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Abstract

Background The bacteraemia prediction is relevant because sepsis is one of the most important causes of morbidity and
mortality. Bacteraemia prognosis primarily depends on a rapid diagnosis. The bacteraemia prediction would shorten up to 6
days the diagnosis, and, in conjunction with individual patient variables, should be considered to start the early administration
of personalised antibiotic treatment and medical services, the election of specific diagnostic techniques and the determination
of additional treatments, such as surgery, that would prevent subsequent complications. Machine learning techniques could
help physicians make these informed decisions by predicting bacteraemia using the data already available in electronic
hospital records.

Objective This study presents the application of machine learning techniques to these records to predict the blood culture’s
outcome, which would reduce the lag in starting a personalised antibiotic treatment and the medical costs associated with
erroneous treatments due to conservative assumptions about blood culture outcomes.

Methods Six supervised classifiers were created using three machine learning techniques, Support Vector Machine, Random
Forest and K-Nearest Neighbours, on the electronic health records of hospital patients. The best approach to handle missing
data was chosen and, for each machine learning technique, two classification models were created: the first uses the features
known at the time of blood extraction, whereas the second uses four extra features revealed during the blood culture.

Results The six classifiers were trained and tested using a dataset of 4357 patients with 117 features per patient. The models

obtain predictions that, for the best case, are up to a state-of-the-art accuracy of 85.9%, a sensitivity of 8§7.4% and an AUC
of 0.93.

Conclusions Our results provide cutting-edge metrics of interest in predictive medical models with values that exceed the
medical practice threshold and previous results in the literature using classical modelling techniques in specific types of
bacteraemia. Additionally, the consistency of results is reasserted because the three classifiers’ importance ranking shows
similar features that coincide with those that physicians use in their manual heuristics. Therefore, the efficacy of these
machine learning techniques confirms their viability to assist in the aims of predictive and personalised medicine once the
disease presents bacteraemia-compatible symptoms and to assist in improving the healthcare economy.
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Introduction

The paradigm shift from reactive to predictive,
preventive and personalised medicine

Current best healthcare practices promote the assumption
of a predictive medicine tailored to the patient under
the Predictive, Preventive and Personalised Medicine
(PPPM/3PM) paradigm that is based on, among others,
the capacity to predict disease development and influence
decisions about lifestyle choices or to customise the medical
practice to the patient [1]. Many of these diseases can
be accompanied by severe complications. Hence, applying
machine learning techniques on the available patient’s
data in the electronic hospital records to predict the
presence of complications is an example of practical
multidisciplinary implementation of PPPM/3PM strategies
to improve healthcare.

One of these complications that result in increased
morbidity and mortality [2] is bacteraemia. The related in-
hospital case-fatality rate in bacteraemia is 12% in some
reports [3]. Sepsis is one of the most important causes of
morbidity and mortality. It is estimated at 19 million cases,
and up to 5 million sepsis-related deaths annually [4].

Machine learning (ML) techniques will contribute an
important added value to the three pillars of 3P medicine.
Thus, the prediction of this kind of infection is useful
either (i) to prevent it or (ii) to decrease its morbidity
and mortality by starting an early, appropriate and specific
antibiotic treatment. It is recommended that antibiotic
treatment be promptly administered whenever there is a
suspected serious bacterial infection [5, 6] and, if possible,
after blood cultures have been taken. The diagnosis can
take up to 6 days using blood cultures which introduces
a significant lag in the antibiotic treatment. The individual
prediction of bacteraemia would reduce this diagnosis lag
enabling the early administration, up to 6 days earlier, of
a personalised antibiotic treatment that would significantly
reduce the bacteraemia complications.

Additionally, ML techniques can also provide an impor-
tant added value to the targeted prevention of bacteraemia
by identifying patients with bacteraemia and their spe-
cific bacteraemia’s source earlier. The bacteraemia’s source
determines (i) the specific and most appropriate antibi-
otic treatment, (ii) the specific diagnostic techniques to
search the reasons for the bacteraemia source, and (iii)
it helps determine additional treatments that sometimes
must be combined with the antibiotic treatment, for exam-
ple, surgery [7]. In this sense, preventative methods have
been shown to be successful, for example, methods such
as vaccination or the Michigan-keystone project to reduce
central-line related bloodstream infections in children [8].
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A personalised and specific antibiotic treatment follows
the prediction of bacteraemia and its source. Personalised
treatment means that each patient, with its own bacter-
aemia’s focus and clinical situation (i.e. type of bacterial
infection, source of infection, hemodynamic situation, tem-
perature, laboratory markers, age, vaccination coverage,
exposure to invasive procedures, if the patient has received
antibiotics before, if he has suffered previous hospital
incomes, or if a multiresistant microorganism has colonised
him), needs a specific antibiotic treatment. All these fac-
tors determine the kind of antibiotic that the patient should
receive [9, 10] which is intimately related to the morbidity
and mortality of the patient.

ML techniques can consider all the previous variables
to predict bacteraemia, prevent its complications and help
personalise the treatments.

Bacteraemia

Bacteraemia is the presence of bacteria in the bloodstream
[11]. In healthy patients, the blood does not contain bacteria,
so its presence is associated with infections that can impact
the patient’s life.

The most typical origin for bacteraemia is an infection,
restricted to a specific location in the body, that favours
the bacteria’s movement into the blood. The most frequent
bacteraemia-producing infections are urinary (prostatitis or
pyelonephritis), respiratory (pneumonia), vascular (infected
catheters), digestive (cholecystitis or cholangitis), skin and
soft tissues (cellulitis or myositis), or bones (osteomyelitis).
When the origin is unknown, it is referred to as primary
or idiopathic bacteraemia. Some medical procedures can
also favour bacteria’s passage into the blood in previously
healthy patients, from sites usually colonised by bacteria,
such as urinary catheters in the bladder or endoscopies of
the digestive tract (colonoscopies). Likewise, certain habits
such as intravenous drug use can favour the passage of
bacteria from the skin to the blood [12].

The bacteria in the blood can spread the infection to
other places in the body, producing endocarditis, arthritis,
osteomyelitis, meningitis, or brain abscesses, among others.
In [13], the authors describe the connection between
the type of bacteraemia microorganism and the site of
acquisition with associated mortality. They show that the
mortality associated with bacteraemia ranges from 11 to
37% depending on the place and type of microorganism.
There is a high mortality rate associated with bacteraemias
[14], and blood cultures are the gold standard for testing
for the diagnosis of bloodstream infections. Due to the high
morbidity and mortality associated with bacteraemia, it is
mandatory to initiate effective antibiotic treatment as soon
as possible to reduce the death rate [15].
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Therefore, as presented above, bacteraemia can be either
the origin or the complication of diseases on which
the PPPM/3PM [16] and personalised medicine [17] are
focused on, and the very same principles that guide PPPM
can be used to predict the complications’ development and
to customise their medical practice.

Deficits in the current treatment of bacteraemia

The means of detecting bacteraemia is via blood cultures
[18, 19] in vials that contain growth media of two
types: aerobic and anaerobic. To this aim, an amount
of the patient’s blood—from 20 to 40ml—is drawn and
introduced into the vials. Then the vials are placed within a
system that maintains the optimal environmental conditions
(temperature, humidity, light) for the microorganism’s
growth. The microorganism’s growth produces CO;, and
the system detects its production. This process can take
between hours and 5 days. If the system does not detect
CO» production during this time frame, it reports a negative
culture (no bacteraemia), whereas if it does detect CO;
production, then it reports a positive culture. Nevertheless,
a positive culture does not always imply bacteraemia.
Therefore, it is also important to determine if this growth is
a true bacteraemia or a contaminant (negative bacteraemia).
If a positive culture appears, then the identification of the
microorganism, the bacteria species that have grown in
the vials, begins. The complete process of identifying the
microorganism can take up to another 2 to 3 days. In
many cases, the species identified came from the skin or
was introduced in the blood sample either during blood
extraction or during the culture. In such a case, the culture
is contaminated and considered to have no bacteraemia.
Finally, only those analyses in which the bacteria species
comes from an infection are declared to be bacteraemia.

The prediction of true bacteraemia has two important
moments. The first one is when the physician decides
to extract blood from the patient for the blood culture.
The second one is the moment (hours or days after the
blood extraction) when some blood cultures are positive.
From this second moment to the definitive identification
of the microorganism can take 2 or 3 days. Among
these positive blood cultures (i.e. the system detects CO»),
some will be contaminants (considered to be negative
bacteraemia), and others will be true cultures (considered
to be true bacteraemia). The type of blood culture (aerobic
or anaerobic blood cultures) and the time lapse to detect
growth could be important to predict if the growth is true or
not in this second period, before the definitive identification
of the microorganism.

The deficits in the current treatment of bacteraemia begin
at the moment that it is decided to obtain blood cultures.
Blood cultures should not be obtained indiscriminately

because this increases the number of contaminated blood
cultures, leading to unnecessary antibiotic therapy and
increasing economic costs. There are different situations in
which blood cultures should be obtained, such as severe
sepsis, suspected infection with organ dysfunction, high
blood lactate levels, or infectious processes associated
with bacteraemia (for example, pyelonephritis, cholangitis,
severe pneumonia, meningitis, suspected endocarditis, or
endovascular infections). Also, bacteraecmia should be
suspected in patients with fever and at least one other sign or
symptom of infection in the absence of a known alternative
diagnosis.

For the physician, it is important to predict bacteraemia
before deciding to obtain blood cultures. Unfortunately,
physicians are not good at predicting which patients have
bacteraemia [20]. The result of this poor prediction of
bacteraemia is a low rate of true positive blood cultures; [21]
reports rates between 5 and 10% and [22] reports values as
low as 3.6% per analysis.

The second point regarding deficits in the current treat-
ment of bacteraemia is the interpretation of positive blood
cultures. There are organisms that should never be consid-
ered contaminants when identified in blood cultures, such
as gram-negative roads, Staphylococcus aureus, or Candida
spp. On the other hand, organisms such as coagulase-
negative Staphylococcus spp. and Corynebacterium sp. are
usually common skin contaminants, and if they are obtained
in blood cultures, they usually do not need antibiotic treat-
ment. However, sometimes this last group, usually contami-
nants, could produce bacteraemia mostly related to catheters
or prosthetic valves.

The items explained above are related to the decision
regarding antibiotic treatment and how long a patient should
be treated. Therefore, predictive models of bacteraemia
could help the physician make the appropriate decision
regarding these points. Thus, in this sense, PPPM/3PM
has a very important point of intervention in suspected
bacteraemia and its treatment.

Clinical, economic and structural consequences

The usefulness of blood cultures in predicting bacteraemia
is low, with a range between 4.1 and 7% [21, 23]. Compared
to the true positive rate, false positive results due to
contamination are in a similar or a higher range, varying
between 0.6 and over 8% [24]. These problems of blood
culture analysis also have an important economic impact,
with a 20% increase of total hospital costs for patients with
false positive blood cultures [25, 26]. Economic analyses
estimate the costs related to a single false positive blood
culture can be between $6878 and $7502 per case [24,
27]. In 2012, the American Board of Internal Medicine
introduced the Choosing Wisely campaign, which aimed
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to reduce medical waste and the overuse of blood cultures
by setting clear guidelines for the use of blood cultures.
Studies assessing risk factors for bacteraemia have led to
the development of multiple stratification systems without
consensus [28].

State of the art

Specialised prediction models can help make clinical
decisions. The goal is to provide patient risk stratification
to support tailored clinical decision-making. Clinical
prediction models use variables selected because they are
thought to be associated (either negatively or positively)
with the outcome of interest [29]. On the other hand, risk
prediction models can be used to estimate the probability of
either having (diagnostic model) or developing a particular
disease or outcome (prognostic model) [30].

Regarding prediction models for bacteraemia, a physi-
cian’s suspicion of bacteraemia lacks sensitivity, specificity,
or predictive values to be clinically useful. Some exam-
ples of clinical prediction models have been developed with
bacteraemia related to pneumonia [31, 32], skin infections
[33], and community-acquired bacteraemias [34]. Unlike
ours, they all are focused on specific infections, which
applies to any source of intra- or extra-hospital bacteraemia.
In addition, none of them uses ML techniques, but rather
methodologies ranging from multivariable analysis to iden-
tify significant predictors for bacteraemia [31], stepwise
logistic regression, or multiple mutually exclusive stepwise
logistic regression.

To the best of our knowledge, there is no application
of ML techniques to create diagnostic bacteraemia models.
Nevertheless, ML has had a successful history in biomedicine
with applications in almost all the facets of medicine [35]:
neural networks for breast cancer diagnosis [36], bladder
cancer [37] or colorectal cancer [38], ensemble classifiers in
bioinformatics [39], deep residual networks for carcinoma
subtype identification [40], Tree-Lasso logistic regression
[41], Bayesian Networks [42] for the prediction of the causa-
tive pathogen in children with osteomyelitis or decision
trees [43] to cite just a few recent examples. Regarding clas-
sifiers, recently they have been used for cancer diagnosis
using K-Nearest Neighbours (KNN) [44], drug identifica-
tion using Support Vector Machine (SVM) [45] or predict-
ing risk of disease using Random Forest (RF) [46], again to
cite some illustrative examples in a myriad of papers.

Working hypothesis
For the aforementioned reasons, it would be interesting to
predict which patients suffer from this pathology before

deciding on blood sample extraction, and if the physician
has decided to obtain blood cultures, it would be of interest
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to predict which patients will suffer true bacteraemia
without waiting for up to 6 days for the definitive results.
There are no useful clinical, analytical or epidemiological
studies that allow physicians to predict bacteraemia at the
patient’s initial assessment.

Hence, our work’s main objective is to implement ML
techniques on a set of patient data from electronic hospital
records to predict the appearance of bacteraemia, thus
eliminating the wait for the results of blood cultures and
anticipating the application of therapeutic treatments. Three
ML techniques have been used: SVM, RF and KNN. The
potential of these models in terms of PPPM/3PM is that used
in conjunction with clinical judgement, they can be useful
in the decision-making process regarding blood culture
collection, clinical monitoring and empirical antimicrobial
therapy. This work could provide two benefits: first, the
possibility of starting the personalised patient’s treatment
earlier; second, the number of blood cultures would be
reduced since they would only be prescribed in cases where
the techniques’ predictions did not have high reliability.

The rest of the paper is structured as follows. Section
“Materials and methods” is devoted to introducing the mate-
rial and methods of this study. Next, Section “Data analysis”
presents the data analysis, Section “Discussion of the results”
discusses the findings, and, finally, Section “Conclusions
and recommendations in the framework of 3P medicine”
summarises the conclusions and presents the recommenda-
tions in the framework of 3P medicine.

Materials and methods
Subject database

The database is provided by the Hospital Universitario de
Fuenlabrada, Madrid, Spain, a 350-bed hospital with the
following services: general surgery, urology, orthopaedic
surgery, gynaecology and obstetrics, paediatrics, intensive
care units (ICUs), haematology-oncology, internal medicine
and cardiology. The database was gathered from 2005
to 2015, and it consists of 4357 anonymous patient
records, a.k.a. instances, containing 117 features per patient,
49.3% female with age 65.1 £+ 19.7, and 56.1% male
with age 62.7420.2. Each instance contains demographic
and medical data (medical history, clinical analysis,
comorbidities, etc.) and the result of the blood culture, the
feature to be predicted, which can take one of two values:
bacteraemia and no bacteraemia. The database contains
2123 bacteraemia (51.3%), which includes aerobic, strict
anaerobic and facultative anaerobic bacteria, and 2234 no
bacteraemia (48.7%), including 1844 contaminations.The
final classification of true bacteraemia was done in
prospective time by an infectious disease physician, using
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all the previous data, including microbiological, clinical and
analytical data.

Forty-seven out of the 117 features were discarded from
the database because they are derived from other features,
irrelevant to the study, or useful after the blood culture was
identified.

Two datasets were created from the database. The
first dataset, called pre_culture, only uses the features
known previously to the blood culture, i.e. the ML
techniques only use the 65 features available previous to
the culture to predict the bacteraemia, having discarded
the features that hold the suspected source of infection.
The second dataset, called mid-culture, uses the data
available when the concentration of CO; starts rising. Note
that, as stated in “Introduction”, an increase of CO; could
be either due to a true bacteraemia or a contamination
of the blood sample during extraction, so the increase of
CO» does not necessarily mean bacteraemia. In this sense,
contamination has the same value as no bacteraemia. The
number of features in this dataset is 69: the 65 features
in pre-culture plus four new ones: the time to COy
detection, the type of media with bacterial growth, either
aerobic or anaerobic and the first vial where the growth is
detected (see “Appendix A: Features in the study” for an
enumeration of the features under study).

Data preprocessing
Categorical features

Both datasets contain a set of patient instances, P;, so
that every instance comprises the medical (microbiological,
clinical and analytical) and demographic data of one patient.
P; is the concatenation of a feature vector, f;, and the
classification—predicted—variable, y;, thatis P; = (f;, y;).
f; defined on a feature space, IF, of dimension L, F =
F! x F? x ... x FL so that each F' is the set of values
of a medical or demographic feature of the patient, i.e.
age, fever, comorbidities, etc., and y; € {—1, 1} is the
result of the blood culture, either ‘1’ when the patient has
bacteraemia or ‘—1’ when he or she does not. Therefore,
f; = (fll e Fl, fi2 € F2,...,fiL IS FL) and the datasets
are {P; = (f;, y;) | f; € F,y; € {—1, 1}}.

SVM and KNN require a definition of distance on F.
This requirement imposes the categorical features to be
translated into numerical values. However, the mapping
of categorical values onto numerical ones without detailed
supervision will bias the ML algorithm because the
numerical translation will define proximity relationships
that are not present in the categorical feature. The most
used codification to avoid these problems is the one-hot
encoder. It loops through the dataset and separates each
feature of a given categorical type into subcategories; that is,

for each category in a feature, the technique generates a new
feature with only two values: true or false. Consequently,
this technique defines a new feature space, ' with a number
of features L’. On [, the distance metric, d : /' x F/ — R,
can be defined now. The Euclidean distance, given by Eq. 1,
was chosen.

d(Pi, Pj) = ey

Missing data

The method to handle missing data depends on the nature of
the data missingness. Three categories have been defined to
classify missingness [47]: (i) missing completely at random
(MCAR) in which the missingness is random, unrelated
to the outcomes and does not contain valid information
for analysis; (ii) missing at random (MAR) when the
missingness depends on the outcomes observed; and (iii)
missing not at random (MNAR) when missingness depends
on unobserved measurements.

To check the missingness of the data, we define, one
feature at a time, two classes, missing and non-missing data,
a RF classifier is built upon this feature, and we evaluate
if the missing data provides a good classification using the
RF classifier [48]. If RF accuracy is high for this feature, a
MAR behaviour is concluded for the feature and discard it
from the dataset.

Three different approaches are evaluated to handle the
high number of missing data [49]. The complete case data
approach removes the instances with missing data to obtain
a new dataset without misses; that is, all instances have valid
data in all features. This approach presents two handicaps:
(i) its usage would not allow a new instance with missing
data to be evaluated once the ML model is trained and
tested, and (ii) it significantly reduces the dataset.

An alternative approach that attempts to keep a large ratio
of complete instances in the dataset is also evaluated [50].
This method ranks the features in decreasing order in the
percentage of missing data and then iteratively removes the
features following the ranking order. In each iteration, the
number of complete instances is calculated and the total
quantity of data in the complete instances, i.e. the number
of complete instances times the number of instances. As
the number of features decreases, the total amount of
non-missing data in the complete instances increases to a
maximum, beyond which the quantity of non-missing data
in complete instances decreases. This maximum determines
the number of features that most contribute to complete case
instances, and it is the best option.

Both previously mentioned methods operate under the
MCAR supposition, a supposition that we will prove to be
false for one feature.
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Thirdly, the separate class method [48] is evaluated to
handle missing data. The separate class method defines a
new category to represent the missing data of a feature so
that each feature has its own category to represent its misses.
In the case of numeric type features, the missing data receive
a value that is outside the range of the feature’s values. In
this way, the required separation between the missing data
and the correct values is created.

Each approach creates a different dataset size with a
different number of patient samples and a different number
of features per patient. Hence, our comparison selects the
best approach in terms of the best training of the ML model.
That is the approach that has the best trade-off between the
number of samples and the features so that the RF provides
the most accurate prediction.

Renormalisation

We renormalise the numerical features so that every feature’s
different values are separated based on the same scale, which
is especially relevant for those techniques such as SVM
or KNN that use the notion of distance in a metric space.
Hence, all numerical data are rescaled to values in [0, 1].
This renormalisation is also applied on the separate classes
associated to the missing data, and we assign them the value
—0.5 since there are no negative values in any dataset.

Machine learning techniques

Three supervised ML classifiers are used: SVM, RF
and KNN. We devote the next three sections to briefly
presenting the ML techniques.

Support vector machine

SVM is a supervised ML technique [51, 52]. In binary clas-
sification problems over a dataset of instances of dimension
L + 1, this technique finds an L-dimensional hyperplane
that separates the two different classes, maximising the dis-
tance of the closest instances in the dataset -called support
vectors- to the hyperplane. The distance from the support
vectors to the hyperplane is called margin. In other words,
SVM finds the hyperplane that maximises the margin of
the support vectors. So, as stated above, it requires a def-
inition of distance on the dataset’s features to evaluate the
separation between the instances and the hyperplane. The
hyperplane is defined by its normal vector, w, and the hyper-
plane equation is w” -x+b = 0 with w” being the transpose
of the normal vector and ﬁ the offset of the hyper-
plane from the origin. Equation 2 defines the optimisation
problem.

min ||lw| subjectto ;- (wT -xi+b)>1 2)

@ Springer

There are two types of SVM classifiers: linear and
nonlinear. In the former, SVM operates on the raw data to
find the hyperplane under the supposition that the data are
linearly separable, whereas the latter transforms the original
instances by adding extra similarity features to try to create
a linearly separable dataset under the supposition that the
original one was not. The most used similarity function is
the Gaussian Radial Basis Function [53]:

¢ (xi, p) = e‘V'llxi—p”Z .,

where the set of points p determines the landscape used to
calculate the new features, and y € [0, 1] is a regularisation
hyperparameter used to control the over- and underfitting of
the SVM model.

There are also two types of SVM models depending
on whether a few instances of one class are allowed to
be located within the margin region or even in the region
assigned to the other class. If no instance of one class can be
within the margin region or the region assigned to the other
class, then a hard margin classification is defined. In any
other case, it is a soft margin classification. The soft margin
classification allows the misclassification of some instances
but provides higher margins in the classification whereas
hard margin classification typically provides a clean but
narrower margin. In the former case, the SVM has better
generalisation capabilities, that is, lower overfitting. SVM
implementations provide a hyperparameter to control the
softness of the margin, C. The higher the C, the stricter the
classification.

Random forest

RF is a supervised ML technique used in both classification
and regression [54]. In classification problems, it creates
multiple decision trees, each one providing its classification
output, and combines the results of all the trees using an
aggregation function to provide the classification of the
given instance. The potential of this technique is based on
the aggregation of weak learners in order to provide high-
accuracy predictions. Nevertheless, high accuracy requires
the technique to satisfy certain requirements, the first of
which is the independence of the individual trees.

In this work, (i) the trees are binary and provide output
that can take one of two values, {—1, 1}; (ii) the RF
prediction is an aggregation function, i.e. the majority vote,
of individual tree predictions; and (iii) independence is
achieved by using different subsets of instances to train
every individual tree. The sampling of the subsets can
be performed using two different schemas: sampling with
replacement, called bagging, or without replacement, called
pasting. Thus, each individual tree has a larger bias than
if it were trained using the complete training set, but
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the aggregation of trees provides a lower bias-aggregated
classification.

The form of a single classification tree is determined
by the order in which the features are used to create that
tree; that is, in the same set of instances, a different order
in the selection of the features used to create the tree
generates different trees. One of the most used algorithms to
train decision trees is the classification and regression tree
(CART). CART splits the training subset into two subsets
using a single feature and a threshold for such feature,
searching for the tuple feature/threshold that provides the
purest subsets. Equation 4 presents the fitness metric used
by CART to measure the purity of a node’s classification
where m is the total number of instances being classified in
the node, myef; and myigh are the numbers of instances in the
left and right splits, respectively, and G is the metric that
measures the impurity of the splits. The lower the value of
J, the purer the classification.

Meft Myright
' Gright “4)

Two impurity metrics are commonly used [55]: the Gini
impurity, Eq. 5, and the entropy-based impurity, Eq. 6.

J =

- Gleft +

2
G=1-3p 5)
c=1
2
E=- Z pelog(pe) (6)

c=1
where p. is the ratio of instances of class ¢ in the set of
instances in the node. Each node only has instances of two
classes: bacteraemia or no bacteraemia. For that reason, the
sum upper limit is 2.

Finally, the decision tree can be regularised with the
following hyperparameter [56]: the maximum depth of the
trees, the minimum number of samples in a node to be
split, the minimum number of samples of a leaf node, the
maximum number of leaf nodes and the maximum number
of features to be tested in order to split a node.

K-Nearest neighbours

We use the supervised flavour of this simple nonparametric
ML technique to classify the binary-class instances [57].
Given a new feature vector, fj, it assigns its class, y;, by
finding the k of nearest instances in the dataset feature
space and combining their classifications (i.e. averaging or
voting). So, like SVM, this technique requires the definition
of distance in Eq. 1. However, this technique does not need
a training phase, and it achieves a very high capacity: the
larger the training set, the higher the capacity.

The selection of the value for k should follow these rules:
(i) the value should be a prime number to avoid ties; (ii) it
should be less than the total number of reference instances

in an instance class; and (iii) its value should be large
enough to avoid false classification caused by outliers. The
actual value of k is found using a grid search on a range
of reasonable values. The technique returns the majority of
the k nearest neighbours that share the same class. The fine-
tuning of this hyperparameter requires it to be searched for
using a heuristic.

Validation

In our experiments, the 10-fold cross-validation approach
is followed so that the dataset is divided into ten subsets
and each subset is used as a validation set whereas the
remaining nine subsets are used for training a model. This
procedure is repeated for every subset, so ten models are
obtained. The performance of the ML technique is measured
as the average performance of the ten models obtained with
different training sets and validated on different sets.

Data analysis

The analysis was performed in Python 3.7 using sklearn
0.23 for model inference and ELIS 0.10.1 for the
permutation importance method.

Data bias

First, we study any bias in the distribution of values in the
datasets. As stated at the beginning of this section, datasets
contain a balanced percentage of values in the predicted
variable: bacteraemia (51.3%) and no bacteraemia (48.7%);
the latter includes both actual negative bacteraemias and
contaminated cultures.

0.9 1

081 1

0.7f 1

Accuracy

Features

Fig. 1 Accuracy of the individual features when only two classes
(missing and non-missing) are used to predict bacteraemia
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Similarly, we check whether missing data in F are corre-
lated with the predicted variable. That is, if the MCAR assump-
tion holds for the data. Figure 1 presents the classification
accuracy for all the features, one feature at a time, in the dataset.

The missing class of the suspected source (the peak in the
histogram with an accuracy of 82.6%) is a good predictor
of no bacteraemia. In contrast, the remaining features have
a slight bias in the prediction. The ratio of missing data
for this feature is around 40%, as Fig. 2 illustrates. The
feature’s importance, with such a high ratio of missing
data, is suspicious and indicates a correlation between the
missing-data class and the variable predicted. Hence, 72.4%
of the instances with a suspected source, either ‘unknown’
or any organ in the body, are bacteraemia. On the contrary,
only 7.2% of the missing suspected sources are bacteraemia.

These figures state a missing at random (MAR) [47]
behaviour for this feature. During database generation,
the physician, who is typically good at predicting the
focus of infection but not so good at predicting which of
them are accompanied by bacteraemia, only includes the
suspected source in the database once the bacteraemia has
been detected. In other words, the physician decides that
writing down the source of infection is of no interest for
non-bacteraemia cases. This feature is removed from both
datasets.

Missing data

This section presents the number and distribution of missing
data per feature. Figure 2 illustrates the percentage of missing
values for the features in F. The percentage is above 70% for
the worst feature (number of days in ICU previous to culture)
and between 40 and 37% for the following three features:
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Fig. 2 Percentage of missing values for all the features in F. The

features are sorted on x-axis as in Table 5. The annotations in the graph
mark the inflection points, and they facilitate cross-searching in Table 5
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the suspected origin of the bacteraemia previous to culture,
the results of PCR testing and the source of bacteraemia in
the last hospital department. Following them, there are 50
features with missing-data percentages from 30 to 20%.

We evaluate three different approaches to handle the high
number of missing data [49]. The complete case data approach
removes the instances with missing data to obtain a new
dataset without misses. If we apply this approach on our origi-
nal dataset, then the new dataset only contains 476 complete
instances out of 4357. Hence, this approach is inappropriate
due to the large volume of data lost. Nevertheless, we evalu-
ated its achievements to classify the bacteraemias accurately.

The second approach removes the features with a higher
number of missing data. Figure 3 illustrates the evolution
of the total volume of data in all complete instances versus
the number of complete instances. In our case, the optimal
number is 51 features with 2760 instances, totalling 140,760
non-missing values in the dataset. As in the previous
approach, we think this is also inappropriate because (i) it
removes critical features from datasets such as, for example,
the suspected medical source of the patient’s infection, and
(i1) it removes 33.8% of the features and 44.6% of the
number of instances. Nevertheless, we also evaluated its
achievements to classify the bacteraemias accurately.

Thirdly, the separate class method [48] was evaluated to
handle missing data. The separate class method defines a
new category to represent the missing data of a feature so
that each feature has its own category to represent its misses.
In the case of numeric type features, the missing data receive
a value that is outside the range of the feature’s values. In
this way, the required separation between the missing data
and the correct values is created.

The performance of the three missing-data methods was
compared using RF as the testbench. In these comparisons, the
renormalised separate class method obtains the best perfor-
mance, and for that reason, it is the method of choice in this
work.
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Fig. 3 Number of features versus number of non-missing values in
dataset
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Table 1 Accuracy, specificity, sensitivity, positive predictive value (PPV), negative predictive value (NPV) and area under the curve (AUC) of the

models
ML Model Accuracy (%) Sensitivity Specificity PPV NPV AUC
Training Testing (%) (%) (%) (%)

SVM pre_culture 76.9+1.7 75.9 80.7 71.4 72.8 79.6 0.85
mid_culture 83.0+1.4 80.5 81.3 79.7 80.5 80.5 0.88

RF pre_culture 79.5£1.4 78.2 86.1 70.7 73.6 84.3 0.86
mid_culture 85.6+1.4 85.9 87.4 84.4 85.2 86.6 0.93

KNN pre_culture 72.8+2.3 76.5 89.6 65.2 69.0 87.9 0.85
mid_culture 78.0£2.7 78.4 87.4 69.9 73.6 85.2 0.88

For the sake of saving space, the standard deviation is presented in compact notation

Prediction results

The three ML techniques have been evaluated using
the same procedure: (i) the dataset is split into 80/20
training/testing sets, (ii) grid-search 10-fold cross-validation
is run on training data for the ML techniques to find their
best hyperparameters, and (iii) the best hyperparameters are
applied on the testing split of the dataset.

SVM

The hyperparameters of the SVM model are swept in the
ranges C = {0.1,0.2,...,1,2,...,10,20,...,100} and
y = {& 5,01,02,.. .1} with o being the data

variance, by using the Gaussian Radial Basis Function.

Table 2 Feature importance for SVM

The hyperparameters for the best pre_culture SVM
model are y = % and C =9, which implies that the instances
are separable. Table 1 summarises key metrics to evaluate
the predictive capacity of the model: accuracy, sensitivity,
specificity, positive predictive value (PPV) and negative
predictive value (NPV). The average accuracies of the
best pre-culture SVM model are 76.9+1.7% in the
training phase and 75.9% in the testing phase. Accuracy
in the testing phase is only 1.0% lower, proving the good
generalisation capabilities of the model. This model has a
sensitivity of 80.7% with a specificity of 71.4%, PPV of
72.8% and NPV of 79.6%.

The features’ importance has been evaluated using
importance sampling, and the left two columns in Table 2
present the top 10 most important features of this SVM

pre_culture

mid_culture

Importance Feature Feature Importance
0.0408(254) 41.ChrRes 57.VialAnae 0.1495(206)
0.0381(228) 1.IcuDay 58.VialAer 0.0931(202)
0.0367(462) 7.CatTyp 17.CO, 0.0289(185)
0.0229(050) 59.PolMic 34.UriSed 0.0234(155)
0.0220(273) 51.Dept 12.Fever 0.0211(168)
0.0220(335) 26.FevSym 14.Consc 0.0165(079)
0.0216(287) 34.UriSed 47.LocSyn 0.0147(160)
0.0179(204) 63.Anaero 24 ResMani 0.0133(045)
0.0119(191) 12.Fever 7.CatTyp 0.0128(085)
0.0106(155) 38.ParDrug 41.ChrRes 0.0101(122)

The left-hand side of the table ranks the top 10 features for the pre_culture model, whereas the right-hand side ranks the top 10 features for
the mid_culture model. In blue, the new features included in the mid-culture model. For the sake of saving space, the standard deviation
is presented in compact notation, that is, 0.4514(540) = 0.4514£0.0540. The number close to the feature name refers to the Id. in Table 5 that

describes the feature
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model. Among them, the top 3 to predict bacteraemia are
a chronic respiratory disease, the number of days in ICU
before blood extraction and the presence of catheters.

The mid_culture SVM model was designed using
the same procedure. In this case, the hyperparameters
of the best model are y = % and C = 8, which
implies that the instances are slightly more separable than
in the pre-culture dataset. The average accuracy of
the training phase is 83.0£1.4% and the testing phase
achieves an overall accuracy of 80.5%, sensitivity of 81.3%,
specificity of 79.7%, PPV of 80.5% and NPV of 80.5%.
The usage of intermediate results of the blood culture
increases all the metrics from 5 to 8%. Table 2 illustrates
the most relevant features to predict bacteraemia using the

Table 3 Feature importance for RF

importance sampling method. According to this table, three
out of the four new features rank in the top 5 most relevant
features: growth in anaerobic and aerobic vials, and the
number of days until CO, detection.

Figure 4 presents the ROC of the three ML techniques
evaluated for the two datasets. The mid_culture SVM
ROC has an area under the curve (AUC) of 0.88, performing
better than the pre-culture SVM model, which has an
AUC of 0.85.

RF

We have not constrained either the maximum depth, the
minimum number of samples in a node or any other of the
hyperparameters stated in “Random forest”, and we use the
Gini impurity metric. The only hyperparameter of the model
evaluated in the grid-search exploration is the number of
trees, which is found in {1, 2, ..., 90}.

The best pre_culture RF model averages an accuracy
of 79.5£1.4% in the grid-search 10-fold cross-validation
with 86 trees, and an accuracy of 78.2% during the testing
phase. As for SVM models, the variation in accuracy
refutes the overfitting of the model. Table 1 summarises the
key metrics that clinical practitioners use to evaluate the
models’ predictive capacity. The features’ importance has
been evaluated using the permutation importance algorithm,
and Table 3 presents the most critical features of the model.

The mid_culture RF model uses 68 trees and obtains
an average accuracy of 85.641.4% in the training phase and
reduces the size of the RF model by 34.9%. This model
performs better than the pre-culture one, improving
all the predictive metrics: it increases accuracy 6.1% in the

pre_culture

mid_culture

Importance Feature Feature Importance
0.0434(214) 51.Dept. 17.CO, 0.1530(035)
0.0253(169) 7.CatTyp 57.VialAnae 0.0197(013)
0.0148(011) 1.IcuDay 19. lerBot 0.0109(017)
0.0094(011) 26.FevSym 58.VialAer 0.0061(010)
0.0074(008) 47.LocSym 67.Age 0.0028(006)
0.0051(007) 62.Month 3.CPR 0.0026(005)
0.0043(005) 48.Platelets 47.LocSyn 0.0024(005)
0.0041(007) 12.Fever 45.Leuko 0.0024(005)
0.0040(008) 34.UriSed 12 Fever 0.0020(005)
0.0037(006) 52.DayHosp 61.Day 0.0020(005)

The left-hand side of the table ranks the top 10 features for the pre_culture model whereas the right-hand side ranks the top 10 features for
the mid_culture model. In blue, the new features included in the mid-culture model. The number close to the feature name refers to the

Id. in Table 5 that describes the feature
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training phase -a value similar to that observed in SVM
models- and 7.7% in the testing phase -an improvement higher
than that observed in the SVM models-, sensitivity by 1.3%,
specificity by 13.7%, PPV by 12.6% and NPV by 2.3%.
Table 3 illustrates the most critical features to predict
bacteraemia for this model. As for the SVM models, the
new features are ranked among the top ones. Hence, the
top-ranked feature is the number of days at CO, detection
followed by the positive in anaerobic vials, the first blood
culture vial with growth and the positive in aerobic vials.
Regarding the distribution of values in the rankings, the
two RF rankings are more unbalanced than the SVM ones,
with an outstanding feature in both cases, which doubles
the importance of the second feature in the pre-culture
model and which is 8x for the mid-culture model.

KNN

The only hyperparameter for this classifier is k which, in
this study, is found in {1, 2, ..., 20}.

The best pre_culture KNN model uses £k =15
neighbours, and the best mid_culture model uses
k = 9. Table 1 summarises the key metrics to evaluate
the predictive capacity of the KNN models. The best
pre-culture KNN model averages an accuracy of
76.5% during the testing phase. As in previous models,
the inclusion of mid-culture features improves the
KNN model’s performance, although less significantly
-only a 1.9% increment in testing accuracy- and it even
has a slight decrease of 2.2% in sensitivity and of 2.7%
in NPV. Moreover, similar to RF models, the inclusion of
new features reduces the size of the model, in this case the
number of relevant neighbours.

Table 4 Feature importance for KNN

Table 4 presents the top 10 most important features in the
KNN model according to importance sampling criteria.

Finally, Fig. 4 graphs the ROC of the two KNN models
with AUCs of 0.85 and 0.88. Hence, this technique has a
predictive power lower than the previous ones.

Discussion of the results
Data interpretation

Typically, medical records contain missing data that can
bias the conclusions of the ML techniques. The separate
class method provides a mechanism to handle the missing
data, preserving the number of patients in the study and
providing good metrics in the classifiers. We did not
evaluate imputation methods based on ML algorithms, such
as KNN, to predict the missing values in the training data
because they can infer relationships among the features that
could distort the data structure [58] or such as the more
efficient imputation method missForest [59] because this
iterative imputation method must be run with every single
new patient, which would increase the computational cost
of every new prediction when the system is in production.
The importance rankings of the three ML techniques
provide a significant ratio of common top features for
both datasets. Hence, for the pre-culture models, the
number of days in ICU before blood culture extraction, the
presence of catheters, fever and the presence of symptoms
related to the source of fever and the presence of urine
sediments are critical features of major importance. The
month of the blood culture appears for the pre-culture
KNN and RF models. Hence, both techniques detect

pre_culture

mid_culture

Importance Feature Feature Importance
0.0239(136) 12.Fever 57.VialAnae 0.0186(061)
0.0227(122) 34.UriSed 58.VialAer 0.0135(084)
0.0222(69) 47.LocSyn 19.1erVial 0.0122(061)
0.0213(59) 15.Vasopre 34.UriSed 0.0080(025)
0.0211(69) 26.FevSym 63.Anaero 0.0078(034)
0.0183(99) 7.CatTyp 15.Vasopre 0.0069(119)
0.0161(29) 30.Steroi 12.Fever 0.0067(084)
0.0147(102) 62.Month 7.CatTyp 0.0064(043)
0.0147(108) 70.0thCom 17.CO, 0.0044(080)
0.0144(97) 5.Coagul 1.IcuDay 0.0041(064)

The left-hand side of the table ranks the top 10 features for the pre_culture model whereas the right-hand side ranks the top 10 features for
the mid_culture model. In blue, the new features included in the mid-culture model
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seasonality in the bacteraemia, although it has a low
importance in both techniques.

Regarding the models for the mid_culture dataset,
the new features in this dataset are the most important for
an accurate prediction of the bacteraemia, displacing the
top features of the pre_culture model. Indeed, their
importance in the model exceeds the importance of all
the features in the pre_culture model. In particular,
the mid_culture RF model ranks the four new features
among the top of the ranking, whereas the other two
techniques only include three out of the four new features.

This consistency highlights that prediction capability
is a characteristic intrinsically related to the data already
available in most of the hospital health records.

The feature importance for the pre_culture SVM and
KNN models is balanced. The top 3 feature importances are
within a range of 10.0% of the most important one, and then
the importance is reduced softly for the remaining seven
features. The high number of features taken into account
for the models to generate a prediction justifies physicians’
difficulty in generating accurate predictions: they cannot
handle such a large number of variables. In particular, the
two KNN rankings are the most balanced of the three ML
techniques. The first five features in the pre-culture
model and the first three features in the mid-culture
model have very similar values, although the dispersion
of accuracy in the training stage doubles the dispersion
values of the other ML techniques, which justifies why the
KNN technique produces less predictable accuracy for the
model.

On the other hand, the feature importance of the
pre_culture RF model is less balanced, with a critical
feature then two less relevant features, and the remainder
are mostly irrelevant. This behaviour is exacerbated in the
mid-culture model in which new features dominate
the classification. For this reason, in the presence of these
features, the physician could make a prediction based on
a lower number of features. Nevertheless, the features, as
stated above, coincide in almost half of the cases.

The test accuracy of the ML techniques on the
pre_culture dataset ranges between 75.9% for SVM and
78.2% for RF. These values are increased by around 9.8%
when using the new features in the mid-culture dataset,
with mid-culture RF model obtaining an accuracy of
85.9% . Hence, the accuracy of ML techniques is 8 x human
accuracy (from 3.6 to 10% according to [22]).

Regarding the key metrics to evaluate the predictive
capacity of the model, their values range from 80.7 to
89.6% for sensitivity, 65.2 to 84.4% in specificity, 69.0
to 85.2% for PPV and 79.6 to 86.6% for NPV, with
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the mid-culture RF model outperforming the other
models and achieving an average accuracy of 85.9+1.4%,
sensitivity 87.4%, specificity 84.4%, PPV 85.2%, NPV
86.6% and an outstanding AUC of 0.93 with improvements
of 6.7% with regard to the accuracy of the second best
technique, SVM, 6.1% in sensitivity, 4.7% in specificity,
4.7% in PPV and 6.1% in NPV.

AUC is above 0.85 for all models, and the presence of
the new features increases the AUC from 3.5 to 8.1% with
respect to the pre_culture AUCs. A predictive model in
the medical practice must have an AUC greater than 0.7,
and a good predictive model has AUC> 0.8. The previous
results in the literature using classical modelling techniques
in specific types of bacteraemia are as follows: pneumonia
[32] with AUC 0.79, skin-related [33] with AUC 0.71 or
any type [34] with AUC 0.77. Therefore, the ML values
of AUC, sensitivity, specificity, predictive positive and
negative values exceed the results described in the literature.

Previous results indicate that bacteraemia prediction can
be achieved using already available hospital records with
better figures of merit than the physicians’ predictions.
These predictions can help physicians make an appropriate
diagnosis and prevent complications, where, in this context,
‘appropriate’ means both in time, i.e. as soon as possible,
and in type, with the more specific and personalised
antibiotics and treatment for each patient.

Interplay between COVID-19 and bacteraemia

Nowadays, we are experiencing the COVID-19 pandemic,
so it is necessary to refer to the possible association
between COVID-19 and bacteraemia and the utility of
ML techniques in this kind of patient. In this context,
bacteraemia is rare for COVID-19 patients, which supports
the judicious use of blood cultures in the absence of
compelling evidence for bacterial co-infection [60]. In some
reports, bacteraemia with S. aureus is associated with high
mortality rates in patients hospitalised with COVID-19.
S. aureus infections are a known complication of other
viral pandemics, such as the Spanish flu in 1918-1919 and
the HIN1 influenza pandemic in 2009-2010, suggesting
that the interaction of S. aureus with SARS CoV-2 is
similar to that in influenza [61]. The proposed mechanisms
of viral-induced bacterial co-infections include the viral
modification of airway structures, as well as the initiation of
immune-suppressive responses [62]. A similar mechanism
has been described in another report of oral infections where
the authors suggest that poor oral hygiene and periodontal
disease could produce the aggravation of COVID-19
[63].
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Secondary bacteraemia has been developed in 37%
(27/73) of patients with acute respiratory distress syndrome
[64]. However, it has not been defined whether bacteraemias
were secondary to pneumonia or typical hospital-acquired
infection.

In this sense, ML techniques could help physicians
predict bacteraemia as a secondary infection in COVID-19
patients, mostly in critical COVID-19 patients, who suffer
these secondary infections more frequently [65].

Conclusions and recommendations
in the framework of 3P medicine

Conclusions

The three ML supervised classifiers create accurate
predictive models of the blood culture outcome using
hospital electronic health records, i.e. data previous to
blood extraction and data measured in the first hours/days
of the blood culture. The concordance in the results of the
three classifiers increases the power of the conclusions and
confirms the viability of ML techniques as a key technology
for applying the PPPM/3PM principles to improving
patients’ survival rates significantly and providing more
cost-effective management of the disease.

Expert recommendations

Bacteraemia is an entity with high morbidity and mortality.
Its early diagnosis and an appropriate early antibiotic
treatment are critical. For these reasons, in this kind of
pathology, it is essential to combine predictive techniques
and personalised treatments in which ML techniques can
help physicians diagnose, reduce time to treatment and
manage bacteraemia. ML techniques could help determine
preventive actions to avoid this entity, and secondly, to
optimise the cost of the disease. If physicians could predict
bacteraemia, then they could avoid the intervention to obtain
blood samples, the use of four to six bottles for blood
culture per patient, the time lapse devoted to the culture
and the procedures to identify possible contaminant micro-
organisms with their associated cost in time and money.
Regarding the selection of antibiotic treatment and its
duration, both could change depending on whether the
patient is suffering from bacteraemia or not. Usually,
diseases associated with bacteraemia need a longer duration
of antibiotic treatments. This duration could be optimised
if physicians could predict whether a patient has or does
not have bacteraemia. If we could shorten the duration of

antibiotic treatment, we would spend less money on each
patient and avoid secondary effects associated with longer
antibiotic treatment, such as antibiotic resistance [66].

Therefore, continuous data extraction from electronic
medical records could help physicians identify bacteraemia
and the progression to a severe disease earlier and
provide timely interventions, such as appropriate antibiotic
treatment, to reduce mortality and morbidity [67, 68].

The adoption of ML technologies in the framework of
3P medicine depends entirely on the accuracy of their
models, which is related to the availability of datasets with
low missing value rates and no bias in the missing values
because of the physician’s a priori interpretation of the
data. Patient databases play a central role in 3P medicine
[1], and it is critical to ensure their completeness and
avoid depending on the physician’s discretion at the time of
completing the database records. This requirement should
be included in database design specifications and the design
of database user interfaces.

The application of ML techniques also depends on the
availability of structured datasets. Most hospital records
store health information according to the European Com-
mission’s Recommendation on Electronic Health Records
[69], but data would have to be stored in a format suitable
for the automatic manipulation of the features, avoiding as
much as possible those features expressed in natural lan-
guage that hinder the extraction of structured information.

Predictive models play a key role in bolstering decision
systems, and ML techniques have outstanding potential
to create models with an excellent level of accuracy
[70]. They have been used to identify useful correlations
between biometric, genetic and environmental data with
the potential risks and benefits of certain therapeutic
choices [71]. They also have great potential to exceed
the performance of physicians’ heuristics, reducing lags
in diagnosis and treatment costs when their application is
extended from the genomic and biometric data to the clinical
and demographic data in the patient’s records.

Our future work will focus on studying non-structured
features (medical texts described in natural language), also
included in the database, that could improve the model’s
accuracy. Additionally, we will validate these findings using
independently collected databases and, subsequently, under
regulatory approval, we will develop an app for mobile
devices that enables the translation of these results to the
hospital practice by providing a prediction to the physician
at the bedside based on the latest available patient records.

These ideas are directed to improve predictive and
personalised treatment in a disease as bacteraemia that
currently continues producing a high level of mortality.
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Appendix A: Features in the study

Table 5 presents the description of the features used in this
work.

Table 5 Features in the study sorted according to the number of
missing values

# Description

1 Days in Intensive Care Unit
before blood culture extraction

2 Suspected source of bacteraemia previous to blood culture
3 C-reactive protein level

4 Days after last catheter was placed

5 Altered coagulation values

6 Heart rate

7 Catheter type

8  Urea(mgdl—!)

9 Diastolic blood pressure

10 Systolic blood pressure

11 Hypotension

12 Fever. Armpit temperature>38 °C at the time of blood extraction
13 Armpit temperature at blood extraction in Emergency Room
14 Consciousness level at the moment of bacteraemia
15  Use of vasopressor agents at the time of bacteraemia
16  Cardiorespiratory resucitation at the moment of bacteraemia
17  Days to CO; detection

18  Days with fever before blood culture is obtained

19  First blood culture vial with growth

20  Genitourinary manipulations

21 Vascular manipulations

22 Thrombocytopenia

23 Leukocytosis

24 Respiratory manipulations

25  Digestive manipulations

26  Symptoms related to the source of fever

27  Glycemia

28  Neutropenia

29  Previous surgery

30  Steroids

31  Immunosuppressants

32 Drug addiction

33 Urine sediment

34  Blood creatinine (mg d1=!)

35  Comorbidites by Weinstein classification

36  Alcoholism

37  Renal insufficiency

38 Intravenous drug addiction

39  Cardiopathy

40  Diabetes

41  Chronic respiratory disease

42 Hepatopathy
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Table5 (continued)

# Description

43 Active neoplasia

44 Hospitalization longer than 48h in last 12 months
45 Leukocytes (™1

46 Polymorphonuclear leukocytes (%)

47 Syndromes related to the source of fever

48 Platelets (17 1)

49 Hospitalization in the last 30 days

50 Hemoglobin (gdl~1)

51 Specialty where bacteraemia is suspected

52 Days in Hospital before blood extraction

53 Antibiotics

54 Systematic urine analysis

55 Comorbidities

56 Number of blood culture vials obtained

57 Growth at least in anaerobic environments

58 Growth at least in aerobic environments

59 Polymicrobial bacteraemia microorganisms

60 Growth medium of true bacteraemias

61 Day of blood extraction

62 Month of blood extraction

63 Anaerobic bacteraemias versus other bacteraemias
64 Fungal bacteraemias versus other bacteraemias
65 Anaerobic microorganisms

66 Polymicrobial origin bacteraemia

67 Age

68 Gender

69 Final classification of blood culture
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