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Simple Summary: Ewing sarcoma is an uncommon cancer that arises in mesenchymal tissues and
represents the second most widespread malignant bone neoplasm after osteosarcoma in children.
Therapy has increased the 5-year survival rate in the last 40 years, although the recurrence rate has
remained high. There is an immediate and unmet need for the development of novel Ewing sarcoma
therapies. We offer new prospective targets for the therapy of Ewing sarcoma. The EWSR1/FLI1
fusion protein, which is identified in 85–90% of Ewing sarcoma tumors, and its direct targets are
given special focus in this study. Experimantal therapy that targets multiple signaling pathways
activated during ES progression, alone or in combination with existing regimens, may become the
new standard of care for Ewing sarcoma patients, improving patient survival.

Abstract: Ewing sarcoma (ES) is an uncommon cancer that arises in mesenchymal tissues and
represents the second most widespread malignant bone neoplasm after osteosarcoma in children.
Amplifications in genomic, proteomic, and metabolism are characteristics of sarcoma, and targeting
altered cancer cell molecular processes has been proposed as the latest promising strategy to fight
cancer. Recent technological advancements have elucidated some of the underlying oncogenic char-
acteristics of Ewing sarcoma. Offering new insights into the physiological basis for this phenomenon,
our current review examines the dynamics of ES signaling as it related to both ES and the microenvi-
ronment by integrating genomic and proteomic analyses. An extensive survey of the literature was
performed to compile the findings. We have also highlighted recent and ongoing studies integrating
metabolomics and genomics aimed at better understanding the complex interactions as to how ES
adapts to changing biochemical changes within the tumor microenvironment.

Keywords: Ewing sarcoma; progression; targeted therapy; EWSR1/FLI1

1. Introduction

Ewing sarcoma (ES) is an aggressive tumor found often in adolescents, accounting for
10% to 15% of all bone sarcomas [1]. The “classic” Ewing bone sarcoma, extra-skeletal ES,
malignant small cell tumor of the chest wall (Askin’s tumor), and primitive neuroectoder-
mal tumors based on soft tissue (PNET) were all initially characterized by James Ewing
in 1921. The highest incidence occurs in the second decade of life, with approximately
9–10 cases per million per year in patients aged 10–19 compared to an overall incidence
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of three cases per million per year in the population of the United States [2]. ES occurs
predominantly in the Caucasian race and is very rare among African-Americans for un-
known reasons [3]. There is a slight predominance of morbidity for men (sex ratio M:F
1.5:1) [3,4]. These tumors have a common genetic background: they are found in the pelvis,
but they can appear in any bone or up to 30% of soft tissue [4,5]. Although sarcomas only
account for 1% of all human malignancies [6], they are all aggressive [7–9] and can rapidly
metastasize to the bone marrow, lungs, and other tissues [10,11].

This sarcoma subtype is likely derived from unique progenitor cells with similar ge-
netic backgrounds belonging to endothelial, mesodermal, epithelial, and nerve cells [12,13],
but most studies suggest that mesenchymal stem cells (MSCs) are the main precursor
cells [14]. Ewing sarcoma belongs to the Ewing sarcoma family tumors (ESFT), which
in turn belongs to the FET (FUS-EWSR1-TAF15) group of sarcomas and leukemias. The
tumor group comprises more than 20 different tumor entities with ES as one of the most
common types [15,16]. These tumors have similar non-random chromosomal translocations
with one of the three genes, such as EWSR1, FUS, and TAF15, as 5′ partners and a large
group of DNA binding transcription factor encoding genes as 3′ partners. Of note, these
fusion proteins encode ETS biding factors that bind to similar DNA sequences. For ES the
t(11;22)(q24;q12) translocation is present in 85–90% of tumors and EWSR1 and FLI1 gene
fusion produces a fusion protein (EWSR1/FLI1). The t(11;22) (q24; q12) translocation is
found in 85–90% of ES tumors, and the EWSR1 and FLI1 gene fusion results in a fusion
protein (EWSR1/FLI1). Further, the t(21;22)(q22;q12), t(7;22)(q22;q12), t(7;22)(q22;q12),
t(17;22)(q12;q12), t(2;22)(q33;q12) and others are less common translocations that result in
the development of EWSR1/ERG, EWSR1/ETV1, EWSR1/ETV4 fusions of other genes and
are present in the remaining 10–15% of the cases [11,17].

Local treatment and multi-agent adjuvant chemotherapy have increased the 5-year
survival rate from less than 20% to more than 70% in the last 40 years, although the
recurrence rate has remained high. Approximately 25% of people who have initially
confined illness will have it recur at some point in their life. Because there is no standard
therapy for recurrent and refractory ES, the 5-year OS for patients with a disease-free
interval (DFI) > 2 years is around 30%, and the 5-year OS for those with a DFI of 2 years is
about 7%. Given these factors, there is an immediate and unmet need for the development
of novel ES therapies [18].

2. General Consideration: Hallmarks of Cancer

It is known that cancer cells are characterized by a set of features that distinguish
them from non-neoplastic cells. The list of cancer hallmarks has been changed and refined
over the years since it was first determined [19]. In 2022, Hanahan edited and expanded
the list [20]. Nowadays, the authors of the concept propose nine hallmark capabilities:
sustaining proliferative signaling, evading growth suppressors, activating invasion and
metastasis, enabling replicative immortality, inducing angiogenesis, resisting cell death,
avoiding immune destruction, deregulating cellular energetics, and unlocking phenotypic
plasticity. In addition to these, there are also four enabling characteristics, by which cancer
cells and tumors can adopt these functional capabilities: genome instability and mutations,
tumor-promoting inflammation (with the effect of senescent cells), and non-mutational
epigenetic reprogramming, and polymorphic microbiomes.

ES is, in contrast to most other sarcoma types, genetically stable, but the specific
chromosomal translocation [11], for example, EWS-FLI1, is necessary for Ewing sarcoma
tumorigenicity [21]. As shown earlier by Stolte et al. [21] FET tumors, besides gene fusion,
are also characterized by wild type p53, suggesting a dependence of such tumors on DNA
damage therapeutic stress, stabilized by p53 signaling. The only protein product of this
gene can provide the transformation of cellular processes and the acquisition of hallmarks
of cancer. Therefore, our review will focus on several genes and cellular proteins that hold
promise for new therapeutic strategies. For ease of discussion and perception, we will
consider the changed processes in three clusters: (1) Targeting of ES pressure on adhesion,
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migration, and invasion, (2) Targeting of Ewing sarcoma cells with a focus on proliferation,
cell differentiation, and cell survival, and (3) Targeting of ES: Induction of apoptosis and
cell cycle arrest.

3. Molecular Targets for ES Therapy

The two most common fusion proteins (EWSR1/FLI1 and EWSR1/ERG) [17] are in-
volved in several cell signaling and regulatory pathways (Graphical Abstract). These
fusion proteins usually act as transcription factors. For instance, Boulay et al. [22] iden-
tified a chromatin-binding factor (BAF) that interacts with EWSR1/FLI1 to activate gene
expression in ES tumor cells and phenotypical changes. On the other hand, oncoprotein
fusion can induce target genes via a partnership with GGAA microsatellites, as active
enhancers [23] or by binding to RNA. Important discoveries in recent years have shown
that major fractions of the ES fusion proteins bind to the SWI/SNF chromatin remodeling
complex in tumor cells and that leads to the deregulation of gene expression, such as IGF-1
signaling [24] and epigenetic programming [15,16] towards retaining mesenchymal stem
cell plasticity [25]. Blockade of these fusion proteins may be ideal for therapeutic targets.
The feasibility of EWSR1/FLI1 targeting for ES therapy has been shown preclinically using
chemical inhibitors [26–28] and siRNA technology (Bertrand et al. [29] Gauthier et al. [30]
and Cervera et al. [31]) and via chemical targeting of EWSR1/FLI1 oncogenic fusion with
chemical inhibitors [32]. Despite affecting Ewing sarcoma cell viability, multiple reports
reveal induction of resistance factors contributing to the tumor’s survival and therapy
escape [33–35]. Given this problem, it seems prudent to consider the combination of in-
hibitors against EWSR1/FLI1 or EWSR1/ERG with additional targeted therapies [36,37]
that might overcome tumor cells’ resistance to the monotherapy and might demonstrate
a less adverse effect due to dose reduction. One such drug is YK-4-279, a drug candidate
active in downregulating transcription of EWS/FLI1 [38]. At the same time, YK-4-279 has
been shown to inhibit ERG and ETV1 transcription in prostate cancer cells [39], therefore,
it might also be active against Ewing sarcoma cells with commonly and less commonly
presented fusion in the tumors with Ewing sarcoma. In our review, we want to propose
potential targets for therapy that have not yet been used in treatment, along with inhibition
of fusion proteins.

3.1. Targeting of ES Pressure on Adhesion, Migration, and Invasion

Like most cancer types, the prognosis for ES patients with localized disease is much
better than for patients with metastatic disease [40]. A major obstacle in the battle against
metastatic disease continues to be an insufficient understanding of underlying processes;
specifically, what processes, such as metabolic and others, drive cell adhesion, migration,
and invasion during metastases.

Adhesion proteins, such as E-cadherin are regarded as tumor suppressors. The low
level of epithelial proteins is associated with spheroid formation and migration [41].
The migration of cancer cells to new niches is a fundamental process underlying metasta-
sis [42]. There are two main types of cancer migration; mesenchymal and amoeboid; each is
dependent on complex intracellular signaling that governs the actin cytoskeleton. Actin is
involved in several pathways, including Rho/Rac GTPases and the Hippo-pathway, which
culminate in the transcriptional regulation of cytoskeletal and growth-promoting genes,
respectively. The mesenchymal cell migration of sarcomas can involve both single cells
and cells in chains [43]. For successful metastasis, migration is followed by invasion into
secondary locations [44].

Cadherins are vital for the formation of cell-cell contacts. During tumor progres-
sion, E-cadherin expression is lost, which permits epithelial to mesenchymal transition,
anchorage-independent growth, and spheroid formation [45]. Studies have shown that
loss of E-cadherin promotes resistance to treatment [40] and acquisition of a mesenchymal-
like phenotype in vitro. Ex vivo studies have shown that the increased expression of
E-cadherin is associated with improved clinical outcomes in several types of sarcomas [46].
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Thus, E-cadherin upregulation in ES cells is mediated by epigenetics [47], or by small
molecules like MIL327 [40] or RNA interference to metalloproteinase type 9 (MMP9) [48].

Besides induction of the epithelial to mesenchymal transition (EMT)-developed cell
signaling, ES metastasis requires cell migration and blood vessel invasion [49]. The Rho-
associated kinases, ROCK1 and ROCK2 have been implemented in the regulation of
metastases using various in vitro and in vivo models. Data by Roberto et al. [49] showed
a positive correlation between miR-139-5p and ROCK1, where restoration of miR-139-5p
impaired ES migration and invasion. Another approach is the application of ROCK2
inhibitors, such as SR3677 and hydroxyfasudil, in SK-ES-1 cells [42] to demonstrate an
opportunity for simultaneous targeting of heterogenic ES cells.

Although E-cadherin is generally regarded as an EMT marker, several studies have
implicated E-cadherin in tumor adhesion via Ras homolog family member A (Rho A)
mediated activation and alterations in paxillin [48]. Although data from Gluer et al. [50]
suggested that expression levels of various adhesion markers in ES-based tumor cells
matter most, cell adhesion is seemingly determined by the properties of integrin proteins,
cadherin 11 [51], and neural cell adhesion molecule (NCAM) [50]. Kang et al. [52] investi-
gated the link between E-cadherin and Erb-B2 Receptor Tyrosine Kinase 4 (ERBB4) using ES
spheroids and demonstrated that E-cadherin localizes at cell-to-cell junctions and influences
β-catenin cellular localization.

Other cellular proteins, such as integrins and cluster of differentiation 99 (CD99, MIC2)
also play roles in ES cell-cell attachment. For example, the affinity of integrin contacts is
reduced by CD99, a cell surface protein, via dephosphorylation of focal adhesion kinase
(FAK) [53]. Although this protein is not a direct target of EWSR1/FLI1, it is important
in several signaling pathways [54]. In ES cells, the CD99 protein also impacts cellular
adhesion [55], cell growth [56], differentiation [57,58], and tumor cell apoptosis [59] through
multiple mechanisms, such as NOTCH-, NFkappa-B, or MAPK modulation. This could be
a promising target for therapy since activation with specific monoclonal bodies induces
micropinocytosis and leads to cancer cell killing through a caspase-independent, non-
apoptotic pathway resembling methuosis [60]. Furthermore, this could be pivotal in tumors
with resistance to canonical apoptosis-inducing agents.

The other therapeutic possibility to target ES cells came from understanding the
molecular mechanisms that were impacted by the EWSR1/FLI1 fusion. In sarcoma cells,
Katsching et al. [61] reported that EWSR1/FLI1 directly binds to the proteins belonging
to the YAP1/TAZ pathways. Along with another mechanism of Yes-associated protein 1
(YAP)/TAZ regulation, such as AP-1 [62] and activation of Myocardin-related transcription
factor B (MRTFB) and TEA domain family member 1 (TEAD) [61], effectors of RhoA and
Hippo signaling, EWSR1/FLI1 has an oscillating mechanism to regulate the balance between
the epithelial to mesenchymal transition (EMT), along with the reverse state (MET). These
oscillations provide cancer cells with several advantages, including successful invasion,
migration, and consequently metastasis. Another transcriptional mechanism contribut-
ing to ES metastases involves the Sonic Hedgehog pathway. Previous studies implicated
EWSR1/FLI1 in the regulation of glioma-associated oncogene 1 (GLI1 for humans and GLI1
in mouse models) [63–65]. Earlier, micro-array analysis of 27 ES patients showed an associ-
ation between the Sonic Hedgehog pathway (SHH) and metastasis [66]. Besides metastases,
this pathway regulates normal cell growth and proliferation. However, abnormalities
can lead to the development of tumors, metastasis, and the emergence of antitumor drug
resistance [67]. The binding of an SHH ligand to the patched (Ptch) receptor leads to a cell
response expressed in the migration of GLI1 into the nucleus where it binds to DNA.

The canonical and non-canonical activities of GLI1 lead to the expression of genes,
such as PTCH and SMO, which regulate the cell cycle and proliferation [68]. It has been
shown that patient-derived ES cell lines (CHLA9, CHLA10, TC32, CHLA258, and TC71)
and tumor samples [69] are enriched with GLI1. Abnormalities in this pathway can lead
to tumorigenesis, metastasis, and drug resistance [67]. Therefore, YAP / TAZ or SHH
pathway blockade holds promise as a drug resistance-preventive strategy. It has been
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proposed by Joo et al. [65] that the chemical compound GANT58 interferes with shared
transcriptional downstream targets between GLI1 and EWSR1/FLI1. GANT61, another
synthetic compound derived from hexahydropyrimidine, has been characterized as an
inhibitor of GLI1 transcription that binds to the GLI1-DNA complex [70]. It was shown
that ES-derived tumor cells can exploit both GLI1 and GLI2 [64], which may minimize
the effect of GLI1 inhibitors. Given the use of GANT61 for inhibition of SHH-dependent
targets, such as GLI1 [71], additional GLI1 regulation or investigations towards stability
offer opportunities to target cellular proteins vital for ES transformation.

Insulin-like growth factor (IGF-1) is associated with several oncogenic processes in
cells [36] and the IGF-1 receptor (IGF-1R) is a pivotal receptor tyrosine kinase that regulates
malignant tumor transformation of ES cells [72]. IGF-1 and IGF-1R are overexpressed in
the majority of Ewing sarcoma cell lines and have been previously studied as potential
therapeutic targets in tumor treatment. It was reported that the IGF-1R pathway is activated
in several cancers, such as hepatocellular carcinoma [73], pancreatic ductal carcinoma [74],
retinoblastoma [75], colorectal cancer [76], and Ewing sarcoma [77,78]. Chromosomal
translocation of EWSR1/FLI1 leads to activation of the IGF-1R pathway and its downstream
targets belonging to the Mitogen-Activated Protein Kinase (MAPK) and the Phospho-
inositide 3-kinase (PI3K) pathways [79] to maintain the phenotype and viability of ES
cells. Although the use of IGF-1R inhibitors was efficacious in vitro, no sustained clinical
response was found for ES patients [80].

It was discovered that inhibition of the IGF pathway initiated aberrant compensatory
mechanisms, such as pregnancy-associated plasma protein-A (PAPP-A) [81]. Research
findings have shown that synergistic action of PAPP-A and IGF-1R was more effective
in EWS [81] and hence, their combined treatment could play a potential role in EWS
therapy. However, this study was preclinical, and lacked an immunocompetent EWS
model. Further research using an EWS model will be helpful for a better understanding of
the immunomodulating effects of anti-PAPP-A. PAPP-A is a zinc metalloproteinase that
cleaves inhibitory IGF-1-binding proteins, thereby increasing IGF-1 availability for IGF
receptor-mediated cell proliferation, migration, and survival. PPAP-A enhances local IGF-1,
which is also associated with invasion and metastasis. Potential targetable cell antigens in
ES include PAPP-A as one of the top five secreted metalloproteinase proteins overexpressed
in ES [81]. Furthermore, it has been shown that therapy with transgenic T cells directed
against PAPP-A, knockout of the PAPP-A gene, and complex therapy in which not only
PAPP-A is directly inhibited, can also be effective [82].

The TGF-β and PDGF pathways play important roles in ES plasticity and tumor
progression. The TGF-β co-receptor endoglin is routinely expressed by malignant cells,
and it is associated with the upregulation of bone morphogenetic protein, integrin, focal
adhesion kinase, and phosphoinositide-3-kinase signaling, which together work in concert
to maintain tumor cell plasticity [43,83]. Like TGF-β, the platelet-derived growth factor
(PDGF) pathway aids in maintaining a cancer stem cell-like phenotype in ES, but more
notably, is involved in ES tumor neovascularization [84]. Importantly PDGF ligands and/or
receptors are frequently upregulated in ES [66,85] and their expression correlates with the
activity of the EWSR1/FLI1 fusion [86] in sarcoma tissues. Overall, the pathways involved
in ES cellular invasion and migration are complex, and future work is needed to design an
effective multitargeted approach against ES tumor cells [87].

These genes play a key role in several tumor processes for ES, especially in adhesion,
migration, and invasion (Table 1). The regulation of these processes in a tumor is the
first step toward the formation of a lesion secondary tumor growth-metastasis from a
localized tumor. Metastasis is associated with poor clinical outcomes for patients, while
the treatment of localized tumors currently has a relatively high success rate, it could be as
high as 70% [18]. Therefore, these genes as targets for therapy are especially vital.
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Table 1. Targeting molecules in ES pathogenesis.

Targetable Molecules Main Pathways Tumor Effects

CD99 IGF-1R and RAS-Rac1 signaling
Induces caspase-independent cell death, endocytosis, cell
aggregation, micropinocytosis, cell adhesion, migration,

invasion, metastasis, differentiation

GDF6 GDF6 prodomain signaling pathway Cell proliferation, tumor growth, differentiation, apoptosis

E-cadherin MAPK Pathway Anchorage-independent growth and spheroid formation,
cell-cell adhesion

Endoglin TGFβ signaling
Tumor cell plasticity, patient survival, invasion,
anchorage-independent growth, progression of

aggressive tumors

EZH2 Epigenetic Cell differentiation, phenotypic heterogeneity, self-renewal

GLI1 Sonic Hedgehog (SHH) pathway Cell proliferation, cell cycle control, apoptosis, cell viability,
metastasis, invasion, migration, clonogenicity

PDGF family members PDGF pathway
Self-renewal, invasion, chemotherapy resistance, primary

tumor growth, metastasis, drug resistance,
poor clinical outcome

ROCK2 RhoA-ROCK pathway Migration, invasion, proliferation, clonogenic capacity,
tumor growth

YAP proteins YAP/TAZ pathway, Hippo signaling,
WNT/β-catenin signaling

Migration, cell proliferation, metastasis,
anchorage-independent colony formation

PAPP-A IGF signaling Cell proliferation, migration, cell survival, tumor growth,
invasion, metastasis

PARP family DNA repair, replication Apoptosis

TRAIL TRAIL-pathway Induces caspase-independent cell death, apoptosis

ATR/CHK1 ATR-CHK1 pathway Cell cycle regulation, cell cycle arrest

LDH aerobic glycolysis Cell proliferation, apoptosis, tumor growth, cell survival

PHGDH Serine synthesis Cell proliferation

lncRNA SOX2 WNT/β-catenin signaling Cell proliferation, invasion, apoptosis, tumor growth

lncRNA TUG1 TUG-miR-145-5p-TRPC6 pathway Cell proliferation, migration, invasion

3.2. Targeting of Ewing Sarcoma Cells with a Focus on Proliferation, Cell Differentiation,
and Cell Survival

Metastatic progression requires the migration and invasion of cancer cells to reach
distant tissues. However, for malignant neoplasms to spread beyond their primary tumor,
they must adapt and thrive in a new niche. In general, cancer cells are characterized by
unlimited time spent on cell division coupled with high survivability [88]. The mechanism
for preserving these cells in a poorly differentiated state is elaborate. Mutations and
epigenetic changes trigger unregulated mitotic cycles, allowing cells to become insensitive
to growth-inhibitory signals, and capable of evading programmed cell death. Cell cycle
progression and cell division, cell death, and cellular senescence determine cell proliferation
in a broad sense.

The expression of the ES fusion gene alters the expression of over 500 downstream
targets, which collectively block differentiation and drive proliferation [89]. For example,
EWSR1/FLI1 regulates several genes, including IGF-1, Homeobox protein Nkx (NKX2),
T-LAK cell-originated protein kinase (TOPK), SRY-Box Transcription Factor 2 (SOX2), and
Enhancer Of ZesteHomolog2 (EZH2) [90]. It is worth noting that EWS-FLI1 binds to the
EZH2 promoter to activate embryonic tumor stem cell growth and metastatic spread [91].
These targets can be used in the treatment of Ewing sarcoma. For example, GSK126 inhibits
EZH2 methyltransferase activity in ES cells. Firstly, it reduces the phenotypic heterogeneity
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of ES cells and their capability for self-renewal and tumorigenicity. In turn, the change
in the concentration of EZH2 targets (non-protein neuroectodermal marker GD2) allows
chimeric antigen receptor gene-modified T cell therapy to be applied to the tumor [92].
Ahmed et al. [93] assessed the biomarkers responsible for ES cell proliferation. Immunos-
taining of primary tissue revealed that the majority were positive for protein kinase B (AKT)
(55%) and mTOR (77%), indicating activation of an AKT-mTOR axis in ES cells. Thus, mTOR
could be a budding target, some clinical trials for it are in process (see Section 4). Approxi-
mately 33% of specimens also expressed YAP, establishing a link between proliferation and
YAP. Additionally, YAP is critically associated with BMI-1 (a polycomb complex protein)
which stabilizes YAP expression and activity [94] via controlled chromatin remodeling.

Cell survival is connected with another hallmark of cancer deregulating cellular
energetics. Numerous metabolic, i.e., catabolic and anabolic processes are altered in ES cells.
For instance, Tanner et al. [95] reported altered de novo serine synthesis and dependence
on aerobic glycolysis increased instead of oxidative metabolism. Moreover, data from an
investigation by Sen et al. [96] demonstrates a direct link between EWSR1/FLI1 proteins
involved in serine biosynthesis and glutamine consumption. Interestingly, Issaq et al. [97]
showed that the expression of 3-phosphoglycerate dehydrogenase (PHGDH) was regulated
by EWSR1/FLI1. PHGDH is one of the main enzymes that catalyze3-phosphoglycerate
to 3-phosphohydroxypyruvate [98] (serine de novo synthesis) that is required for cell
proliferation and tumor growth [97]. Further, PHGDH knockdown decreased ES cell
proliferation and inhibited xenograft tumorigenesis in orthotopic ES models, providing an
additional link between EWSR1/FLI1 and ES carcinogenesis. Therefore, targeting serine
metabolism could be important for novel anticancer approaches in ES.

It is well-known that several cancers [99,100] heavily rely upon glycolysis rather
than oxidative metabolism since it provides metabolic plasticity to fuel tumor heterogene-
ity [101,102]. Ewing sarcoma is one tumor type [103] where a predominant fusion protein,
EWS/FLI1, regulates glucose consumption as well as gene expression of glycolytic enzymes,
such as lactate dehydrogenase (LDH) [32]. It has been shown recently that depletion of
lactate dehydrogenase-A (LDHA) inhibits proliferation of ES cells and induces apoptosis,
impacting tumor cell viability both in vitro and in vivo.

Additionally, for various cancers, a growing number of important regulators are
being discovered within one group of molecules: long non-coding RNAs (lncRNAs) [104].
LncRNAs often increase cancer cell survival, proliferation, colony formation, migration, and
invasion [104–106]. Their elevated expression contributes to the progression of the sarcoma.
It was described, for example, for lncRNA taurine upregulated gene 1 (TUG1) [106] and
lncRNA SOX2 [105]. Many of the biological regulatory mechanisms of lncRNAs in Ewing
sarcoma are still elusive. Nevertheless, they have been shown to often act as competing
endogenous RNAs to regulate other genes expression. In principle, the knockdown of
lncRNAs or the selection of inhibitory proteins might help to suppress ES growth [105,106].
These approaches might be potential therapeutic options for treating Ewing sarcoma.

In summary, cell proliferation, differentiation, and survival are important, first of all,
in the formation of a tumor in a primary or secondary lesion. These properties of cells are
related to some extent to other tumor characteristics (Figure 1), for example, deregulated
cellular energetics (Table 1). To regulate this group of genes and their products, EWSR1/FLI1
usually acts as a transcription factor and binds with RNA.

3.3. Targeting of ES: Induction of Apoptosis and Cell Cycle Arrest

The development of fusion event inhibitors to suppress the progression of Ewing
sarcoma requires the understanding of multiple cellular processes which became active
in the tumor cells. Since kinases are integral to tumor maintenance, intervention directed
toward these family members is promising. Both apoptosis and cell division utilize several
different kinases, such as ATR and CHK1.

ES cells exhibit increased levels of endogenous DNA replicative stress and are sen-
sitive to inhibitors of ribonucleotide reductase (RNR), an enzyme that limits the rate of
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deoxyribonucleotide synthesis. ES cells are also dependent on the ataxia telangiectasia, the
rad3-related protein (ATR), and the checkpoint kinase 1 (CHK1) pathway, which play key
roles in orchestrating the cellular response to DNA replication stress for survival [107,108].
ES tumors are sensitive both in vitro and in vivo to ATR and CHK1 inhibitors as separate
agents and in combination with other drugs [107–111]. The ATR-CHK1 pathway, when
activated by DNA replication stress, orchestrates a multifaceted response that arrests cell
cycle progression, suppresses the origin of replication, stabilizes replication forks, and
promotes fork repair and restart [112].
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Figure 1. Schematic illustration of cancer pathways under control of ES’s fusion proteins: The
figure summarizes our review of research active molecules over the past 10 years. The various
domain of ES-produced fusion oncoproteins required for the activation of gene expression, and
their products, such as RNA or proteins regulate cellular proliferation, apoptosis and migration, for
example. All together with induced cell signaling cells gain oncogenic traits and transformation.
Small circles are active molecules, large circles are cellular processes (see the hallmark of cancer).
Colors in the figure are correlated to organizational divisions in the review for ease of perception.
There are three colored clusters: purple (Section 3.1. Targeting of ES Pressure on Adhesion, Migration,
and Invasion), blue (Section 3.2; Targeting of Ewing Sarcoma Cells with a Focus on Proliferation, Cell
Differentiation, and Cell Survival) and red (Section 3.3; Targeting of ES: Induction of Apoptosis and
Cell Cycle Arrest).

However, ATR and CHK1 also have critical and unique functions outside of the
S phase and the response to DNA replication stress. For example, ATR and/or CHK1 regu-
late chromosome segregation, the S/G2 checkpoint, the G2/M transition, double-strand
DNA break repair, and the response to osmotic and mechanical stress [113,114]. Recently,
Koppenhafer et al. [87] identified that the inhibition of the ATR-CHK1 pathway in ES cells
under DNA replication stress leads to the aberrant activation of Cyclin-Dependent Kinase 2
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(CDK2) and cell death. CDK1 and CDK2 are critical mediators of cell cycle progression that
are regulated by the ATR-CHK1-CDC25A pathway. In the setting of DNA replication stress,
ATR-CHK1 negatively regulates CDC25A, which de-phosphorylates and activates CDK1/2
to restrain cell cycle progression and promote DNA damage repair. A novel feedback
intracellular loop in Ewing sarcoma cells has been discovered. In this loop, the inhibition
of the ATR-CHK1 pathway, or the WEE1 kinase, during DNA replication stress leads to
enhanced DNA replication stress, increased DNA damage, and apoptosis. Although most
investigations in this field focus on the interaction between EWS/FLI1 and intracellular
pathways, several others have explored the possibility of interfering with extracellular
signaling paths that regulate EWS/FLI1, and consequently, tumor transformation.

Additionally, one of the enzymes regulating the work of the hereditary apparatus of
the cell is Poly (ADP-ribose) polymerase (PARP), which is involved in the processes of DNA
repair, maintaining the genetic stability of the cell and its programmed death, and as Ewing
sarcoma cell lines are frequently defective in DNA break repair, they are susceptible to
PARP inhibition [115–117]. Inhibition of PARP showed the effectiveness of this approach if
cytostatic drugs were used, the effect of which was intensified [118]. Some studies indicate
an increase in the effectiveness of treatment of Ewing sarcoma with PARP inhibitors
alone [119] or with a combination, such as temozolomide [120,121]. Although preclinical
in vitro models showed an acceptable result, the activity of PARP inhibitors as a single agent
in preclinical in vivo models and clinical trials at an early stage of Ewing sarcoma did not
demonstrate significant results [122]. The activity of PARP directly depends on its required
substrate, nicotinamide adenine dinucleotide (NAD+), which is produced by nicotinamide
phosphoribosyltransferase (NAMPT). Studies of the combined use of PARP and NAMPT
inhibitors in vivo have shown great effectiveness. The combined therapy resulted in tumor
regression, delayed disease progression, and increased survival [123]. Considering that
Ewing sarcoma cells depend on functioning PARP, that PARP requires NAD+, and that
NAD+ production depends on NAMPT, it seems appropriate to simultaneously inhibit
these proteins, which are confirmed by recent studies [123].

Growth and differentiation factor 6 (GDF6), also known as bone morphogenetic
protein 13 (BMP13), belongs to the TGF-superfamily’s BMP family. GDF6 has become an
attractive target since its binding to its own receptor, such as CD99 [41]. GDF6 is vital to
embryogenesis, particularly to the development of the neural and skeletal systems, and
mutations in GDF6 are associated with abnormalities of the skeleton, the eyes [124], and
other organs [125]. GDF6 is highly expressed in ES tumors and cell lines compared to
mesenchymal stem cells and cells from other sarcoma subtypes.

Zhou et al. [41] described a GDF6 prodomain signaling pathway that regulates
Src activity and ES tumor growth [41] via p21. A ChIP-sequencing showed binding of
EWSR1/FLI1 to the GDF6 gene in ES cells, which implicates GDF6 as a direct target of
EWSR1/FLI1 transcription activation. Considering the role of GDF6 in cell proliferation and
differentiation, inactivation of gene expression [41] will offer a possibility to interfere with
ES cell growth.

The anticancer properties of multiple ES-based therapeutic approaches have been
extensively studied, often for their antiproliferative effects. The induction of apoptosis has
been reported for several cancers, including Ewing sarcoma. However, ES cells are prone
to developing treatment resistance, which contributes to disease recurrence [126]. Current
ES-therapeutic strategies are promising, and the development of new therapeutics and
combinations thereof with greater antitumoral properties has been proposed. For instance,
Sonnemann et al. [127] investigated cell death mediated by histone deacetylase (HDAC)
inhibitors in the presence of pro-apoptotic TNF-related apoptosis-inducing ligand (TRAIL).
Additionally, Lu et al. [128] found that the proteasome inhibitor bortezomib synergizes
with TRAIL in vitro using TC-71, to enhance cancer cell-related toxicity through apoptosis.

Previously, TRAIL, a member of the tumor necrosis factor (TNF) ligand superfam-
ily (TNFLSF), has been found to induce apoptosis in cancer cells while sparing normal
cells [129–131]. Multiple in vitro studies have shown that TRAIL and other death receptor
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agonists [132,133] are effective against sarcoma cell lines [131,134] with ES cell lines show-
ing the greatest sensitivity [135]. Ubiquitin-specific protease 6 (USP6) may also contribute
to the sensitization of ES cells to exogenous IFNs [136]. Henrich and colleagues [136] spec-
ulate that this negative feedback loop involves USP6, which serves to amplify Interferon
Gamma (IFN)-mediated sensitivity to TRAIL. Indisputably, the molecular mechanism of
TRAIL sensitivity warrants additional investigation to clarify the molecular basis for drug
synergy against ES.

The metabolism of Ewing sarcoma involves many genes and metabolic pathways
that may be potential targets for therapy (Table 1). The effect on some agents can lead
to a static effect, and the activation or silencing of others can be expressed as a bright
antitumor effect and lead to apoptosis. Some experimental approaches to stimulating cell
cycle arrest [137–139] or apoptosis [140,141] in Ewing sarcoma cells showed effectiveness
in preclinical settings, and therefore, might hold great promises in future clinical testing.

4. Current Clinical Trials

Standard chemotherapies, such as alkylating agents, topoisomerase, and tubulin
inhibitors are non-specific and exert their effects on both tumor cells and normal cells.
Currently, a search is underway to identify new drugs that are specifically targeted for ES
cells and that are capable of eliminating the tumor cells and extending patient survival.
Some clinical trials where traditional and experimental components of chemotherapy were
used both separately and in combination with each other are presented (Table 2). The key
to new and successful therapies may be the addition of standard treatment protocols with
new, highly specific experimental drugs.
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Table 2. Clinical trials.

S.N. Number Number of Patients Disease Drug/Target Results

1 NCT04129151 18 Ewing Sarcoma
Recurrent

Palbociclib/CDK4 and CDK6
Ganitumab/IGF-1R Active

2 NCT02546544 16 Relapsed Ewing Sarcoma
Refractory Ewing Sarcoma Linsitinib/IGF-1R Disease progression, limited therapeutical effect

3 NCT00949325 24 Soft Tissue and Bone Sarcoma Temsirolimus/mTOR
Doxorubicin/topoisomerase II

The response rate was 53%, found a correlation
between inhibition of mTOR and therapeutical

effect 10.1186/s13569-018-0107-9

4 NCT00987636 907 Ewing sarcoma

Zoledronic acid/osteoclast apoptosis
Busulfan/guanine N7

Treosulfan/guanine N7
Melphalan/guanine N7

BuMel treatment was more successful than
standard chemotherapy -vincristine,
dactinomycin, and ifosfamide (VAI)

5 NCT00618813 35 Ewing Sarcoma

Radiation therapy
therapeutic conventional surgery

etoposide/topoisomerase II
ifosfamide/DNA

doxorubicin hydrochloride/topoisomerase II
cyclophosphamide/guanine N7

vincristine sulfate/tubulin
topotecan hydrochloride/topoisomerase I

filgrastim/Granulocyte

No incidence of death was recorded in 37 weeks
of treatment

6 NCT00516295 7

Ewing Sarcoma of Bone
Extraosseous Ewing Sarcoma

Peripheral Primitive Neuroectodermal Tumor
Recurrent Ewing Sarcoma/Peripheral

Primitive Neuroectodermal Tumor

Topotecan hydrochloride/topoisomerase I
cyclophosphamide/guanine N7

vincristine sulfate/tubulin
bevacizumab/VEGF-A

Days of event free survival—442

7 NCT00470275 10 Recurrent or Refractory Ewing Sarcoma Cytarabine/DNA Lack of efficacy

8 NCT02657005 45 Relapsed or Refractory Ewing Sarcoma TK216/EWS-FLI1 Active

9 NCT00061893 38 Ewing Sarcoma Family of Tumors

Radiation therapy
conventional surgery

etoposide/topoisomerase II
ifosfamide/DNA

doxorubicin hydrochloride/topoisomerase II
cyclophosphamide/guanine N7

vincristine sulfate/tubulin
topotecan hydrochloride/topoisomerase I

filgrastim/granulocyte
vinblastine sulfate/tubulin

MESNA/urotoxic metabolites

24-month event free survival was 35%: 71% for
the seven with isolated pulmonary metastases,

26% for all others.
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Table 2. Cont.

S.N. Number Number of Patients Disease Drug/Target Results

10 NCT02511132 22 Ewing Sarcoma
Vigil/TGF-β

Temozolomide/guanine
Irinotecan/topoisomerase I

1 case report of complete response to therapy

11 NCT01583543 12 Recurrent/Metastatic Ewing’s Sarcoma Olaparib/PARP No significant responses or durable disease
control was seen

12 NCT01331135 18

Ewing sarcoma,
osteosarcoma,

malignant
peripheral nerve

sheath tumor,
rhabdoid tumor,
retinoblastoma

Sirolimus/mTOR
The combination of sirolimus with metronomic
chemotherapy is well tolerated in children. A
phase II trial of this combination is ongoing.

13 NCT00428272 24

Ewing Sarcoma
Osteosarcoma

Neuroblastoma
Rhabdomyosarcoma

Lexatumumab/TRAIL-2R
The drug seems to mediate some clinical activity

in pediatric solid tumors and may work with
radiation to enhance antitumor effects.

14 NCT02306161 312

Metastatic Ewing Sarcoma
Metastatic Malignant Neoplasm in the Bone
Metastatic Malignant Neoplasm in the Bone

Marrow
Metastatic Malignant Neoplasm in the Lung

Metastatic Peripheral Primitive
Neuroectodermal Tumor of Bone

Peripheral Primitive Neuroectodermal Tumor
of Soft Tissues

Cyclophosphamide/guanine N7
Doxorubicin/topoisomerase II

Etoposide/topoisomerase II
Ganitumab/IGevent-freeF-1R

Ifosfamide/DNA
Vincristine/tubulin

Active

15 NCT04067115 45 Ewing Sarcoma Trabectedin/guanine N2
Irinotecan/topoisomerase I Recruiting

16 NCT00070109 50

Rhabdomyosarcoma
Recurrent Childhood Rhabdomyosarcoma
Recurrent Childhood Soft Tissue Sarcoma

Recurrent Ewing Sarcoma
Peripheral Primitive Neuroectodermal Tumor

Trabectedin/guanine N2
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Table 2. Cont.

S.N. Number Number of Patients Disease Drug/Target Results

17 NCT03600649 50

Ewing Sarcoma
Myxoid Liposarcoma
Sarcoma, Soft Tissue

Desmoplastic Small Round Cell Tumor
Extraskeletal Myxoid Chondrosarcoma

Angiomatoid Fibrous Histiocytoma
Clear Cell Sarcoma

Primary Pulmonary Myxoid Sarcoma
Myoepithelial Tumor

Sclerosing Epithelioid Fibrosarcoma
Fibromyxoid Tumor

Cyclophosphamide/guanine N7
Topotecan/topoisomerase I

Seclidemstat/LSD1
Recruiting

18 NCT03491371 56

Osteosarcoma
Ewing sarcoma

Chondrosarcoma
Soft tissue sarcoma

Methylsulfonic apatinib/VEGFR-2 No data

19 NCT04690725 29
Osteosarcoma

Ewing sarcoma
Chondrosarcoma

TQB3525/PI 3-kinases Active

20 NCT01610570 8 Ewing Sarcoma
Sarcoma Mithramycin/EWS-FLI1

The trial was closed to enrollment, due to inability
to safely achieve the desired mithramycin

exposure
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5. Conclusions

Ewing sarcoma is a cancer with metabolic processes and related pathology largely
governed by fusion proteins. Unfortunately, inhibition of these proteins themselves has
proved challenging and clinically unsuccessful, which necessitates combinations of new
therapeutic approaches. After an extensive literature review, we chose 17 molecules that
serve as promising targets for therapy that alter cell metabolism, and possess features crucial
in tumorigenesis, including cell adhesion, migration, invasion, proliferation, differentiation,
survival, apoptosis, and cell cycle arrest (Figure 1). Most of the genes we have described
are direct targets of fusion proteins, therefore, successful indirect inhibition could have a
cascading effect on cell survival and might have future clinical implications. In addition,
many of the presented proteins are often highly expressed (some serve as markers for ES),
so their inhibition could be readily available and exert a strong anti-cancer effect. Clinical
trials are currently underway for some of these aforementioned target molecules. Therapies
devoted to targeting them alone or in combination with current regimens could become
the next standard of care for Ewing sarcoma patients.
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Abbreviation

CD99 cluster of differentiation 99
EMT epithelial to mesenchymal transition
ERBB4 Erb-B2 Receptor Tyrosine Kinase 4
ES Ewing sarcoma
ESFT Ewing sarcoma family tumors
EZH2 Enhancer Of Zeste 2 Polycomb Repressive Complex 2 Subunit
GDF6 growth and differentiation factor 6

FET
family of genes, Fused in sarcoma, Ewing sarcoma breakpoint region 1,
TATA-box binding protein associated factor 15

GLI1 glioma-associated oncogene 1
IGF-1 Insulin-like growth factor
IGF-1R insulin-like growth factor 1 receptor
LDH lactate dehydrogenase
lncRNAs long non-coding RNAs
MAPK Mitogen-Activated Protein Kinase
MET mesenchymal to epithelial transition
MMP9 metalloproteinase type 9
MRTFB of Myocardin-related transcription factor B
NAMPT nicotinamide phosphoribosyl transferase
NCAM neural cell adhesion molecule
PAPP-A Pregnancy-associated plasma protein A
PARP Poly (ADP-ribose) polymerase
PDGF Platelet-derived growth factor
PHGDH 3-phosphoglycerate dehydrogenase
PI3K Phosphoinositide 3-kinases
ROCK Rho-associated coiled-coil kinase
RhoA Ras homolog family member A
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SHH Sonic Hedgehog pathway
SOX2 SRY-Box Transcription Factor 2
SRBCT Small Round Blue Cell Tumors
TEAD TEA domain family member 1
TNF tumor necrosis factor
mTOR mammalian target of rapamycin
TRAIL TNF-Related Apoptosis Inducing Ligand
PNET Primitive neuroectodermal tumor
VEGF-A Vascular endothelial growth factor A
YAP Yes-associated protein.
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