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Atherosclerosis (AS) is a chronic inflammatory disease seriously endangering human
health, whose occurrence and development is related to many factors. Pyroptosis is a
recently identified novel programmed cell death associated with an inflammatory response
and involved in the formation and progression of AS by activating different signaling
pathways. Protein modifications of the sirtuin family and microRNAs (miRNAs) can directly
or indirectly affect pyroptosis-related molecules. It is important to link atherosclerosis,
thermogenesis and molecular modifications. This article will systematically review the
molecular pathways of pyroptosis in AS, which can provide a new perspective for AS
prevention and treatment.
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INTRODUCTION

AS, a chronic inflammatory lesion (Ray et al., 2019), usually remains stable for several years, but can
rapidly become unstable, rupture and trigger thrombosis. Thus, in addition to limiting the lumen, the
presence of atherosclerotic plaque is associated with an increased risk of acute cardiovascular events
such as myocardial infarction (MI) and stroke (Emini Veseli et al., 2017). It is also a major reason for
the development of vascular disease and a leading contributor to death around the world, with about
7.2 million deaths each year, and the prevalence is expected to increase about 18% by 2030 (Valanti
et al., 2021). Many studies have shown that the pyroptosis that accompanies the inflammatory
response can be involved in the whole process of AS development (Xu et al., 2018; Qun Wang et al.,
2020). Stimuli that promote the development of AS, such as nicotine, hyperlipidemia, oxidized
modified low-density lipoprotein (ox-LDL), and cholesterol crystals (CC-) can induce the
pyroptosis-associated inflammasome and caspase-1 through different pathways (Zhaolin et al.,
2019a). Endothelial cells, which act as a barrier between the blood and the vessel wall interface, are
the first cells in the circulatory system to be exposed to danger signals, and their impaired function is
often considered to be the initial stage of AS (Gimbrone and García-Cardeña, 2016; Paone et al.,
2019). It has been shown that nicotine in tobacco increases reactive oxygen species (ROS) production
and activates the NLRP3 inflammasome, which promotes caspase-1 maturation and the production
and release of IL-1β and IL-18, triggering inflammation and endothelial cells pyroptosis and
promoting the AS process (Arend et al., 2008; Wu et al., 2018).

ATHEROSCLEROSIS

AS is an inflammatory process that mainly includes endothelial damage, lipid deposition,
macrophage activation, phagocytosis, inflammatory response, foam cell formation, oxidative
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modifications, and smooth muscle cell migration (Ross, 1999).
During the development of AS, death of vascular cells such as
endothelial cells (ECs), macrophages, and smooth muscle cells
(SMCs) is common (Xu et al., 2018). AS begins with vascular
endothelial injury and subsequently progresses to chronic
inflammation and atherosclerotic plaque formation (Zhou
et al., 2021). The early stage of atherosclerotic lesion
development is called “fatty streak” (Poznyak et al., 2020), and
in the initial stage of atherogenesis, ox-LDL causes endothelial
cell damage and dysfunction, which can lead to a variety of
human health-threatening diseases such as stroke, and further
promotes monocyte binding to sites of endothelial wall damage
(Moreno et al., 1994), in the endothelium they differentiate into
macrophages and internalize modified lipoproteins to become
foam cells (Libby et al., 2019), and activated endothelial cells and
macrophages secrete a variety of chemokines and growth factors
that promote inflammation and ROS production (Kattoor et al.,
2017; Libby et al., 2019). They then act on adjacent smooth
muscle cells, inducing their proliferation and synthesis of
extracellular matrix components within the endothelial lumen,
resulting in fibromuscular plaques (Garcia and Blesso, 2021). The
plaque is composed of a lipid core, foam cells and collagen fibrous
cap. In the advanced stages of AS, rupture of vulnerable plaques
exposes their thrombogenic compounds, which leads to
thrombosis (Kalz et al., 2014). Advanced atherosclerotic
lesions are characterized by large necrotic cores with thin
fibrous caps, cholesterol deposition, inflammatory cells and
calcification (Yahagi et al., 2016). Macrophage-derived
proteases, which can destabilize plaques. In addition, during
plaque progression, small micro-vessels begin to form in the
plaque during hypoxia to provide nutrition to the plaque. In
addition, during plaque progression, small micro-vessels begin to
form in the plaque during hypoxia, and these micro-vessels
remain immature in the atherosclerotic environment, which
may lead to intraplaque hemorrhage and damaged plaque
rupture (Foks and Bot, 2017).

PYROPTOSIS

Pyroptosis is a newly discovered pattern of programmed cellular
necrosis (Bin He et al., 2021), characterized by cell swelling,
plasma membrane rupture, and massive production and release
of pro-inflammatory factors, triggering a cascade of amplified
inflammatory responses, often induced by endogenous injury or
bacterial and viral infections (Zhaolin et al., 2019a). The term
pyroptosis was first introduced in 2001 by Cookson et al. who
found that the rapid form of macrophage death caused by
Salmonella was closely resembling necrosis, but differed in
that this mode of death was mainly dependent on the caspase-
1 (Cookson and Brennan, 2001). Later, as related studies
continued, the explanation for pyroptosis was gradually
completed.

Unlike other programmed cell death, pyroptosis has specific
morphological features and a unique activation mechanism of the
pyroptotic pathway (Zhaolin et al., 2019a). Pyroptosis is an
important natural immune response of the body and plays an

important role in the fight against infection. The basic process is
that when multiple pathological factors such as oxidative stress,
hyperglycemia and inflammation stimulate the organism, cells
receive endogenous and exogenous danger signals to induce
intracellular formation of inflammatory vesicles, activating
caspase-1, that in return mediates the maturation and
extracellular production of pro-inflammatory factors via
gasdermin D (GSDMD) (Vande Walle and Lamkanfi, 2016;
Barnett and Ting, 2020). During this period, necrosis-like cell
membrane pore formation, cell swelling and membrane rupture
resulted in massive leakage of cytoplasmic contents as well as
apoptotic-like nuclear condensation and DNA ladder breaks,
while the integrity of the nucleus and mitochondria was
maintained (Man et al., 2017; Broz et al., 2020).

The molecular mechanisms of pyroptosis mainly include
caspase-1-dependent canonical pathway and caspase-4/5/11-
dependent non-canonical pathway (Liu and Sun, 2019)
(Figure 1). The upstream of caspase-1 is inflammatory vesicles
(Lee et al., 2016): including NLRP3, absence in melanoma 2
(AIM2), Pyrin structural domain (pyrin and HIN domain), etc.
The most widely studied NLRP3 inflammatory vesicle, which
plays an important role in the innate immune system and TLR4
induces inflammatory responses by nuclear factor kappa-light
chain-enhancer of activated B (NF-κβ) and increasing the
production of pro-inflammatory cytokines (Yu et al., 2019).
Nowadays, binds to apoptosis-associated spot-like protein
(ASC) sites through homotypic interactions after being
activated in the presence of pathogen-associated molecular
patterns (PAMPs) and danger-associated molecular patterns
(DAMPs), among others, with the N-terminal PYD structural
domain (Xu et al., 2018). ASC then recruits polymerized pro-
caspase-1 through its CARD structural domain (caspase
activation and recruitment domain) and induces its own
cleavage to form caspase-1 maturation (p10/p20 tetramer).
Activated caspase-1 shears inactive IL-1β precursors and IL-18
precursors, converting them into mature inflammatory factors,
leading to pyroptosis (Qian et al., 2021). On the other hand, it
cleaves GSDMD and oligomerizes the GSDMD-N-terminal
fragment, which mediates the formation of membrane pores,
resulting in cell swelling and lysis to further promote the release of
inflammatory factors and intensify the inflammatory response,
inducing pyroptosis (Winkler and Rösen-Wolff, 2015; Liu and
Lieberman, 2017; Zahid et al., 2019).

In the non-canonical pathway of pyroptosis,
lipopolysaccharide (LPS) is recognized by caspase-11 in mouse
cells and by caspase-4 and caspase-5 in human cells; caspase-4/5/
11, which is subsequently activated by receiving danger signals,
can directly cleave GSDMD to trigger pyroptosis (Van
Opdenbosch and Lamkanfi, 2019). Meanwhile, the GSDMD-
N-terminal fragment activates NLRP3 inflammatory vesicles,
which in turn activate caspase-1 and mediate the production
of IL-1β and IL-18 to induce pyroptosis (Kun Wang et al., 2020).

The pyroptosis pathway is mainly regulated by inflammatory
vesicles and caspase-1, triggering an inflammatory response
(McKenzie et al., 2018). This process can occur anywhere in
the body, with different sites leading to different outcomes. In the
intrinsic immune cells, NOD-like receptors bind PAMPs or
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DAMPs ligands that are difficult to be cleared by cellular
autophagy (Xiao He et al., 2021), activating the relevant
inflammatory bodies and thus contributing to pyroptosis
followed by a local or systemic inflammatory response to
recruit more intrinsic immune cells to clear the excess
PAMPs/DAMPs ligands (Qian et al., 2021). Therefore, as a

form of inflammatory cell death, moderate pyroptosis can
accelerate the immune response helping to resist pathogenic
infections, maintain cellular homeostasis and exert a positive
aspect of protecting the organism (Qun Wang et al., 2020). Of
course, there is also a negative side to cell death. The high level of
pyroptosis in some cells may lead to excessive activation of

FIGURE 1 | The canonical pathway and non-canonical pathway of pyroptosis. Pyroptosis is a novel pro-inflammatory regulator of cell death. Depending on the key
molecular patterns involved in the activation and execution steps, they can be divided into the canonical pathway and non-canonical pathway. In the caspase1-
dependent pyroptosis pathway, cells can activate inflammatory vesicles to trigger pyroptosis in response to multiple factors, activating the respective inflammatory
vesicles (including NLRP3, AIM2 or pyrin) through the action of PAMPs and DAMPs; NLRP3 recruits ASC and pro-caspase-1 through various pathways, causing
activation of caspase-1 and maturation and secretion of pro-inflammatory cytokines such as IL-1β and IL-18. GSDMD-N is formed by the cleavage of inflammatory
cystathione, triggering the rupture of cell membranes and promoting the release of inflammatory factors, cell swelling and pytoptosis. In the non-canonical pathway, the
Gram-negative bacterial cell wall fraction LPS activates caspase 4/5/11, which mediates pyroptosis by directly triggering pyroptosis through the cleavage of GSDMD.
NLRP3: NOD-like receptor protein 3; AIM2: in melanoma 2; PAMPs: pathogen-associated molecular patterns; DAMPs: danger-associated molecular patterns; GSDMD:
gasdermin D; LPS: lipopolysaccharide.
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caspase-1 by abnormal inflammatory vesicles, resulting in a
massive inflammatory response and the development of
diseases such as AS (Winkler and Rösen-Wolff, 2015).

ATHEROSCLEROSIS AND PYROPTOSIS

Trimethylamine N-oxide (TMAO), produced by
phosphatidylcholine metabolism in the intestinal flora, is one
of the most important factors threatening human vascular disease
(Din et al., 2019). Recent studies have found that this product also
upregulates the expression of caspase-1 and NLRP3, molecules
associated with vascular endothelial cells pyroptosis, by inducing
ROS production, further promoting the development of AS
lesions in ApoE−/- mice on a high-fat diet (Wu et al., 2020).
Liu et al. found that TNF-α enhanced the expression of inter-
cellular adhesion molecule-1 (ICAM-1), vascular cell adhesion
molecule-1 (VCAM-1), and caspase-1, which in turn attracted
monocytes to the intima and induced inflammatory responses
and endothelial cells pyroptosis, which had important effects on
the course of AS (Liu and Tie, 2019).

Altered endothelial permeability and functional impairment
cause lipoprotein invasion modification to lipid deposition. As
the disease progresses, macrophages that are unable to remove
ox-LDL and CC- by autophagy undergo cell death and release
large amounts of inflammatory factors, promoting the
development of AS. Several reports confirm that ox-LDL-
induced cell death is closely associated with pyroptosis
functional molecules (Duewell et al., 2010; Peng et al., 2015).
Duewell et al. showed that CC- and ox-LDL activate caspase-1
and NLRP3 inflammatory vesicles, leading to the release of IL-18
and IL-1β from macrophages, inducing inflammation and
pyroptosis, and increasing the extent of plaque lesions (Peng
et al., 2015). In addition, siRNA of NLRP3 expression eliminated
the activation of IL-1β by ox-LDL and attenuated the
development of AS in ApoE−/- mice (Peng et al., 2015; Qiu
et al., 2017). Ox-LDL is a risk factor involved in both AS and
pyroptosis, exhibiting to some extent the correlation between AS
and pyroptosis (Peluso et al., 2012; Zhaolin et al., 2019b).

Cell death in the vessel wall in the advanced stages of the
disease causes disruption of membrane integrity and a
continuous accumulation of lipids into a necrotic core, causing
continued progression of the AS plaque (Libby et al., 2019).
Pyroptosis, as a programmed cellular form, is also a cause of AS
plaque instability (Qian et al., 2021). Pan et al. found an increase
in plaque lesion area in high-fat fed ApoE−/- mice with
overexpression of inflammatory vesicles AIM2; and confirmed
by in vitro experiments that the mechanism is that AIM2
mediates GSDMD through the caspase-1 pathway, increases
vascular smooth muscle cell focalization, and affects AS
plaques (Pan et al., 2018). Ox-LDL is a risk factor involved in
both AS and pyroptosis, exhibiting to some extent the correlation
between AS and pyroptosis (Kattoor et al., 2019). Relying on
inflammatory vesicles and the caspase-1 pyroptosis pathway can
perceive risk factors associated with AS and cause cells to
pyroptosis during the pathological phase of AS, releasing
inflammatory mediators that exacerbate the inflammatory

response and contribute to the development of plaque
instability (McKenzie et al., 2018; Van Opdenbosch and
Lamkanfi, 2019). In summary, it can be seen that pyroptosis
occupies an important position in all stages of AS development,
and important functional molecules associated with pyroptosis
can be used as markers to provide new approaches for the
prevention and treatment of AS.

THE MOLECULAR PATHWAYS OF
PYROPTOSIS IN ATHEROSCLEROSIS

AS is a chronic disease, and pyroptosis is closely related to the
development of AS through various signaling pathways such as
nuclear factor kappa-light chain-enhancer NF-κβ, AMPK, and
MAPK, etc. SIRT family, and miRNA by promoting the release of
inflammatory factors, which may provide new therapeutic targets
for the treatment of AS.

Signaling Pathways
Nuclear Factor Kappa-Light Chain-Enhancer of
Activated B
Among the various molecules and signaling pathways affected by
NLRP3, NF-κβ cells is a nuclear factor (Dolcet et al., 2005). NF-κβ
exists as a dimer and is to be engaged in the evolution and course
of a variety of diseases related to pyroptosis and apoptosis (Emini
Veseli et al., 2017). NF-κβ can be activated by a variety of factors,
such as ROS and toll-like receptors (TLRs) (Mitchell et al., 2016;
Yu-Ming Wang et al., 2019). ROS has been shown to have an
important modulatory function in AS (Fang et al., 2021).
Smoking is an important risk factor for AS, and Wu et al.
showed that nicotine caused AS induction through ROS/
NLRP3-mediated thermal apoptosis of endothelial cells (Wu
et al., 2018; Xu et al., 2021). Activation of endothelial
dysfunctional NLRP3 inflammatory vesicles requires activation
of the TLR4/NF-κβ signaling pathway; subsequent upregulation
of inflammatory vesicle components, including inactive NLRP3,
pro-IL-1β, and pro-IL-18; followed by assembly of ASC, NLRP3,
and pro-caspase-1 into a multiprotein complex (Leng et al., 2019;
Yu et al., 2019). In the presence of obesity or dyslipidemia, an
increase in serum free fatty acids provokes inflammation by a
pathway that activates TLRs (Sokolova et al., 2017). TLR induces
the development of AS by activating the transcription factor NF-
κβ, which induces pyroptosis, thereby upregulating the
transcription of the nod-like receptor family NLRP3
(Bauernfeind et al., 2009).

Studies have shown that NF-κβ is an essential transcription
factor for GSDMD (Liu et al., 2017; Lei et al., 2018). The GSDMD
is a critical effector of pyroptosis, and the C-terminal of the
GSDMD is shown to automatically suppress the N-terminal pore-
forming activity under normal cellular conditions (Shi et al.,
2015). During activation of inflammatory vesicles by extracellular
signals associated with focal death (like NLRP3 inflammatory
vesicles), they then split and activate caspase-1, 4, -5 and -11
(Elliott and Sutterwala, 2015). Thus, activated caspase-1 cleaves
and separates the N- and C-termini of GSDMD. It has been
shown that the N-terminal fragment of GSDMD forms nanoscale
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pores in the cell membrane, leading to the release of pro-
inflammatory substances and cell swelling (Man and
Kanneganti, 2015; Lei et al., 2018). The NF-κβ-GSDMD axis is
important in AS as a link between oxidative stress and pyroptosis.

AMP-Activated Protein Kinase
AMP-activated protein kinase (AMPK) a cellular energy sensor,
is one of the key regulatory enzymes of cellular glycolipid
metabolism (Yong et al., 2021), with anti-inflammatory and
antioxidant activities (Hu et al., 2020). As an important
regulator button of lipid metabolism, AMPK suppresses the
production of malonyl-CoA by phosphorylating acetyl-CoA
carboxylase (ACC), which allows active fatty acids to enter the
mitochondria for oxidation or reduces the level of lipids
(Fullerton et al., 2013). AMPK activation by suppressing
inflammation by inhibiting pro-inflammatory signaling
pathways and restricting the formation of specialized lipid
products that elicit immune responses (Chandrasekar et al.,
2008). AMPK is expressed in vascular endothelial cells and
regulates vascular function (Ewart and Kennedy, 2011). CC-
caused endothelial cell inflammation and pyroptosis play an
integral role in the development of vascular diseases, especially
atherosclerosis (Fang et al., 2021). Studies have shown that CC- is
a key indicator of atherosclerotic plaque instability. CC- activates
NLRP3 inflammatory vesicles, leading to IL-1β release and
inducing rupture of necrotic cores and plaques, further
promoting atherosclerotic lesions (Janoudi et al., 2016).
NLRP3 inflammatory vesicles are large multiprotein complexes
that regulate IL-1β production and are essential in the
development of atherosclerosis. Activation of AMPK promotes
the production of SIRT1 activator NAD+and increases the level
of SIRT1(Zheng et al., 2020). Activates phosphorylated AMPK,
reduces pro-inflammatory cytokines IL-6 and IL-1β, and
decreases activation of NLRP3 inflammatory vesicles (Zhang
et al., 2020). Thus, the AMPK pathway inhibits endothelial
cell pyroptosis, protects plaque stability, and reduces adverse
vascular lesions. Thus, the AMPK pathway inhibits endothelial
cells pyroptosis, thereby stabilizing atherosclerotic plaques and
reducing adverse cardiovascular events. The study of
lipopolysaccharide-activated mouse macrophages revealed that
ATP administration to mice activated the AMPK pathway in
macrophages, accompanied by inflammation and pyroptosis, as
indicated by cell membrane rupture and increased release of IL-
1β and caspase-1 (Zha et al., 2016). Therefore, the study of AMPK
has become an important target for the treatment of AS.

MAPK
p38 MAPK belongs to the mitogen-activated serine/threonine
kinase family (Jiang et al., 2019). MAPK is activated in response
to a variety of stimuli that include PAMPs and DAMPs that
recruit pattern recognition receptors (PRRs), as well as factors
associated with environmental stress (Kyriakis and Avruch, 2012;
Reustle and Torzewski, 2018). Once activated, the MAPK
pathway has significant effects on cellular physiology, and
these stims are abundantly present in AS (Reustle and
Torzewski, 2018). Natural LDL or its modification products
may be inducers of p38 MAPK signaling in the early stages of

AS (Zhu et al., 2001). Meanwhile, some studies found that LDL
induced p38 MAPK phosphorylation and its nuclear
translocation in endothelial cells and smooth muscle cells,
promoting vascular calcification and focal death, further
enhancing the abnormal proliferation of AS endothelium
(Reustle and Torzewski, 2018). These summarized studies
suggest that the p38 MAPK signaling pathway is involved in
all phases of AS by activating different cellular responses.
Furthermore normally, the NLRP3 inflammatory vesicle
assembly trigger itself does not induce the so-called initiation
step, which is the transcriptional induction of IL-1β and NLRP3
receptors, which can be induced by stimulation of TLRs (Arend
et al., 2008). Luo et al. investigated a new brassinosteroid
derivative 5-deoxy-rutaecarpine (R3) for the treatment of
atherosclerosis and its molecular mechanism. R3 processing
inhibits NLRP3 inflammatory vesicle activation in ApoE−/-

mice and ox-LDL-stimulated mouse macrophages by
inhibiting NF-κβ and MAPK pathways (Luo et al., 2020). Ox-
LDL-induced endothelial-mesenchymal transition (EndMT),
endothelial cell inflammation and pyroptosis. HUVECs
exposed to ox-LDL exhibit increased phosphorylation of ROS
and p38 MAPK (Gong et al., 2019), leading to activation of
MAPK and NF-κβ pathways and release of IL-1β(Wei Wang
et al., 2019). The mechanism of MAPK inhibition of AS through
pyroptosis still needs further study.

Sirtuins
SIRTs (sirtuins) belong to the family of histone deacetylases
(HDACs) (Chandrasekar et al., 2008). Their deacetylase
activity is dependent on the key redox signaling molecule
NAD+ (Ewart and Kennedy, 2011). In addition to deacetylases,
some sirtuins have properties of adenosine diphosphate (ADP)-
nucleotidase, demethylase, desuccinate lyase, or glutaminase
(Winnik et al., 2015). It contains 7 enzyme activities (SIRT1-
SIRT7) in mammals and represses gene transcription through
epigenetic mechanisms (Mendes et al., 2017). The sirtuin family is
highly expressed on blood vessels, promotes vascular
homeostasis, and plays an important role in cardiovascular
disease (CVD) (D’Onofrio et al., 2015). Of the seven SIRT
subtypes, SIRT1 and SIRT3 had the most extensive
cardiovascular manifestations (Sosnowska et al., 2017). The
sirtuin family has been shown to influence the onset and
progression of AS through the pyroptosis pathway.

Sirtuins1
SIRT1 is a member of the sirtuin family that regulates cellular
functions such as cell survival, differentiation, metabolism, DNA
repair, inflammation, neuroprotection, and can transfer acetyl
groups from ε-n-acetyllysine on DNA histones to histones for
transcriptional control (Jayachandran and Qu, 2021).
Endogenous SIRT1 plays a key role in mediating cell death/
survival (Matsushima and Sadoshima, 2015). Activation of SIRT1
can deacetylate acetyl groups on protein lysine residues, thereby
regulating their biological functions (Chou et al., 2019).
Inflammatory vesicles are involved in caspase-1 activation and
maturation of IL-1β and IL-18, which are mainly released
through pyroptosis (De Miguel et al., 2021). The most widely
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known inflammatory vesicle is NLRP3. Multiple studies have
shown that NLRP3 inflammatory vesicles, IL-1β, and IL-18 play a
decisive and important role in AS through pyroptosis (McKenzie
et al., 2018). Arioz, B.I et al. found that NLRP3 inflammatory
vesicles stabilize atherosclerotic plaques by activating nuclear
factor red lineage 2-related factor 2 (Nrf2) and SIRT1(Arioz
et al., 2019).

Activation of SIRT1 inhibits NLRP3 activation and
subsequent caspase-1 cleavage and IL-1β secretion (Li et al.,
2017). ECs damage forms the early stages of AS and
contributes to atherosclerotic plaque formation, progression,
and complications (Libby et al., 2019). In recent years, the
activation of NLRP3 inflammatory vesicles in vascular
endothelial cells is the beginning of the inflammatory response
in endothelial cells (Li et al., 2017; Jia et al., 2019). Here, it was
demonstrated that SIRT1 inhibited the activation of NLRP3
inflammatory vesicles, which can treat AS by reducing the
expression of inflammatory vesicles and inhibiting the
maturation of caspase-1 and IL-1β(Li et al., 2017). VSMCs are
located in the middle layer of arteries and play a key role in
maintaining the normal physiological function of blood vessels
(Arioz et al., 2019). Abnormal VSMCs are associated with
vascular diseases (VDs), VSMCs are involved in almost all
progress of AS (Zhang et al., 2016). Meanwhile, macrophages
play an important role in all stages of AS (Groh et al., 2018). From
the onset of AS to its rupture and then to the regression and
disappearance of the lesion (Tabas and Bornfeldt, 2016; Groh
et al., 2018). Macrophages within plaques are mainly derived
from monocytes in the blood, but it has also been shown that
macrophages within plaques can also be derived from smooth
muscle cells (Tabas and Bornfeldt, 2016). Oh et al. found that
Pyrogallol-Phloroglucinol-6,6-Bieckol (PPB) significantly
hindered monocyte migration and macrophage differentiation
towards the inflammatory phenotype (Oh et al., 2018). Thus, PPB
reduces monocyte-induced EC death and monocyte-induced
VSMC proliferation and migration, and the effect of PPB on
pyroptosis (leading to attenuation of these cells and aortic cell
dysfunction) of endothelial cells and VSMCs in high-fat diet
(HFD)-fed mice (Oh et al., 2020). In a high glyceride, high
cholesterol environment, SIRT1 expression is suppressed,
leading to reduced reverse cholesterol transport, mediating the
differentiation of monocytes to foam cells and impeding the
reduction of foam cells in atherosclerotic plaques (Kitada
et al., 2016). Ox-LDL and saturated fatty acids are among the
widely studied danger signals in atherosclerotic plaques.

Ox-LDL combines with macrophage CD36 to trigger TLR4/
TLR6 assembly, leading to the formation of NF-κβ pathway
(Stewart et al., 2010), promotes ROS release and initiates these
cells for inflammatory vesicle NLRP3 activation. Ox-LDL can
effectively initiate macrophages and thus activate cc-mediated
NLRP3 inflammatory vesicles (Mason and Libby, 2015).
Numerous studies have found that SIRT1 plays an important
role in adipose tissue and inflammation. A study found that
SIRT1 was proteolyzed in the adjacent tissue of congenitally obese
mice, even after normal mice consumed high-fat foods. They also
found that inflammation induced caspase-1 activation and
subsequent shearing of SIRT1, thereby promoting metabolic

dysfunction in adipose tissue (Chalkiadaki and Guarente,
2012). Activation of SIRT1 inhibits NF-κβ signaling pathway
and reduces the development of atherosclerotic plaque
inflammation and pyroptosis (Tabas and Bornfeldt, 2016)
(Figure 2). Therefore, the study of SIRT1 inhibition of AS
through the pyroptosis pathway has received much attention.

Sirtuins3
SIRT3 is a deacetylase that regulates the acetylation of most lysine
in mitochondria (Sun et al., 2018). SIRT3 plays an important role
in mitochondrial energy production and metabolic homeostasis
(Dikalova et al., 2020). Disturbances in mitochondrial energy
metabolism are responsible for AS and lead to abnormal energy
expression and reduced ATP (Pircher et al., 2016; Dong et al.,
2017). NAD+ plays a key role in ATP production in mitochondria
and is an electron carrier (Matasic et al., 2018). Increased levels of
NAD+ trigger the ability to express SIRT3 and lead to a regulatory
pathway of target-specific deacetylation sirtuins and NAD+ play
an important role in maintaining vascular homeostasis and
preventing the development and progression of AS (Kane and
Sinclair, 2018). SIRT3-mediated deacetylation modifies and
activates long chain acyl-CoA dehydrogenase (LCAD), a key
enzyme for fatty acid β-oxidation, and promotes fatty acid
metabolism (Sun et al., 2018). Mitochondrial electron transfer
chain (ETC) is a major source of ROS, and oxidative stress caused
by excess reactive oxygen species production has emerged as an
important and ultimate common mechanism of AS (Kattoor
et al., 2017). Accelerated AS and elevated mitochondrial ROS
were seen in ApoE−/- mice deficient in the antioxidant system,
suggesting a role for mitochondrial ROS in AS (Fang et al., 2021).
SIRT3 enhances the ability of mitochondria to cope with ROS in
multiple ways (Sun et al., 2018). NLRP3 inflammatory vesicles
exacerbate AS formation, and its enhanced action exacerbates
plaque instability (Hoseini et al., 2018). Since ROS production
enhances the formation of NLRP3 inflammatory vesicles,
inhibition of ROS can be used to protect against the
pyroptosis of various diseases (Qiu et al., 2017). Increased
SIRT3 activity blocks NLRP3 inflammatory vesicle activation
and protects cells from oxidative stress (Cong et al., 2020).

Others
The Sirtuin family, from SIRT1 to SIRT7, plays an essential role in
all phases of AS (Tao et al., 2019). SIRT2 has similar or opposite
functions in AS and its pathogenesis. Two activators of SIRT2,
resveratrol and NAD+, inhibit ASC approach to NLRP3 and thus
inhibit NLRP3 inflammatory vesicle assembly (Zeng et al., 2019).
Recent studies have identified an important role for SIRT2 in
oxidation and antioxidation in vascular disease (Liu et al., 2019).
Oxidation of lipids and proteins has been measured in various
cardiovascular diseases and the extent of oxidation is strongly
correlated with disease development, suggesting a role for
oxidative stress in the development of AS (Stocker and
Keaney, 2004; Förstermann et al., 2017). Sirtuin6 (SIRT6) is
an evolutionarily conserved nicotinamide adenine
dinucleotide-dependent histone deacetylase (Zi et al., 2019).
SIRT6 acts mainly through histone-3 deacetylation in the
promoter region of its target genes, including apoptosis,
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inflammation and lipid metabolism, which are key pathways
regulated during AS (Grootaert et al., 2021). SIRT6-deficient
(SIRT6−/−) human MSCs exhibit increased levels of oxidative
stress, reduced redox capacity, and increased sensitivity to
oxidative responses (Pan et al., 2016). Meanwhile, SIRT7 plays
a role in lipid metabolism and cardiomyopathy (Wang et al.,
2021). The sirtuin family has been studied in neovascular diseases
such as cardiomyopathy, endothelial dysfunction, and AS
(Winnik et al., 2015). Studying the role of the sirtuin family in
AS through pyroptosis remains a challenge.

microRNA and Pyroptosis
microRNA and Endothelial Cells Pyroptosis
With the development of sequencing technology, researchers
have gradually discovered that miRNA plays an important role
in AS endothelial cells pyroptosis. Pyroptosis in the same cell
model can be regulated by different miRNAs by acting on their
corresponding single or multiple target genes. Recently, Chen
et al. showed that miR-20a expression was downregulated in ox-
LDL-induced human aortic endothelial cells (HAECs), so that its
overexpression could target the negative regulation of TLR4 and
thioredoxin-interacting protein (TXNIP), which in turn inhibited
downstream NLRP3 activation and expression of ASC, IL-1β and
other pyroptosis-related proteins to protect cells from ox-LDL-
induced pyroptosis and inflammatory damage and reduce the risk
of AS (Chen et al., 2018). Similarly, miR-30c-5p was reported to
inhibit NLRP3-mediated cell pyroptosis with FOXO3 as a

downstream target in ox-LDL-treated HAECs, but did not
show effective modulation in NLRP3 activation dependent on
TLR signaling (Li et al., 2018). It has also been shown that miRNA
levels are positively correlated with the onset of pyroptosis (Yao
et al., 2020). Zeng et al. found in ox-LDL-stimulated vascular
endothelial cells that miR-125a-5p inhibited TET2 expression
from the post-transcriptional level, leading to abnormal DNA
methylation, abnormal mitochondrial function metabolism and
increased ROS generation, activation of NF-κβ to induce
activation and maturation of inflammatory vesicles and release
of pro-inflammatory factors IL-1β and IL-18, and enhanced cell
pyroptosis to promote AS (Zhaolin et al., 2019b).

microRNA and Macrophage Pyroptosis
As one of the important links in the development of AS, the
pyroptosis of macrophages can promote the formation of a
necrotic cellular core, leading to plaque rupture and increased
instability in the late stage of AS and this process is also regulated
by miRNAs. Different miRNAs can exert contradictory effects
due to the various types of targets they bind. It was found that
miR-223 inhibits NLRP3 translation by combining with a
conserved binding sites within the 3′ non-coding region of
NLRP3 mRNA (Bauernfeind et al., 2012). Wang et al.
subsequently used ox-LDL and LPS to stimulate human THP-
1-derived macrophages to establish an AS inflammation model
and found that miR-9 could inhibit NLRP3 inflammasome
activation and reduction of inflammatory response via JAK1/

FIGURE 2 | Relationship between SIRT1 and pyroptosis pathway in atherosclerosis in macrophages. Ox-LDL and CC- in atherosclerotic lesions activates NF-κβ in
macrophages with NLRP3 inflammatory vesicle initiation and NLRP3 inflammatory vesicle activation, promoting the inflammatory factor IL-18/IL-1β, leading to
cytoplasmic swelling andmembrane rupture, resulting in the release of inflammatory factors and promoting the onset of pyroptosis. At the same time, ox-LDL inhibits the
expression of SIRT1, which further leads to the activation of NF-κβ, and this vicious circle will further aggravate the development of AS. ox-LDL: oxidatively modified
low-density lipoprotein; NF-κβ: nuclear factor kappa-light chain-enhancer of activated B.
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STAT1 signaling pathway further stabilize atherosclerotic plaque
stability (Wang et al., 2017). Some studies have also demonstrated
that miR-181a can engage with the MEK1 3ʹ non-coding region,
inhibit its molecular machinery expression, and reduce ox-LDL-
induced expression of NLRP3 and other inflammatory vesicles in
THP-1-derived macrophages via the MEK/ERK/NF-κβ pathway,
and then inhibits pyroptosis (Song et al., 2019).

In contrast, some miRNAs can induce macrophage pyroptosis
to promote AS. One study found elevated miR-33 expression in
atherosclerotic plaques that targeted multiple genes involved in
regulating cholesterol efflux and fatty acid oxidation processes,
including Prkaa1 (Price et al., 2019). Its gene product AMPK
downregulates DNA glycosylase OGG1, which enhances
mitochondrial DNA damage in macrophages and cellular
scorching in atherosclerotic plaques, leading to accelerated AS
progression (Tumurkhuu et al., 2016). Likewise, upregulation of
miR-155 in the ApoE−/- murine AS model exacerbated
atherosclerotic lesions and promoted activation of NLRP3
inflammatory vesicles and inflammatory factors such as IL-18
and IL-1β. Meanwhile, regulation of ERK1/2 activity is associated
with cardiovascular disease, and inhibitors decreased ERK1/2
activity and increased aortic elastin content, suggesting the
feasibility of ERK1/2 inhibitors in the treatment of AS with
reduced arterial elastin content (Zeng et al., 2021). In vitro
experiments revealed that the molecular mechanism of miR-
155 enhanced NLRP3 expression in macrophages through
mediating the ERK1/2 pathway (Yin et al., 2019).

microRNA and Smooth Muscle Cells Pyroptosis
Smooth muscle cells pyroptosis in AS can contribute to plaque
fibrous cap rupture damage to an unstable state, leading to acute
coronary events. Recently, miRNAs have been reported to be

involved in the regulation of these mechanisms. Zhong et al.
found that inflammation caused aberrant methylation and low
expression of the miR-145 promoter in VSMCs of the aortic wall
through in vitro and in vivo studies; low levels of miR-145
attenuated the inhibition of the CD137/NFATc1 axis, further
activating NLRP3 inflammatory vesicles to promotes the release
of inflammatory mediators and accelerates the onset of AS
(Zhong et al., 2018). Overexpression of reduced levels of miR-
125a-5p in human vascular smooth muscle cells cultured with ox-
LDL as an in vitro model of AS revealed that miR-125a-5p
directly downregulates the target gene C-C motif chemokine
4-like (CCL4), which in turn reduces the expression of
NLRP3, IL-1β and other proteins, confirming the key
regulatory role of miR-125a-5p on pyroptosis-related proteins
and inflammation during AS (Jiawang Wang et al., 2019).

In conclusion, it is the multispecies, multicellular, and
multitarget mechanisms of miRNAs that allow them to exhibit
opposite effects on pyroptosis in AS. Taking advantage of this
property, continuing to explore the biological functions of
miRNAs will surely provide a theoretical basis for revealing
the underlying pathophysiological mechanisms of AS (Table 1).

CONCLUSIONS AND PERSPECTIVES

Epidemiology shows that cardiovascular mortality and disability
rates are increasing annually. Most cardiovascular diseases are
determined by vascular diseases, such as AS and stroke.
Cardiovascular diseases have become a serious threat to
human health, and have become one of the key concerns in
the treatment of diseases. In recent decades, numerous studies
have identified the role of pyroptosis in AS. AS is a complex,

TABLE 1 | miRNA involved in the regulation of pyroptosis-related molecules.

miRNA Model Signaling
pathways/Target

Result References

miR-20a Human aortic endothelial cells
(HAECS)

TLR、TXNIP Negatively regulates TLR4 and NLRP3 signaling to protect HAECs from
inflammatory injuries, inhibits the atherosclerotic development

Chen et al. (2018)

miR-
30c-5p

HAECs FOXO3 Inhibits NLRP3 inflammasome-mediated endothelial cell pyroptosis, anti-
atherosclerosis

Li et al. (2018)

miR-
125a-5p

Human umbilical vein endothelial
cells

TET2 Activates NLRP3 inflammasome and caspase-1, promotes pyroptosis and
atherosclerosis progression

Zhaolin et al. (2019b)

Human vascular smooth muscle
cells

CCL4 Inhibits expression of NLRP3、ASC、caspase-1 and IL-1β proteins, anti-
atherosclerosis

Jiawang Wang et al.
(2019)

miR-223 Primary macrophages NLRP3 Inhibits NLRP3 inflammasome Bauernfeind et al.
(2012)

miR-9 Human THP-1 derived
macrophages

JAK1/STAT1 Inhibits activation of the NLRP3 inflammasome, attenuates
atherosclerosis-related inflammation

Wang et al. (2017)

miR-181a THP-1 macrophages MEK1 Inhibits the expression of NLRP3 inflammasome-related proteins, alleviates
pyroptosis

Song et al. (2019)

miR-33 Bone marrow derived
macrophages, Ldlr−/− mice

Prkaa1 Promotes pyroptosis and atherosclerosis progression Tumurkhuu et al.
(2016)

miR-155 THP-1 macrophages, ApoE−/-

mice
ERK1/2 Increases the expression of NLRP3 inflammasome and the secretion of IL-

1β and IL-18, aggravates the carotid atherosclerosis lesion
Yin et al. (2019)

miR-145 Vascular smooth muscle cells,
ApoE−/- mice

CD137/NFATc1 Inhibits NLRP3 inflammasome and pyroptosis, increases the stability of
atherosclerosis lesions

Zhong et al. (2018)

TLR, toll-like receptors; TXNIP, thioredoxin-interacting protein; FOXO3, Forkhead box O3; TET, ten-eleven translocation; CCL4, C-C motif chemokine 4-like; JAK1, Janus kinase 1; MEK1,
MAP, kinase 1; Prkaa1, AMP, kinase; NFATc1, nuclear factor of activated T cells1.
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multi-step process that affects blood flow through luminal
narrowing or thrombosis, leading to numerous diseases such
as myocardial infarction, stroke and various other cardiovascular
diseases. A large reason for the development of vascular disease is
related to impaired endothelial cell function, which is the initial
initiating factor of AS. Endothelial cell injury and dysfunction
lead to LDL deposition and oxidative reactions to secrete
adhesion factors such as VCAM-1 and ICAM-1, which
promote the interaction of monocytes with endothelial cells
and their subsequent transfer to the endothelial layer, where
monocytes mature into macrophages that further evolve into
foam cells, promoting the formation, progression and impaired
rupture of atherosclerotic platelets in AS.

Pyroptosis is an inflammatory response of cells, and the
released inflammatory factors can cause the emission of more
inflammatory cells, further enhancing the ability and intensity
of the inflammatory response, thus creating a vicious cycle
that exacerbates the development of AS. These studies are
currently a promising strategic direction to inhibit the
development of AS by affecting pyroptosis, such as the
sirtuin family, NF-κβ. However, the underlying mechanisms
of pyroptosis and AS, intercellular transformation, and
molecular mechanisms are still unclear. Therefore, a more
profound exploration of the potential mechanisms and

regulatory targets of cell pyroptosis in AS would be an
innovative strategy for AS treatment.
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