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Embryonic stem cell (ESC) self-renewal and pluripotency is maintained by an external signaling pathways and
intrinsic regulatory networks involving ESC-specific transcriptional complexes (mainly formed by OCT3/4,
Sox2 and Nanog proteins), the Polycomb repressive complex 2 (PRC2) and DNA methylation [1–8]. Among
these, Nanog represents the more ESC specific factor and its repression correlates with the loss of pluripotency
and ESC differentiation [9–11]. During ESC early differentiation, many development-associated genes become
upregulated and although, in general, much is known about the pluripotency self-renewal circuitry, themolecu-
lar events that lead ESCs to exit frompluripotency and begin differentiation are largely unknown. Snai1 is one the
most early induced genes during ESC differentiation in vitro and in vivo [12,13]. Here we show that Snai1 is able
to directly repress several stemness-associated genes including Nanog. We use a ESC stable-line expressing a
inducible Snai1 protein. We here show microarray analysis of embryonic stem cells (ESC) expressing Snail-ER
at various time points of induction with 4-OH. Data were deposited in Gene Expression Omnibus (GEO) datasets
under reference GSE57854 and here: http://epigenetics.hugef-research.org/data.php.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Specifications
Organism/cell line/tissue
 Mouse E14 embryonic stem cells

Sex
 Male

Sequencer or array type
 Illumina MouseWG-6 v2.0 expression beadchip

Data format
 Raw and analyzed

Experimental factors
 ESCs were treated with OHT at various time points

Experimental features
 microarray analysis of embryonic stem cells

(ESC) expressing Snail-ER

Consent
 N/A

Sample source location
 Torino, Italy and Siena, Italy
Direct link to deposited data

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE57854
http://epigenetics.hugef-research.org/data.php

Experimental design, materials and methods

cDNA of human Snai1 coding region without stop codon, in frame
with cDNA of mouse ERα ligand‐binding region was obtained by PCR
, Italy.
ri).

. This is an open access article under
from pBabePuro‐ hSnai1.ER.NoTag (Addgene plasmid 19292) using fol-
lowing oligonucleotides: 5′‐GAGAGGATCCSCCATGCCGCGCTCTTTCCTC‐
3′ and 5′‐GAGAGTCGACTCAGATCGTGTTGGGGAA‐3′, and cloned in the
lentiviral vector pCCLsin.hPGK.GFP.pre. The plasmid was confirmed by
sequencing. Lentiviral vector were co‐transfected with pMD2.VSVG,
pMDLg/pRRE, pRSV‐Rev in Lenti‐X TM 293 cell line (Clonetech) to pro-
duce lentivirus particles.

Embryonic stem cells were cultured as previously described [14].
Briefly, mESC were grown in DMEM high glucose medium (Invitrogen)
supplemented with 15% FBS (Millipore), 0.1 mM nonessential amino
acids (Invitrogen), 1 mM sodium pyruvate (Invitrogen), 0.1 mM 2-
mercaptoethanol, 1500 U/ml LIF (Millipore), 25 U of penicillin/ml, and
25 μg of streptomycin/ml. Cellswere inducedwith 4-OHT at the indicated
times (0h, 2h, 4h, 8h, 12h, 24h) for SNAIL-ERnuclear localizationbefore
RNA extraction (Fig. 1). Nuclear localization was confirmed by Western
blotting analysis by performing nuclear extracts as previously described
[15]. RNA was extracted as previously described [16] by using TRIzol
reagent from Invitrogen following the manufacturing protocol.

Microarray analysis was performed as in Ref. [17]. Briefly, RNA li-
brary were performed using Illumina Total Prep RNA Amplification Kit
following themanufacturingprotocol using Cy3fluorescent label. Direct
Hybridization of RNA library was performed using Standard Operating
Procedures in Whole-Genome Gene Expression Direct Hybridization
Assay Guide (Illumina). IlluminaMouseWG-6 v2.0 expression beadchip
chips were scanned using Illumina HiScanSq instrument. Data were
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Scheme of the Snai1 induction system in mouse embryonic stem cells.
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analyzed by using Genome Studio software (Illumina). Analyzed data
were normalizedusingquantile normalization and background subtrac-
tion by default parameters in Genome Studio.
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