median

[
�(si−1, si), �(si, si+1), �(si−1, si+1)

]

∀i=2,…, nk−1,

(8)� =
(number of concordant pairs)− (number of discordant pairs)

nr(nr−1)∕2
,

F I G U R E  1   A graphical illustration of local adaptation. A 
three population genealogy with selection introduced at ts × 4Ne 
generations ago in population P1 [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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In the introgression cases, we compare the kNN-based methods 
to the D3 approach (Hahn & Hibbins, 2019), which follows a similar 
logic as the df method introduced by Pfeifer & Kapan (2019), but 
without the use of an outgroup. We also show the absolute value 
of D3, denoted as |D3|. We believe that the absolute value is a more 
appropriate value to compare with our approaches, because out-
lier detection methods typically generate positive numbers. The D3 
method is compared to the kNN-based techniques using pairwise 
dxy and pairwise FST as features. Finally, we relate all of these meth-
ods to the global FST estimate by Hudson et al. (1992) as a baseline 
approach. Accuracy is measured by the area under the curve (AUC), 
as implemented in the R-package proc (Robin et al., 2011), and the 
precision–recall area under the curve (PR-AUC), as implemented in 
the R-package prroc (Grau, Grosse, & Keilwagen, 2015).

3  | RESULTS

3.1 | On the power to detect selection

We assess the power of the kNN approaches to detect single-
locus signatures of selection, where each region comprises a single 
SNP. When selection is strong, we observe that both the kNN 
methods and the FLK method yield comparable results, whereas FST 
and pcadapt achieve overall lower accuracy (Figure S1a,b). When 
selection strength is low, however, the kNN approaches become 
unstable (Figure S1c,d) and competing methods such as FLK are 
found to be more accurate (see also Figure S2).

Simulations under region-specific selection indicate that the 
kNN-based methods remain largely unaffected by the choice of k 
(Figure 3), outperforming well-established methods such as pcadapt 
and FLK. Unstable results are only observed for either very small 
or very high k values with respect to the total number of genomic 
regions analysed. As expected, the FST results are fully comparable 

for star-like genealogies (Figure 3a). However, as soon as hierarchi-
cal structure is introduced to the population history, our proposed 
competing methods show overall higher AUC and PR-AUC values 
(Figure 4). The methods pcadapt, blockfest and the global FST are 
most affected when varying the coalescent times to population P3, 
whereas the kNN-based techniques and FLK remain almost unaf-
fected (Figure 4a,b).

The weighted-kNN and simplified-LOF methods are the stron-
gest kNN-based methods, both outperforming FST, pcadapt and FLK, 
and are comparable to blockfest (Figure 3). However, the PR-AUC 
values in Figure 4b,d show that blockfest has overall lower precision–
recall values indicating a substantially higher false discovery rate. 
Also, blockfest is based on computationally intensive MCMC runs 
and for that reason might not be generally applicable. Overall, the 
performance of all methods under consideration decreases with in-
creasing recombination rates (Figure 4c,d). This is expected because 
the signal of selection gets eroded, which makes it harder to detect 
these patterns. Notably, FLK performs slightly better compared with 
the competing methods when the recombination rate is high.

Based on the simulations with varying selection strengths and 
time of selection (Figure S3), we observe that the power to detect 
selection drops when the selection strength is s = 0.01. Overall, FLK 
competes well with the kNN approaches with only slight lower AUC 
and PR-AUC values. We also simulated bottleneck scenarios in pop-
ulation P1 occurring 0.05 × 4Ne generations ago. The weighted kNN 
and the simplified LOF outperform the other methods in the case of 
moderate bottlenecks (Figures S5 and S6). Increasing the bottleneck 
strength, however, leads to overall lower performance for all meth-
ods. The PR-AUC values of FLK are higher than those obtained by 
blockfest (see Figure S6).

Based on our simulations, we observed that the INFLO algorithm 
is the weakest kNN-based method for the detection of selection. As 
a matter of fact, INFLO is the most sensitive to background popula-
tion histories as can be seen in Figure 4a.

3.2 | On the power to detect introgression

Simulations under unidirectional introgression from population P3 
to an in-group population P2 confirm that the kNN-based family of 
methods is not greatly affected by the choice of k (Figure 5). We 
observe overall low accuracy for FST when varying the time of gene 
flow and the fraction of introgression (Figures 5 and 6). This is es-
pecially true when gene flow is recent and the fraction of introgres-
sion is high (Figure 5a,b). D3 is more powerful when varying the time 
of gene flow (Figure 6c,d) and outperforms the kNN-based meth-
ods based on pairwise FST features. When the gene flow is recent, 
D3 has overall lower AUC values than the kNN-based approaches 
(Figure 6a), whereas D3 and |D3| outperform the kNN techniques 
when the gene flow occurred further in the past (tGF > 0.1). This 
stability against the time of gene flow was also previously mentioned 
by Pfeifer and Kapan (2019). These authors used a similar concept to 
D3, which was realized on a four-taxon system.

F I G U R E  2   A graphical illustration of introgression. A three 
population species tree with an unidirectional introgression event 
from the ancestral population P3 to population P2 introduced 
tGF×4Ne generations ago. The proportion of introgression is 
indicated by f
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Increasing the proportion of introgression has a similar ef-
fect on all kNN-based methods: the accuracy increases and al-
most reaches 100% when f = 0.7. INFLO again is the weakest 
kNN-based method (Figures 5 and 6). Overall, the weighted-kNN 
method and the simplified LOF show high accuracy also in the in-
trogression cases and provide stable score rankings almost across 
the full range of k.

Using dxy as feature also provides stable results for almost all 
choices of k (Figure S7). However, in this situation results are not 
as reliable as those of kNN techniques with incorporated pairwise 
FST estimates. This is especially true when the time of gene flow is 

recent (Figure S7a). Using a combined feature vector of FST and dxy 
has no benefit over applying pairwise FST vectors only (Figure S8). 
We learned that when the divergence between population P1 and 
P2 is excluded from the feature set qualitatively superior results (see 
Figure S9) are obtained.

We also test the ability of the proposed methods to detect in-
trogressed genomic regions when varying the signal-to-noise ratio, 
specified by the number of introgressed regions divided by the 
number of neutral regions (Figure S10). We set the number of intro-
gressed regions to a constant size of 50 and successively decrease 
the number of neutral regions. Our simulations indicate that the kNN 

F I G U R E  3   Local adaptation: varying the coalescent time to population P3 (t123). The result for the kNN-based methods using pairwise FST 
as features, for 100 sequentially sampled k values and in comparison with the accuracy of FST, pcadapt, FLK and blockfest. The recombination 
rate is r = 0.001, and the number of SNPs per region is 50. (a) The simulations are based on a star formed genealogie (t12=0.1×4Ne= t123). 
The coalescent time to population P3 is (b) t123=0.5×4Ne, (c) t123=0.7×4Ne and (d) t123=0.9×4Ne generations ago. The expected AUC value 
of a random classifier is AUC = 0.5

(a) (b)

(c) (d)
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approaches achieve high accuracy when the signal-to-noise ratio is 
under 0.2, and become unstable otherwise (Figure S10d).

3.3 | Application to the 1,000 Genomes data

We also analysed the 1,000 Genomes data (1000 Genomes Project 
Consortium & others, 2015) to demonstrate the efficacy of our pro-
posed kNN-based approaches when processing real data. The em-
ployed data set is currently one of the largest publicly available data 

sets, both in terms of number of samples and number of SNPs, with 
2,504 human samples from 26 populations, and 77,832,252 SNPs in 
the entire set of autosomes (phase 3). We applied all implemented 
kNN-based techniques on a per-autosome basis to the samples 
of the population with Northern and Western European ancestry 
(CEU), the population with East Asian ancestry (CHB) and the popu-
lation with African ancestry (YRI), evaluating nonoverlapping sliding 
windows of size 100 kb, in a total number of nr = 2,400 windows 
(Figure 7). The window size of 100 kb approximately maps a human 
recombination rate of r = 0.001, for which we observed good kNN 

F I G U R E  4   Detecting selection with a computed k. The kNN methods with pairwise FST as features, compared with FST, pcadapt, FLK 
and blockfest. The recombination rate is r = 0.001, and the number of SNPs per region is 50. (a and b). Varying the coalescent time with 
population P3 (t123= [0.1, 0.3, 0.5, 0.7, 0.9]×4Ne generations ago). The realized mean FST over all regions is FST= [0.17, 0.31, 0.42, 0.50, 0.55]. (c 
and d). Varying the recombination rate (r= [0.001, 0.005, 0.01, 0.05]). The coalescent time with population P3 is t123=0.7×4Ne generations 
ago. The realized mean FST over all regions is FST= [0.31, 0.32, 0.32, 0.31]. The expected value of a random classifier is AUC = 0.5 and PR-
AUC = 50∕1, 000=0.05

(a) (b)

(c) (d)
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results in the simulations (Figure 4d). As seen in the diagnostic plot in 
Figure 7i, the kNN scores are highly correlated for almost all sampled 
k values.

Here, we summarize the results for chromosome 2, showing the 
genomic windows that are discovered as outliers by the kNN meth-
ods. We report the nearest genes to these outlier windows (Table 1) 
when the outlier window does not overlap with a gene. For each tool, 
we consider kNN scores within a conservative 0.005-quantile to de-
fine the outlier candidates. The top-2 candidate genes for adaptive 
evolution are the protein-coding genes EXOC6B and EDAR (Table 1 
and Figure 7). Baye, Wilke, and Olivier (2009) name EXOC6B as a 

positively selected gene. Intellectual disability and developmental 
delay are associated with this gene. Our kNN approaches suggest 
directional selection between the YRI population and both the CEU 
and CHB populations (Table 1). Bryk et al. (2008) report EDAR, 
which is a gene involved in ectodermal development, increased in 
frequency in East Asia due to positive selection 10,000 years ago. 
The kNN-based approaches suggest the strongest effect between 
CEU and CHB (Table 1).

Another candidate gene is CNTNAP5 (outlier window: 126.1–
126.2 Mb) and is confirmed by all tools but ODIN. The selec-
tion effect is ΔFST = [CEU/CHB = 0.39, CEU/YRI = 0.01, CHB/

F I G U R E  5   Varying the fraction of introgression (f). The result for the kNN-based methods using pairwise FST as features, for 100 
sequentially sampled k values. Coalescent times are t12=0.1×4Ne and t123=0.9×4Ne generations ago. Recent introgression is introduced 
tGF=0.01×4Ne generations ago, and the recombination rate is set to r=0.01 in all simulations. The outcome of the kNN-based methods is 
compared to FST, D3 and |D3|. The fraction of introgression is (a) f = 0.9, (b) f = 0.7, (c) f = 0.5 and (d) f = 0.3. The expected AUC value of a 
random classifier is AUC = 0.5

(a) (b)

(c) (d)
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YRI = 0.25] suggesting directional selection in the Asian (CHB) 
population. An additional candidate gene is FMNL2 (outlier win-
dow: 153.1–153.2 Mb) and is exclusively identified by the weight-
ed-kNN and kNN algorithms with a selection effect of ΔFST = [CEU/
CHB = 0.29, CEU/YRI = 0.11, CHB/YRI = 0.33]). The genomic region 
104.7–104.8 Mb is identified by all tools but the weighted kNN and 
kNN. The nearest gene is LINC01127, and the selection effect is 
ΔFST = [CEU/CHB = 0.32, CEU/YRI = 0.21, CHB/YRI = −0.10]. The 
ANTXR1 gene (outlier window: 69.2–69.3 Mb) is only reported by 
the ODIN method as a candidate for selection with a selection effect 

of ΔFST = [CEU/CHB = 0.22, CEU/YRI = 0.31, CHB/YRI = −0.05]. 
This observation is slightly pointing to positive directional selection 
in the CEU population and a reduced diversity between the CHB and 
YRI populations.

4  | DISCUSSION

In this study, we have investigated the efficacy of kNN-based 
algorithms, that is a family of unsupervised machine-learning 

F I G U R E  6   Detecting introgression with a computed k. The accuracy of the kNN methods with pairwise FST as features, compared 
with FST, D3 and |D3|. The recombination rate is r = 0.01 in all simulations. (a, b). Varying the fraction of introgression (f= [0.9, 0.7, 0.5, 0.3]). 
Coalescent times are t12=0.1×4Ne and t123=0.9×4Ne generations ago, and recent introgression is introduced tGF=0.01×4Ne generations 
ago. The realized mean FST over all regions is FST= [0.50, 0.50, 0.50, 0.50]. (c, d). Varying the time of gene flow (tGF= [0.1, 0.3, 0.5, 0.8]×4Ne) 
with an fixed fraction of introgression of f = 0.7. Coalescent times are t12=1×4Ne and t123=2×4Ne generations ago. The realized mean FST 
over all regions is FST= [0.75, 0.75, 0.75, 0.75]. The expected value of a random classifier is AUC = 0.5 and PR-AUC = 50/1,000 = 0.05

(a) (b)

(c) (d)
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techniques, for the detection of local adaptation and introgres-
sion in whole-genome scans. Coalescent simulations under re-
gion-specific selection and introgression show that kNN-based 
methods that employ pairwise FST as features perform remarkably 
well and are not greatly affected by the choice of k. Based on our 
simulations, we conclude that the weighted kNN is the most pow-
erful approach for genome-wide scans to detect region-specific 
selection. The detection of selection on a single-SNP basis, how-
ever, is only recommended for strong selection and when our pro-
posed diagnostic plot yields stable rank correlations of the kNN 
scores.

We found that the kNN approaches using pairwise FST as fea-
tures are also suited for the detection of recent introgression, but 
are not as robust as other methods with regard to the time of gene 
flow. However, the approaches presented in this work are highly 
flexible with regard to the choice of the feature set and researchers 

are not limited to using FST or dxy. A different set of features or a 
combination of selection/introgression sensitive features may fur-
ther improve accuracy. In a feature experiment for the introgression 
cases, for instance, we observed that excluding the divergence be-
tween the in-group taxa (P1 and P2) results in a framework which is 
more robust to the time of gene flow.

In contrast to other genome-scan approaches, the kNN-based 
approaches are based on simple concepts while at the same time 
do not depend on specific assumptions about the distributions of 
the underlying data. The algorithm implemented in the R-package 
pcadapt, for example, uses a principal component transformation of 
the data in combination with a linear regression model, and thus as-
sumes linear relationships between the variant sites of the underly-
ing data.

We have demonstrated that the evaluated kNN-based methods 
achieve qualitatively comparable performance with the Bayesian 

F I G U R E  7   Genome-scan plots of human chromosome 2. (a–h). The kNN scores are shown along human chromosome 2 based on 
100-kb consecutive sliding windows. Red and orange dots are outliers identified by the kNN methods (0.005-quantile of the scores). Red 
dots indicate that all methods agree on these outliers and orange dots otherwise. (i). A diagnostic plot is shown with the pairwise rank 
correlations of the kNN scores while varying the parameter k



     |  1607PFEIFER Et al.

approach implemented in the R-package blockfest when detecting 
region-specific selection, while being considerably less computer-in-
tensive. We showcased the capacity of the kNN-based methods to 
analyse real-world data by scanning the second chromosome of the 
human genome (data available by the 1,000 Genomes Project). We 
confirm known genes under positive selection, such as EDAR and 
EXOC6B, but also report a set of new candidate genes, such as LIMS1 
and CNTNAP5. Outlier loci with significantly reduced divergence 
and thus potentially pointing to gene flow or balancing selection 
cannot be reported for human chromosome 2. The only candidate 
genes showing a weak signal of that type are the LINC01127 and 
ANTXR1 genes, with slightly reduced divergence between the CHB 
and YRI populations.

We have also discussed certain challenges that arise when em-
ploying kNN-based techniques. A widely known complication with 
the kNN-based methods, which merits further investigation, is the 
choice of k, for which the optimal value highly depends on the 
data. Using coalescent simulations with a wide range of varying 
parameters, we showed that the chosen k value does not greatly 
affect the accuracy of our approaches. A genomic scan of human 
chromosome 2 yield stable kNN-score rank correlations. However, 
we highly recommend to conduct the provided diagnostic plot 
prior to the final analysis. Other data sets may behave differently. 
Also, the window sizes in genome scans for selection may sub-
stantially influence the stability of the kNN techniques and our 
proposed approaches to infer k. A visual inspection of the diag-
nostic plot should clearly indicate ranges of k for which high kNN 
rank correlations can be reported. Future investigations will anal-
yse the power of the kNN techniques, both analytically as well as 
through additional simulations over a wider range of population 
models and feature sets.
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