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Suppressor T (Ts) 1 cells are known to be involved in the regulation of most 
immune responses, including antibody production (1, 2), delayed-type hypersen- 
sitivity (3), cytotoxicity (4), and responses to mitogens (5). In addition, Ts 
activated by antigens coded for by the major histocompatibility complex (MHC) 
(aliogeneic Ts) have been found to be important in the regulation of various 
allogeneic responses. Thus, allogeneic Ts are known to inhibit mixed lymphocyte 
responses (6) and, in vivo, they are probably responsible for the loss of immune 
competence in animals undergoing graft-vs.-host (GvH) reactions (7, 8). Similarly, 
allogeneic Ts activated in pregnancy inhibit the generation of cytotoxic T cells 
(CTL) to paternal antigens and may be important for maternal tolerance of the 
fetus (9, 10). 

One of the more successful means for studying allogeneic suppression has been 
the potent inhibition of in vitro antibody responses by histoincompatible T cells 
(11, 12). With this model, allogeneic Ts in both mouse and man have been shown 
to be radiosensitive T cells belonging to the suppressor/cytotoxic subset with the 
surface phenotype Ly-l+2 ÷ and Leu-2a ÷, respectively (11, 13-16). They are, 
therefore, distinct from T cells mediating positive allogeneic effects that are 
radioresistant and Ly-l+2 - (17). Gene-mapping experiments have shown that 
allogeneic Ts are activated by differences at the MHC (18, 19). ~ Potent suppres- 
sion can be elicited by differences at a single class I locus (11, 18, 19), whereas 
class II antigens have a smaller effect, or no effect at all (11). Moreover, combined 
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class I and II differences do not result in enhanced suppression (11), indicating 
that the response does not require Ts inducer cells, which are normally class I 
restricted, and that suppression is not mediated by alloactivated CTL.  

Despite the considerable amount  of  work already done on allogeneic Ts, the 
mechanism by which they suppress in vitro antibody production is unknown. In 
theory, suppression could occur for rather trivial reasons such as consumption 
of  essential growth factors by alloactivated T cells (20). On the other  hand, it is 
possible that normal, antigen-specific Ts are activated by exposure to alloanti- 
gens. In the present study, allogeneic T cells were shown to suppress in vitro 
antibody responses by human blood lymphocytes in an antigen-specific manner,  
thereby supporting the notion that allogeneic suppression is mediated by antigen- 
specific, or possibly idiotype-specific, Ts. In addition, the depletion of  Leu-2a + 
cells abrogated suppression and permit ted T cell collaboration with histoincom- 
patible B cells in T cell-dependent antibody responses. 

Mater ia l s  a n d  M e t h o d s  
Cell Preparation. Peripheral blood mononuclear cells (PBM) were obtained by centrif- 

ugation of heparinized venous blood over Ficoll-Hypaque (p = 1.077 kg/i-1). The interface 
(mononuclear) cells were collected and washed three times in RPMI 1640 medium 
containing 10 mM Hepes and 5% fetal calf serum (FCS). Sheep erythrocyte rosette- 
forming cells (E +) were formed with aminoethyl isothiouronium bromide hydrobromide 
(AET)-treated sheep red blood cells at 4 °C (21) and separated from non-rosette-forming 
cells (E-) by centrifugation over Percoll (p = 1.080 kg/I) (14). HLA-A, -B, -C, and -DR 
typing of PBM was carried out by Dr. J. Bodmer, Imperial Cancer Research Fund, United 
Kingdom and by Dr. H. Bashir, Australian Red Cross Blood Bank, Sydney. 

Antibodies. Leu-2a and -3a antibodies were kindly provided by Becton, Dickinson & 
Co., Mountain View, CA. Goat anti-mouse Ig (anti-MIg) used in panning experiments was 
purchased from Tago, Inc., Burlingame, CA. Fluorescein isothiocyanate (FITC)-conju- 
gated sheep anti-mouse Ig (FITC sheep anti-MIg) was prepared by Dr. Peter Beverley 
from affinity-purified and human Ig-absorbed sheep anti-MIg. 

Fluorescence-activated Cell Sorting and Analyses. Lymphocytes were stained for 30 rain 
on ice with saturating amounts of monocional antibody diluted in Hepes-buffered medium 
containing 5% FCS. After three washes, the bound antibody was detected with FITC 
sheep anti-MIg. To avoid Fc binding, a small amount of normal sheep serum was included 
in the washing and incubation medium as described previously (22). Cells were analyzed 
and sorted on a FACS IV (B-D FACS Systems, Becton, Dickinson & Co., Sunnyvale, CA). 

Panning. Mononuclear cell subsets coated with monoclonal antibody were also frac- 
tionated by a panning technique (23). Plastic petri dishes (100 x 25 ram, No. 4026; Lab- 
Tek Div., Miles Laboratories, Inc., Naperville, IL) were coated with goat anti-MIg at 10 
mg/ml in phosphate-buffered saline (PBS) for 60 rain at 4°C and then washed three times 
with PBS. PBM were incubated with saturating amounts of monoclonal antibody for 30 
min at 4°C, washed, and then incubated for 70 rain at 4°C on the anti-MIg-coated petri 
dishes. Between 20 and 30 x 106 cells in 10 ml of Hepes-buffered RPMI 1640 containing 
5% FCS were incubated on each dish. Nonadherent cells were then removed by pipette 
and the dish washed three times with medium. Further medium was then added and the 
adherent cells removed by vigorous pipetting. Purity of the separated populations was 
generally between 95 and 98%. 

Antibody Formation In Vitro. For specific antibody responses, 2 × 106 PBM were cultured 
in 1 mi of RPMI 1640 containing 25 mM Hepes (Gibco Laboratories, Grand Island, NY) 
and 10% horse serum (CSL, Victoria; Australia) in 12 X 75-mm capped Falcon tubes 
(Falcon Labware, Oxnard, CA) as described previously (24). Purified influenza virus 
strains A/X31 (A/H3N2) and B/HK (B-8/73) (kindly supplied by Dr. J. Skehel and Dr. J. 
Downie) were added at optimal concentrations determined in preliminary experiments, 
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usually ~1 #g/ml. Cultures were incubated at 37°C for 6 d in an atmosphere of 5% CO~ 
in air. At the completion of the culture period, the cells were washed twice, resuspended 
in 0.5 ml of Hepes-buffered RPMI 1640 containing 5% FCS, and incubated for a further 
24 h at 37°C in air. Culture supernatants (SN) were then collected and stored at -20°C 
before the assay for antibody to influenza. For limiting dilution assays, antibody-forming 
cultures were carried out in round-bottomed microtiter trays (25, 26). Control cultures 
contained 4 × 105 PBM per.well. Otherwise, 1.5 × 105 E- cells per well were recombined 
with 2.0 × 105 irradiated (1,500 rad) autologous E + (helper) cells and various numbers 
(0.06-2.0 × 105) of allogeneic E + (suppressor) cells. 

Antibody Assay. Specific antibody in culture SN was determined by solid-phase enzyme 
immunoassay (EIA) as described previously (26). 

Analysis of Results. A Poisson distribution analysis was performed on the limiting 
dilution of Ts cells (27). Results were expressed as a semi-log plot of the percentage of 
positive cultures (i.e., cultures not suppressed) against the number of added E + cells. 
Regression curves were drawn by least squares fit and r ~ values were calculated. A culture 
was scored as showing suppression if the SN contained less antibody determined by the 
EIA than the mean of the replicate control cultures (E- plus irradiated autologous E + [T 
helper] cells minus the lower 95% confidence limit [SE × t"0.05]). Control cultures ranged 
from about 20 to 200 ng/ml depending on the donor. Ts frequencies were calculated as 
described previously (25, 27). 

Resul t s  

Suppression of Antibody Production by Allogeneic T Cells. Addition of  allogeneic 
E ÷ cells to cultures of  PBM stimulated with antigen profoundly suppressed 
specific antibody product ion (Table I). The  suppressor activity of  allogeneic E ÷ 
cells was radiosensitive and was completely ablated with 1,500 rad. Autologous 
E ÷ cells, on the other  hand,  either had little effect or enhanced antibody 
production,  showing that suppression was not simply due to overcrowding of  the 
cultures. 

Allogeneic Ts are Antigen Specific. Suppression of  specific antibody responses 
by allogeneic T cells may be explained in two ways. First, allogeneic interactions 
could result in the activation of  normal,  antigen-specific Ts by an inappropriate 
or nonphysiological pathway similar to that described by Bromberg et al. (28) 
for activation of  delayed-type hypersensitivity (DTH) Ts by allogeneic I-J. Alter- 
natively, suppression may result f rom nonspecific allogeneic effects such as the 
consumption of  essential growth factors by alloactivated cells. One way of  

TABLE I 
Allogeneic E + Cells Suppress Spec~c Antibody Production by PBM 

Responding cells 

PBM (unstimulated) 
PBM 
PBM 
PBM 
PBM 
PBM 

E + cells added  
Antibody response to X31 

Exp. 1 Exp. 2 Exp. 3 

ng/ml 
None  0 5 :t: 4 1 
None 26.4- 4 190 _ 40 45.4- 18 
Autologous 31 + 5 260 -+ 73 ND* 
Autologous* 44 -+ 4 419 +_ 59 ND 
Allogeneic 0 9 + 3 4 _+ 1 
Allogeneic* 33 + 4 384 + 100 56 =!= 14 

* Not done.  
* 1,500 rad irradiation. 
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distinguishing between these two possibilities is to determine whether or not 
suppression is antigen specific. This question was approached in three different 
ways. To begin with, the effect of  allogeneic E + cells on specific antibody 
production to X31 and polyclonal Ig synthesis in response to pokeweed mitogen 
(PWM) was compared (Table II). The response to PWM was measured both as 
specific antibody to X31 (ng/ml) and as total Ig (t~g/ml). In neither case was the 
response to PWM suppressed by the addition of allogeneic E + cells. By contrast, 
specific antibody produced in response to antigenic (X31) challenge was pro- 
foundly suppressed by aliogeneic, but not autologous E + cells. This result is 
inconsistent with inhibition by nonspecific allogeneic effects, which would be 
expected to affect both PWM and antigen responses, and suggests that aliogeneic 
suppression may be due to specific Ts. This conclusion was further supported by 
a series of limiting dilution experiments in which the frequency of allogeneic Ts 
was determined by Poisson distribution analyses of the antibody responses 
obtained by adding a range (0.625 × 104 to 20 x 104) of allogeneic E + cells to 
microcultures of 1.5 × 105 E- cells plus 2.0 x 105 irradiated autologous E + T 
helper (Th) cells and A/X31 antigen. Control cultures of 1.5 × 10 -5 E- plus 2.0 
× 10 -5 irradiated autoiogous E + (Th) cells and antigen, but with no added 
allogeneic E + (Ts) cells, were set up to establish the level and range of positive 
responses. 20 sample wells were assayed at each ailogeneic E + dilution. A culture 
was considered to be suppressed if the antibody response was significantly less 
than the mean of the control response minus the lower 95% confidence level. 
The result of  one such experiment is shown in Fig. 1 as a semi-log plot of  the 
percentage of positive wells (i.e., no suppression) against the number of added 
allogeneic E + cells. A straight line was drawn from a least squares analysis with a 
correlation coefficient of  0.96. In this example, the frequency of  Ts cells was 1.7 
× 10 -5. In a series of such experiments, the frequency of allogeneic Ts ranged 
from 0.8 × 10 -5 to 4.5 × 10 -5 (Table III). 

The frequency of  allogeneic Ts determined in these experiments was much 

TABLE II  

Suppression of Specific, But Not PWM-induced Polyclonal Antibody Responses by allogeneic E ÷ 
Cells 

Ant ibody response  

St imulus* Added  E + cells Exp. 1 Exp. 2 

Anti-X31* Tota l  Ig 0 Anti-X31 Tota l  Ig 

None  None  1 1 0 1 
P W M  None  78 + 17 22 + 7 18 _+ 5 28 - 1 
P W M  Auto logous  64 --- 11 17 _ 2 29 + 10 34 :t: 1 
P W M  Allogeneic 56 + 7 24 --+ 4 14 + 6 27 + 4 
A / X31  Auto logous  ND I ND 46 _+ 10 0 ~ 
A/X31  Allogeneic ND ND 4 + 2 0 

* PBM cul tures  were s t imula ted  wth e i ther  P W M  or  inf luenza virus (A/X31).  
Specific an t ibody for X31 induced  by e i ther  PWM or  an t igen  was assayed by EIA and  expressed  
as n g / m l  _ 1 SEM. 

0 Tota l  Ig was assayed by compet i t ion EIA and  expressed  as #g /ml  + 1 SEM. 
I Not  done.  
I Not  detectable  above background .  
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FIGURE l .  Determinat ion o f  the frequency o£ aliogeneic Ts cells. Various numbers o f  
allogeneic E + cells were added to cultures containing 1.5 x I0  -~ E- cells plus 2.0 x I0  ~ 
irradiated autologous E + (Th) cells and stimulated with an optimal dose of X31 influenza virus. 
A semi-log plot of the percent of  responding (nonsuppressed) wells vs. the number of added 
allogeneic E + cells was drawn by least squares fit. 

TABLE III  

Range of Frequencies of Allogeneic Ts Cells in Antibody Responses to A~ 
X31 Virus 

Frequency of alloge- 
Responder Allogeneic Ts donor neic Ts (X 10 -~) 

DW AE 1.4" 
LW CS 4.5 
CS LW 1.7 
RS DM 1.5 
DM DW 1.2 
DM RS 0.8 

* Frequency of  allogeneic Ts obtained from semi-log plots of the percent 
of positive wells vs. the number of added allogeneic E ÷ cells drawn by 
least squares fit (see Fig. 1). 

lower than that expected for alloreactive cells, but was within the range expected 
for antigen-specific cells (29). If suppression by allogeneic T cells is antigen 
specific, it should be possible to segregate Ts to two non-cross-reacting antigens 
in limiting dilution cultures. To  investigate this, limiting numbers of aUogeneic 
E ÷ cells were added to cultures of  1.5 x 10 -5 E- cells plus 2.0 x 105 irradiated 
autologous E + (Th) cells stimulated with either A/X31, B/HK, or both antigens 
together. At limiting numbers of allogeneic suppressor cells, some wells stimu- 
lated with both antigens were suppressed for the production of antibody to only 
one (Table IV). Moreover, by determining the frequency of aUogeneic Ts to 
both antigens, it was possible to predict the frequency of wells in which antibody 
production to both antigens should have been suppressed. A ×~ analysis showed 
that the observed and expected frequencies of  doubly suppressed culture wells 
were not significantly different (Table V). The  complete segregation of  suppres- 
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TABLE IV 
Antigen Specificity of Allogeneic Ts Cells Exhibited, at Limiting Dilutions of ALLO E +, by Suppression of 

Antibody Responses to One of Two Non-Cross-Reacting Antigens Present in the Same Culture Wells 

AIIogeneic E + di- Antibody response to influenza X31/BHK* in culture well number: 

lution 1 2 3 4 5 6 7 8 9 10 

1.5 × l0 s 14/39 I 16/50 17/9 51/18 27/50 123/199 100/55 56/47 15/46 63/197 
0.75 x lO s 26/206 120/208 60/41 110/212 115/49 70/64 17/101 70/43 124/54 76/65 

0.375 x 10 ~ 31/290 24/233 23/73 112/50 120/13 120/157 124/49 5!/370 101/350 106/160 

* The antibody response to A/X31 and B/HK was calculated as a percentage of the response in control cultures. 
* Response to X31/BHK. Underlined values indicate wells in which the antibody response to one virus was suppressed while the response to 

the other virus was not. 

TABLE V 

Expected and Observed Frequencies of Culture Wells in which the Response to Both A/X31 and 
B[HK Was Suppressed by Allogeneic E ÷ Cells 

AUogeneic E ÷ Percent double-suppressed 
Exp. cells/well Percent X31 Percent B/HK wells 

(x 10 -5) suppressed  suppressed 
Expected Observed 

1 5 90 50 45 40 
2 5 60 70 42 40 
3 5 50 40 20 20 
4 5 50 80 40 50 
5 5 80 80 64 60 
6 7.5 60 50 30 30 
7 5 30 10 3 10 
8 5 40 30 12 10 
9 5 40 90 36 20 

10 5 50 50 25 30 

A ×2 analysis showed that the expected and observed frequencies were not significantly different (P 
> 0.5). 

sion to two non-cross-react ing antigens in these exper iments  shows that alloge- 
neic T cell suppression is ant igen specific. 

Phenotype ofAllogeneic Ts. In earlier work (15), we showed that allogeneic Ts  
belonged to the Leu-2a + (suppressor/cytotoxic) subset. These  exper iments  were 
repea ted  here  using Leu-2a + cells p repared  by panning or FACS sorting. Anti- 
body product ion  in microcultures of  4 × 10 5 PBM and antigen was profoundly  
suppressed by the addit ion of  2 x 10 5 allogeneic E + cells or allogeneic Leu-2a + 
(3a-) cells, but  not  Leu-2a-  (3a +) cells (Table VI). Addit ion of  autologous E + 
cells had little or  no effect. No evidence for  any requ i rement  for  Leu-3a + (helper /  
amplifier) cells was obta ined in these experiments.  

Removal of Suppressor Cells Allows Allogeneic Help. T h e  demonst ra t ion o f  allo- 
suppressor cells in co-culture exper iments  raises the question of  whether  their  
activation, ra ther  than MHC-control led genetic restriction, may be impor tant  in 
prevent ing  T cell help across an allogeneic barrier .  T o  test this hypothesis, E + 
cells were depleted of  Leu-2a ÷ (suppressor/cytotoxic) cells and cul tured with 
allogeneic or  autologous E-  cells and antigen. In the absence o f  T cell help, 
cultures of  E-  cells made no antibody, showing that the response was T cell 
dependent .  As expected,  autologous, but  not  allogeneic E + cells, fully reconsti- 



CALLARD, WINGER, AND TIERNAN 1231 

TABLE VI 

Phenotype of Allogeneic Suppressor Cells 

E + Cells added* to 
PBM 

X31 antibody response 

Exp. l Exp. 2 Exp. 3 

ng/ml 
None 45 3= 15 145 4- 12 46 3= 20 
Autologous 47 3= 11 ND 46 3= 16 
Allogeneic 26 3= 9 1 ± 1 3 4- 1 
Allogeneic 2a +* 0 4 4- 1 3 + 1 
Allogeneic 2a- 71 3= 5 138 4- 21 80 3= 32 

* 2 × 105 E + cells were added to 4 × 105 PBM in microcultures stimulated 
with A/X31. 

* In some experiments, the reciprocal 3a- and 3a + subsets were used 
instead of 2a + and 2a-, with the same result. 

TABLE VII  

Depletion of Leu-2a + (Suppressor/Cytotoxic) T Cells Permits Expression 
of Allogeneic Help 

Th cell population* 
X31 antibody response 

Exp. 1 Exp 2 Exp. 3 

ng/ml 
None 2 + 1 0 3 3= 1 
Autologous E ÷ 283 3= 140 183 3= 72 213 3= 8 
Autologous 2a- 730 3= 100 114 4- 65 166 3= 10 
Allogeneic E + 11 3= 6 24 4- 7 6 3= 1 
Aliogeneic 2a- 325 3= 118 110 4- 21 202 3= 6 
Allogeneic 2a* 0 1 0 

* One million Th cells were added to cultures of 0.5 × 10 e E- cells and 
antigen. In some experiments, positively selected 3a + cells were used 
rather than 2a- populations, with the same result. In each experiment, 
the E + and E- donors had no HLA-A, -B, -C, or -DR alleles in common. 

tuted the antibody response. However, after the removal of  Leu-2a ÷ cells, 
allogeneic T cells were also able to provide T cell help to responding B (E-) cells, 
even when no HLA-A, -B or -DR alleles were shared (Table VII). This experi- 
ment  was performed many times, always with the same result. The  helper activity 
of  allogeneic and autologous Leu-3a ÷ cells was also compared by titrating 
different numbers of  Th  into 1.5 X l0 b E- cells plus antigen. Both allogeneic 
and autologous 3a + cells were equivalent in their ability to provide help to E- 
cells (Fig. 2). 

Discussion 
Specific antibody responses in cultures of human PBM stimulated with influ- 

enza viral antigen were shown to be profoundly suppressed by aliogeneic T cells. 
The  human allogeneic Ts had many features in common with those described in 
murine systems, including relative radiosensitivity (Table I and references 11 
and 13), T suppressor/cytotoxic cell phenotype (Table VI and reference 13), 
and activation by class I MHC antigens (11, 18, 19). ~ 
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FIGURE 2. Helper activity of autologous (O) and allogeneic (lit) Leu-3a + cells. Positively 
selected Leu-3a + cells were prepared by panning from autologous and allogeneic E + cells and 
were added in varying numbers to cultures of E- cells and antigen. Specific antibody production 
was assayed after 7 d. Comparable T cell help was obtained in both autologous and allogeneic 
combinations. 

The  mechanism of allogeneic T cell suppression and its relationship to other 
forms of regulation is unclear. The  possibility that allogeneic Ts may be cytotoxic 
cells can be reasonably excluded for a number  of reasons. First, suppression can 
be obtained with effector to target ratios of <0.1, which is much lower than 
required for cytotoxicity (13). Second, no cytotoxicity can be detected in these 
cells by conventional ~lCr-release assays, and mixed leukocyte culture (MLC)- 
induced cytotoxic T cells added to antibody cultures do not suppress antibody 
production (30). Third,  conditions that result in allogeneic suppression of sec- 
ondary IgG antibody responses actually enhance primary responses (30). Finally, 
cytotoxic T cells require class II-restricted T h  cells for optimal activity, yet potent 
suppression can be obtained with T cells that differ at only a single class I locus, 
with no evidence of synergy in the case of combined class I and II differences 
(11). 2 

There  are two other explanations for allogeneic suppression that also need to 
be considered. On the one hand, exposure to alloantigens in the presence of the 
stimulating antigen may result in the activation of normal, antigen-specific Ts by 
an abnormal or nonphysiological pathway similar to that described by Bromberg 
et al. (28) for activation of DTH Ts by allogeneic I-J. Alternatively, suppression 
could result from quite nonspecific allogeneic effects such as the consumption of 
essential growth factors by alloactivated T cells (4). Three  sets of experiments 
were designed to distinguish between these alternatives, all of which gave results 
consistent with the alloactivation of antigen-specific Ts rather than nonspecific 
allogeneic effects. In the first of these experiments, aUogeneic T cell suppression 
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of  in vitro antibody production was compared in cultures stimulated with A/X31 
and PWM. Under  the same culture conditions, allogeneic T cells profoundly 
suppressed specific antibody formation, but had little or no effect on PWM- 
induced polyclonal Ig production (Table II). Next, the frequency of allogeneic 
Ts in PBM was estimated by limiting dilution analyses in cultures stimulated with 
A/X31. Because the comparatively low number  of  replicates (20) used in the 
limiting dilution assays (due to the problems of  obtaining large numbers of PBM 
from individual donors )may  result in high standard deviations in the estimate 
of Ts, these experiments were repeated several times with different donors. The  
range of  frequencies obtained was 0.8 x 10 -5 to 4.5 x 10 -5 (mean, 1.9 X 10 -5 + 
0.6) (Table III). These results are comparable to those obtained in the mouse by 
Corley et al. (31) for the frequency of  alloactivated Ts primed to murine H-2 k 
or H-2 b MHC antigens (5 X 10 -4 to 5 x 10-~), and are more akin to that expected 
for antigen-specific Ts than alloreactive cells. 

Finally, an experimental approach based on the limiting dilution assays was 
designed to determine whether the allogeneic T cell suppression was indeed 
antigen specific. By adding limiting numbers of allogeneic T cells to cultures 
stimulated with two non-cross-reacting antigens (influenza viruses A/X31 and 
B/HK), it was possible to segregate suppression of antibody formation to each of 
them. Thus,  in some cultures, the antibody response to A/X31, but not B/HK, 
was suppressed, and vice versa (Table IV). Moreover, the frequency of wells in 
which the response to both antigens was suppressed was not significantly different 
from that predicted from the calculated frequencies of specific allogeneic Ts 
(Table V). These results show that the Ts, although activated by exposure to 
allogeneic cells, actually suppress in vitro antibody responses in an antigen- 
specific manner.  In theory, this result could be obtained with either antigen- 
specific or idiotype-specfic Ts. The  latter possibility is supported by a recent 
report  of  a human Ts clone that appears to be specific for the antigen receptor 
on an autologous T h  cell clone (32). Our  data do not distinguish between these 
alternatives although it may be possible to do so by depletion of antigen-binding 
Ts by panning or by antigen-specfic suicide (33). 

The  demonstrable specificity of allogeneic Ts, whether for antigen or idiotype, 
lends weight to the argument  that these cells play a normal physiological role in 
regulating human B cell responses, but are activated in an abnormal fashion in 
culture with allogeneic PBM. Such an interpretation is supported by the recent 
results of Bromberg et al. (28, 34) who showed that suboptimal doses of  antigen 
on autologous cells given intravenously induces pre-Ts that can then be activated 
to express suppressor function by interaction with ailogeneic cells. Genetic 
mapping of this effect has identified the allogeneic signal on cells, or in soluble 
allogeneic effect factor, as arising from differences at the Ioj locus. Although this 
mechanism may not be involved in the generation of  allogeneic Ts by class I 
differences alone as described by Waldmann (11) or Swain (19), it does raise the 
possibility of Ts induction by a human Ioj equivalent in the experiments reported 
here. (The genetic requirements for alloactivation of Ts are the subject of  
another  report.) 2 Exactly how Ts can be activated by allogeneic signals is, 
however, unclear. One possible explanation is that a second signal normally 
provided by Ts inducer cells (35) is supplied either directly by interaction with 
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alloantigen, or by souble growth factors generated in the allogeneic response. 
Our inability to demonstrate any requirement for Ts inducer cells in this response 
(Table 6) 2 supports this interpretation. We have not, however, been able to 
obtain suppression with SN obtained from these cultures, suggesting that soluble 
factors are not involved (unpublished observations). 

It is interesting to speculate on the physiological reasons for the existence of 
these cells. The phenomenon of allogeneic suppression can of course be dismissed 
as an incidental side effect of  normal antigen recognition by T cells; for example, 
by cross-reactivity between antigen X plus MHC A and antigen Y plus MHC B. 
On the other hand, it is possible that allogeneic interactions of this type are 
physiologically important. For example, they could conceivably be involved in 
maternal tolerance to fetal cells (10). Indeed, allosuppressor cells have been 
demonstrated in a multiparous woman that specifically suppress MLR reactivity 
to paternal DW alloantigens (9). It is also noteworthy that alloactivated Ts may 
be responsible in some circumstances for the failure of MHC-incompatible 
combinations of T and B cells to collaborate in T cell-dependent antibody 
responses. Thus, Waldman (11) has shown that in vitro antibody responses can 
be restored in allogeneic (H-21 compatible) combinations of T and B cells by 
irradiation of the T cells or by using low numbers of T cells to dilute out the 
allogeneic Ts. Similarly Swain et al. (12) have reported allogeneic T cell help 
across a total H-2 barrier (H-2 a T cells and H-2 k B cells) provided that the 
suppressor cells are eliminated by treatment with anti-Ly-2 serum and comple- 
ment or a combination of velocity sedimentation and treatment with mitomycin 
C. We have previously shown that low doses of irradiation abrogate allogeneic 
Ts in human E ÷ cells and allow collaboration with E- cells across an MHC barrier, 
but we did not know whether irradiation of a Th cell may alter its requirements 
for recognizing antigen in association with self-MHC (14). In the experiments 
reported here, depletion of Leu-2a ÷ (suppressor/cytotoxic) T cells by panning 
or on the FACS allowed T cell help to be expressed across an HLA-A, -B and 
-DR barrier (Table VII). This experiment was performed several times with 
different donors, which decreased, but did not exclude the possibility of shared 
MB or SB loci, either of which may act as MHC-restricting elements (36, 37), 
and allow effective T-B cell interactions. Moreover, there may be a number of 
other class II loci expressed on human antigen-presenting cells that have not yet 
been identified, but which could fulfill this function (38). Nonetheless, it is clear 
that allogeneic combinations of T and B cells in humans as well as mice may be 
unable to collaborate in specific antibody responses because of the alloactivation 
of Ts rather than reasons of MHC restriction. This fact needs to be taken more 
into consideration in experiments designed to test T cell responses to antigen in 
association with MHC products. 

S u m m a r y  
Specific antibody responses to influenza virus were obtained in vitro from 

human blood mononuclear cells (PBM). The addition of allogeneic T cells to 
responding PBM profoundly suppressed antigen-induced antibody responses, 
but had no effect on pokeweed mitogen (PWM)-induced polyclonal Ig formation. 
This raised the possibility that suppression by allogeneic T cells may result from 
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the activation of  antigen-specific T suppressor (Ts) cells rather than nonspecific 
allogeneic effects. The frequency of allogeneic Ts in PBM from a number of 
different donors, estimated in a series of limiting dilution analyses, was found to 
range from 0.8 x 10 -5 to 4.5 x 10 -5, which is more typical of antigen-specific 
than alloreactive T cells. By adding limiting numbers of allogeneic T cells to 
antibody-forming cultures stimulated simultaneously with two non-cross-react- 
ing antigens (influenza A and B strain viruses A/X31 and B/HK), it was possible 
to demonstrate suppression of the response to one antigen, but not the other, in 
the same culture well. Moreover, the frequency of wells in which the response 
to both antigens was suppressed was not significantly different from that pre- 
dicted from the calculated frequency of specific allogeneic Ts. These results 
show that allogeneic suppression was antigen specific, and was not due to non- 
specific allogeneic effects. By separating T cell preparations into Leu-3a ÷ (helper) 
and Leu-2a + (suppressor/cytotoxic) T cell subsets, suppression was shown to be 
mediated by a radiosensitive Leu-2a ÷ T cell. The removal of  Leu-2a ÷ cells from 
T cell preparations abrogated the suppressor effect and permitted T cell collab- 
oration with B cells, across an HLA-A, -B, and -DR barrier. This result shows 
that in at least some combinations, suppression rather than major histocompati- 
bility complex restriction is the reason for the failure of  allogeneic T and B cells 
to collaborate in T cell-dependent antibody responses. 

Received for publication 14 November 1983. 
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