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Abstract 

Background:  In dairy cattle, genomic selection has been implemented successfully for purebred populations, but, 
to date, genomic estimated breeding values (GEBV) for crossbred cows are rarely available, although they are valu-
able for rotational crossbreeding schemes that are promoted as efficient strategies. An attractive approach to provide 
GEBV for crossbreds is to use estimated marker effects from the genetic evaluation of purebreds. The effects of each 
marker allele in crossbreds can depend on the breed of origin of the allele (BOA), thus applying marker effects based 
on BOA could result in more accurate GEBV than applying only proportional contribution of the purebreds. Applica-
tion of BOA models in rotational crossbreeding requires methods for detecting BOA, but the existing methods have 
not been developed for rotational crossbreeding. Therefore, the aims of this study were to develop and test methods 
for detecting BOA in a rotational crossbreeding system, and to investigate methods for calculating GEBV for crossbred 
cows using estimated marker effects from purebreds.

Results:  For detecting BOA in crossbred cows from rotational crossbreeding for which pedigree is recorded, we 
developed the AllOr method based on the comparison of haplotypes in overlapping windows. To calculate the GEBV 
of crossbred cows, two models were compared: a BOA model where marker effects estimated from purebreds are 
combined based on the detected BOA; and a breed proportion model where marker effects are combined based 
on estimated breed proportions. The methods were tested on simulated data that mimic the first four generations 
of rotational crossbreeding between Holstein, Jersey and Red Dairy Cattle. The AllOr method detected BOA correctly 
for 99.6% of the marker alleles across the four crossbred generations. The reliability of GEBV was higher with the BOA 
model than with the breed proportion model for the four generations of crossbreeding, with the largest difference 
observed in the first generation.

Conclusions:  In rotational crossbreeding for which pedigree is recorded, BOA can be accurately detected using the 
AllOr method. Combining marker effects estimated from purebreds to predict the breeding value of crossbreds based 
on BOA is a promising approach to provide GEBV for crossbred dairy cows.
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Background
Crossbreeding is common practice in many livestock 
production systems, where production animals have 
parents from different breeds, lines or populations. 
Three-breed rotational crossbreeding systems have 
been recommended for dairy cattle [1, 2]. In rotational 

crossbreeding, crossbred cows with different breed 
combinations are present within the same herds and 
the crossbred cows are potential dams for the next gen-
eration. Thus, knowing the breeding values of cross-
bred cows is useful for selection. This contrasts with 
the situation in terminal crossbreeding, which is com-
mon in chicken and pig production, where production 
groups are typically uniform and the breeding value of 
crossbred animals is not of interest per se. Thus, pro-
viding genomic estimated breeding values (GEBV) of 
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crossbred cows will be valuable for within-herd selec-
tion and would give producers the possibility of using 
the benefits of both crossbreeding and GEBV of cows 
simultaneously.

The genomic evaluation of crossbred animals and 
across populations may lead to challenges that are not 
experienced when it is performed within uniform popu-
lations [3]. Genomic evaluations are based on the effects 
of genetic markers, which deviate between breeds and 
populations, partly because of differences in linkage dis-
equilibrium between the genetic markers and the quanti-
tative trait loci (QTL), which are generally smaller across 
breeds than within breeds [3, 4]. Thus, in the case of 
crossbred animals, the same marker allele may have a dif-
ferent effect according to the breed of origin of the allele 
(BOA) [4, 5].

For the pedigree-based genetic evaluation of cross-
bred animals, García-Cortés and Toro [6] presented a 
model where the breeding values of crossbred animals 
were divided into breed-specific and breed segregation 
terms. Strandén and Mäntysaari [7] proposed a random 
regression approximation of that model so that it could 
include genomic information. Makgahlela et al. [8] tested 
the model, without accounting for the breed segrega-
tion terms, for genomic prediction of the admixed Red 
Dairy Cattle (RDC) population. Their results indicated 
a slight increase in prediction accuracy compared to the 
use of a genomic model that did not take breed struc-
ture into account [8]. VanRaden et  al. [9] demonstrated 
that genomic predicted transmitting abilities of cross-
bred dairy cows could be calculated based on the same 
concept of partitioning the breeding value of crossbreds 
into breed-specific purebred terms. However, instead of 
using breed proportions based on the registered pedigree 
as done by Makgahlela et al. [8], VanRaden et al. [9] esti-
mated base breed representation (BBR) from genotypes 
of the crossbred and used it as a measure of the propor-
tion of genome originating from each breed. These pro-
portions were used as weights for combining genomic 
predicted transmitting abilities based on results from 
within-breed genomic evaluations. The large refer-
ence populations that have been established for pure-
bred genomic evaluations provide accurate estimates of 
marker effects, and thus they could be used to calculate 
GEBV of crossbred cows. The method presented in Van-
Raden et al. [9] is based on the approximation that mark-
ers at each locus come from the pure breeds in equal 
proportions. This only holds for the first generation of 
crossbreds (F1), because for more complex crosses, the 
local ancestry varies throughout the genome, and at each 
locus the two alleles are from only one or two breeds. In 
addition, these proportions do not consider from which 
pure breeds the two alleles originate, which is relevant 

for all heterozygous loci. Thus, models that account for 
the BOA specific effects at each locus could be more 
appropriate.

Models with BOA specific effects, hereafter denoted as 
“BOA models”, have been tested on both simulated and 
empirical data from terminal crossbreeding production 
systems [4, 10, 11]. These models are able to account for 
the difference in effects of markers due to differences in 
linkage disequilibrium between markers and QTL. In 
a simulation study, Ibánẽz-Escriche et  al. [4] found that 
BOA models could outperform the models using com-
mon marker effects across breeds only if the breeds 
included were distantly related, the number of markers 
was small, and the training set was large. Sevillano et al. 
[10] studied three-way crosses in pigs and concluded that 
BOA models are only justified in cases where the cor-
relation between crossbred and purebred performance 
is low, the heritability of the trait is low, and the breeds 
involved are distantly related. However for a trait with 
a low heritability, Xiang et  al. [11] tested a model with 
partial genomic relationship matrices that accounted for 
BOA for the evaluation of crossbred performance in two-
way crossbred pigs, and found that the model resulted in 
higher predictive ability than a single-trait model consid-
ering the two pure breeds and their crosses as one popu-
lation. The benefits of BOA models are therefore unclear, 
and it is still unknown if the results from terminal cross-
breeding are transferable to rotational crossbreeding in 
dairy cows.

Models that account for BOA in crossbred animals 
rely on the accurate detection of BOA in the genotypes 
of crossbred animals. For F1 crosses, the genotype of the 
crossbred animal phased to the maternal and paternal 
haplotypes includes this information since the parents 
are purebred [11, 12]. In other cases, Vandenplas et  al. 
[13] presented a method that can accurately detect BOA 
in two-way, three-way or four-way crossbred animals 
without requiring pedigree information to be available. 
However, methods for detecting BOA in rotational cross-
breeding are still lacking.

Estimating local ancestry is relevant in other fields than 
for the calculation of GEBV of crossbreds, for exam-
ple for investigating population structure [14]. Methods 
that assign parts of the genome to ancestor populations 
have been developed for these purposes [14–16]. Gaj-
jar et  al. [17] applied ChromoPainter [14] for assigning 
alleles to breed of origin in crosses of Holstein Friesian 
and native breeds in India. However, these methods and 
the associated software are not designed for the com-
mon crossbreeding scenarios, do not make use of pedi-
gree information, which is usually available for dairy 
cattle, and are computationally slow for the typical 
size of datasets in dairy cattle. Thus, it is interesting to 
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investigate whether simpler methods could assign alleles 
accurately in rotational crossbreeding scenarios, where 
pedigree information and genotypes of recent ancestors 
are available.

Therefore, the aims of this study were two-fold. The 
first aim was to develop a method for BOA assignment in 
crossbred dairy cows, which accounted for the available 
pedigree information. The second aim was to investigate 
if combining marker effects estimated from purebred 
genomic evaluations, based on estimated BOA, would 
result in more accurate GEBV than assuming constant 
breed proportions throughout the genome. The accuracy 
of BOA detection and reliability of GEBV were assessed 
on simulated data that mimicked rotational crossbreed-
ing in dairy cattle.

Methods
Here, first we present a method for assigning BOA for 
crossbred animals, where one parent is known to be 
purebred and the other parent can be crossbred. Sec-
ond, we present methods for the calculation of GEBV of 
crossbred cows, where the estimated marker effects from 
purebred genomic evaluations are combined based on 
(1) the detected BOA or (2) the breed proportions esti-
mated from the genotypes, but in both cases the records 
on crossbreds are not considered. Finally, we describe 
an application of these methods on simulated data that 
mimic the first four generations in a rotational cross-
breeding dairy cattle program.

Detection of breed of origin of alleles
Marker alleles of the crossbred animals were assigned to 
breed of origin with a new method that we name AllOr 
(Allele Origin). It was designed to detect BOA in geno-
types of crossbred animals from medium-density single 
nucleotide polymorphism (SNP) chips, where the sire 
is known and of a purebred known breed, as in typical 
rotational crossbreeding. The dam can be a purebred 
of a known breed or a crossbred of a number of known 
breeds. The genotypes of representative samples of all 
contributing pure breeds are required. In order to make 
use of the known relationships, pedigree information 
that connects the crossbred cows to genotyped purebred 
ancestors needs to be included. The method also requires 
breed information on each of the crossbred animals, i.e. 
what is the breed of the sire and which breeds are con-
tributing to the dam, such that the program can limit the 
breed assignments to the possible breeds. Furthermore, 
the input genotypes of both the purebred and crossbred 
animals should be phased to two haplotypes for each ani-
mal, and these need to be complete, i.e. genotypes need 
to be imputed to fill in the missing ones. Phasing can be 
performed alongside imputation of genotypes by existing 

software, such as Beagle [18] or Fimpute [19]. Imputa-
tion and phasing of the genotypes of crossbred animals 
should be performed by including the genotypes of pure-
bred animals in the same run.

We consider the assignment of alleles on crosses of Nb 
breeds, numbered 1, 2,…, Nb , where b is breed. For each 
crossbred animal, we have the information on which 
breed is the paternal breed, bp , and which breeds con-
tribute to the dam, denoted bmc , where c can take from 
one to Nb values, depending on how many breeds are 
contributing to the dam. For example, for a daughter of 
a sire from breed 2 and a dam which is a cross of breed 
1 and 3, we have bp = 2 , bm1 = 1 and bm2 = 3 . The 
assignment process consists of three steps. The first step 
compares the haplotypes of the crossbred animals to the 
haplotypes of the purebred reference animals, and the 
following two steps fill in unassigned loci based on the 
assignment of neighbouring loci and information about 
breed composition, respectively.

Assigning alleles to breed of origin
Step (1)  The comparison of haplotypes is performed 
in multiple rounds for each chromosome, each round 
considering a predefined window length (WL) of mark-
ers. The windows overlap, with a predefined number of 
shifted (NS) markers between rounds, giving an overlap 
of WL-NS markers. For the last window of a chromo-
some, the last window length (LWL) is LWL > WL-NS and 
LWL ≤ WL. In order to have markers at the end of chro-
mosome included in more than one window, new addi-
tional rounds are added at the beginning and end of the 
chromosomes, with new being the highest integer fulfilling 
new ≤ WL*0.2/NS. The additional rounds at the beginning 
consider the WL-NS, WL-NS*2, …,WL-NS*new first mark-
ers of the chromosome, and the additional rounds at the 
end of the chromosome consider the LWL-NS, LWL-NS*2, 
…, LWL-NS*new last markers.

The most appropriate values for WL and NS in the 
assignment process may depend on the type of data and 
the required precision of breed of origin assignment. 
Because the windows are always shifted by NS markers at 
a time, sets of NS consecutive markers always fall within 
the same set of windows, and will thus all be assigned in 
the same manner in step (1). This means that a recombina-
tion which results in a shift from one breed to another in 
the haplotype cannot be detected at a finer scale than NS, 
and the accuracy of assignment is therefore expected to 
increase with smaller NS. However, the number of rounds 
and therefore running time are proportional to 1/NS. The 
optimal WL may depend on marker density, linkage dis-
equilibrium and number of generations of crossbreeding.

Within each window, the two haplotypes are assumed 
to originate as a whole from pure breeds and are matched 
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with haplotypes from purebred animals. Haplotypes are 
considered as matching if 99% or more of the marker 
alleles are matched, meaning that, for example for 
WL = 100, one allele is allowed to mismatch in order to 
consider that the haplotypes are matched.

Because all the sires are purebred, one of the two haplo-
types originates from bp . The assignment task for the two 
haplotypes within each of the windows is thus two-fold, 
first, to determine which haplotype is the paternal hap-
lotype and which is the maternal haplotype, and second, 
to determine from which breed the maternal haplotype 
originates. Thus, the number of possible breed assign-
ment pairs is twice the number of possible maternal 
breeds. Breed assignments pairs are denoted l = (j, bmc) , 
where j denotes haplotype 1 or 2 that indicates which 
of the two is the maternal haplotype, and bmc denotes a 
possible maternal breed. For each possible assignment 
pair, l , we calculate a value, pl , as a measure of the prob-
ability that haplotype j is the paternal allele from breed 
bp and haplotype k  = j is the maternal allele from breed 
bmc . The pl value depends on whether there are match-
ing haplotypes in the pure breeds according to l . Given 
that there are matching haplotypes, pl can depend on two 
factors: (1) on whether the matching haplotypes are pre-
sent in recent purebred ancestors of the crossbred animal 
under consideration; and (2) on the frequency of the hap-
lotype in the purebred populations. Therefore, pl is cal-
culated as pl = ppbp,j + pmbm,k , where ppbp,j ( pmbm,k ) is 
either the relationship coefficient of the closest ancestor 
on the paternal (maternal) side of breed bp ( bmc ) carry-
ing the matching haplotype, traced for four generations; 
or, if no ancestor carries the haplotype, the proportion of 
matching haplotypes in the reference haplotype pool for 
breed bp ( bmc ) restricted to ≤ 1/16, which thus does not 
exceed values from matching haplotypes in the pedigree. 
If no matches are found within breed bp ( bmc ), ppbp,j 
( pmbm,k ) is assigned the value zero.

Because the windows overlap, each locus is present 
in multiple windows. In order to obtain one assignment 
for each allele at each locus, we calculate the average pl 
value across rounds with windows that include the locus 
and we assign the alleles according to assignment pair 
l = (j, bmc) , i.e. allele j to the paternal breed bp and allele 
k  = j to the maternal breed bmc , with the highest mean 
pl . If no purebred haplotype matches the haplotype of 
the crossbred animal, i.e., all pl values are equal to zero, 
the alleles at the locus cannot be assigned to the breed 
of origin in step (1). If some of the highest pl values are 
the same for more than one breed assignment, l , then 
at the locus there are two possible scenarios: (1) if the 
same allele is considered as the paternal allele in all these 
assignment pairs, the paternal allele is assigned to bp , but 
the other allele is not assigned in step (1); and (2) if the 

same allele is not considered as the paternal allele in all 
these assignment pairs, neither of the alleles at the locus 
are assigned in step (1).

Step (2)  For alleles that could not be assigned in step (1), 
step (2) assigns them based on neighboring assigned loci. 
For locus zu in haplotype k with an unassigned allele, we 
find locus zt on the left side of zu , i.e. the locus closest 
to zu with an assigned allele in haplotype k,, and locus zv 
on the right side of zu , i.e. the locus closest to zu with an 
assigned allele in haplotype k . If zv − zt is less than 2*WL 
and the alleles at zt and zv are assigned to the same breed, 
the alleles at loci zu are assigned accordingly. For unas-
signed loci zu where no zt value could be found because 
there are no loci with an assigned allele at the beginning 
of the chromosome, the alleles are assigned in the same 
way as for the allele at zv , if zv is less than WL*0.8 markers, 
i.e. if it has the same length as the shortest window con-
sidered in step (1). In the same manner, for loci zu where 
no zv value can be found because there are no loci with an 
assigned allele at the end of the chromosome, the allele at 
zu is assigned in the same way as the alleles at loci zt , if zt 
is less than or equal to WL*0.8 markers from the end of 
the chromosome.

Step (3)   For homozygous loci, which allele is the mater-
nal allele and which one is the paternal allele are not rel-
evant. Thus, one of the alleles at homozygous loci that are 
still unassigned after steps (1) and (2) is assigned to bp . 
Similarly, for F1 crosses, since the dam is purebred, one of 
the alleles at homozygous loci is assigned to the maternal 
breed, bmc.

Unassigned alleles  The alleles that are still unassigned at 
this point cannot be assigned to a definite breed of origin. 
Instead, the output of AllOr includes information about 
which breeds are possible based on information from the 
assignment process, if available, otherwise from the input 
to the program. Probabilities of BOA are given based on 
the following rules applied successively: (1) if the allele 
could not be assigned because of several non-zero pl val-
ues being equal in step (1), it is considered equally likely 
that it comes from the corresponding breeds; (2) if neigh-
boring alleles, at zt and zv , on the same haplotype strand 
were assigned to two different breeds, the correspond-
ing breeds are considered equally likely as breed of ori-
gin of the unassigned allele; (3) if one allele at a locus was 
assigned to the paternal breed in step (3), the other allele 
is considered equally likely to originate from any of the 
possible maternal breeds; and (4) if both alleles at a locus 
are unassigned and rules (1) to (3) do not apply, the pater-
nal breed is assumed to have a probability of 0.5 and each 
maternal breed is assumed to have a probability of 0.5 



Page 5 of 13Eiríksson et al. Genet Sel Evol           (2021) 53:84 	

divided by the number of possible maternal breeds. For 
F1 and three-way crosses, these are the expected breed 
proportions, but for crossbreds from more generations 
of crossbreeding, BOA proportions of unassigned loci 
are not expected to equal the expected breed proportions 
because breeds with a larger contribution are expected 
to be represented by longer haplotypes in the genome of 
the crossbred, and thus, BOA assignment using the AllOr 
method is expected to be more effective for the alleles 
from these breeds. In other words, alleles from such 
breeds are less likely to be unassigned. For simplicity, it is 
assumed that BOA proportions for unassigned loci have 
equal probabilities of contributing maternal breeds.

Implementation
AllOr was implemented in a Fortran program to test 
the method on simulated data for which breed of origin 
of alleles was known. The program runs on one chro-
mosome at a time. It was not optimized for speed, thus 
improvement regarding speed could be made. All the 
results presented here are from runs with NS = 5. Three 
values of WL, 100, 150 and 200, were tested on one repli-
cate of the simulated data (as explained later), and based 
on the results obtained, WL = 100 was used for further 
analysis.

Prediction models
We used two genomic prediction models that are adapted 
for prediction of crossbreds: (1) the breed of origin 
model (BOM), where marker effects estimated from the 
evaluation of purebreds are combined based on assigned 
BOA; and (2) the breed proportion model (BPM), where 
marker effects estimated from the evaluation of pure-
breds are combined using BBR, i.e. the estimated contri-
butions of pure breeds to a crossbred genotype are used 
as weights.

The GEBV for animal i from the BOM model is calcu-
lated as:

where wi,j contains haplotype j of animal i coded as 0 and 
1 for the alternative alleles; ◦ is an element-wise multipli-
cation; vb is a vector of estimated marker effects for breed 
b , sj,i,b is a vector of breed b origin indications for alleles 
in haplotype j of animal i , with 1 for alleles assigned to 
breed b , 0 for alleles assigned to other breeds, and values 
between 0 and 1 for alleles that could not be assigned to 
a definite breed, according to the description of the AllOr 
method in the previous subsection; µb is the estimated 
intercept for breed b ; 

∑

sj,i,b is the sum over b of all the 

GEBVBOM,i =

Nb
∑

b=1

(v′
b
(wi,1 ◦ s1,i,b)+ v

′
b
(wi,2 ◦ s2,i,b))+ µb

∑

s1,i,b +
∑

s2,i,b

2m
,

elements in sj,i,b , for j = 1,2; m is the number of markers; 
and Nb is the number of breeds.

The BPM model is based on the methods presented 
by VanRaden et  al. [9]. BBR was calculated from the 
genotypes as in VanRaden et  al. [9], but with some dif-
ferences as described here. First, genomic breed compo-
sition (GBC) was estimated from all marker genotypes 
as in VanRaden et  al. [20], but with a linear Gaussian 
model rather than assuming a heavy-tailed distribu-
tion of marker effects. Marker effects to predict GBC 
of breed b = 1, 2,…, Nb were estimated with the model: 
bcb = 1′kb + Zgb + eb , where bcb is a vector of known 
breed compositions for the purebred animals, i.e. bcb,i = 1 
for purebred animal i from breed b , and bcb,i = 0 for ani-
mal i from another breed; Z is an n×m matrix of allele 
content of n animals for m markers; gb is the vector of 
marker regression coefficients for breed b with variance 
Iσ 2

b  , σ 2
b  being 99% of the variance of bcb, σ 2

bc ; 1 is a vector 
of 1 s; kb is an intercept for breed b ; and eb is a vector of 
random residuals, with variance Iσ 2

e  , σ 2
e  being 1% of σ 2

bc . 
Note that the absolute value of σ 2

bc is irrelevant because it 
cancels out in the mixed model equations. Genomic breed 
compositions for breed b in crossbred animals were calcu-
lated as GBCb = kb + Zgb . Such estimates for individual 
breeds can be lower than 0 for breeds with no or very little 
contribution to the animal, or higher than 1 if an animal 
is, in fact, purebred. Thus, such estimates for individual 
animals were converted to BBR values between 0 and 1, as 
described in VanRaden et al. [9].

The GEBV for animal i from the BPM model is calcu-
lated as:

where BBRb,i is the BBR value for breed b in animal i , zi 
is a vector of allele contents for animal i and other terms 
are as described for BOM.

Simulations
For assessing the BOA assignment using the AllOr 
method and the prediction reliability of the prediction 
models for crossbred cows, we simulated genotypes, 
breeding values, and phenotypes of three dairy cat-
tle breeds, Holstein (HOL), Jersey (JER) and Red Dairy 
Cattle (RDC), and their crosses in four generations of 
a rotational crossbreeding system as explained below. 
The simulations were performed with self-written Julia 
[21] scripts, based on the simulation tools described in 

GEBVBPM,i =

Nb
∑

b=1

BBRb,i

(

µb + z′ivb
)

,
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Karaman et  al. [22]. Subsets of 2100 animals genotyped 
with the 50K SNP chip from each of the three dairy cattle 
populations, Danish Holstein, Danish Jersey and Swed-
ish Red, were used as base populations to simulate three 
pure breeds, HOL, JER and RDC, respectively, and their 
crosses (CRS) for four non-overlapping generations (G1 
to G4). For computational reasons, only the 13,324 SNPs 
on the first five chromosomes were considered. Simula-
tions started by randomly assigning 100 animals as males 
and 2000 as females in these base populations (G0) of 
each breed, and this male:female ratio of 1:20 was kept 
constant throughout the simulations. Among the 100 
available males, 100 sires were selected at random with 
replacement, and each one was mated with 20 dams, 19 
of which produced one offspring and one produced two 
offspring. No selection was applied for the dams and all 
2000 females were used. The purebred sires were mated 
with dams either from their own breed to produce pure-
bred offspring or from another breed to produce cross-
bred offspring, when simulating the next generation 
of purebred and crossbred populations (as explained 
below). The selection of sires was done separately for 
purebreds and crossbreds, and therefore, sires used for 
pure breeds and those used for CRS may not fully over-
lap in each generation. The simulation of G1 for CRS 
(CRS_G1) was achieved by mating sires from the JER 
base population (JER_G0) with dams from the HOL base 
population (HOL_G0). Crosses of sires of RDC_G1 and 
dams of CRS_G1 formed the second generation of CRS 
(CRS_G2). Similarly, sires of HOL_G2 and dams of CRS_
G2 were mated to produce the third generation of CRS 
(CRS_G3). The CRS_G4 were the offspring of CRS_G3 
dams and JER_G3 sires. An overview of the simulated 
crossbreeding program is in Table 1.

Among the available 13,324 SNPs, 250 were selected 
at random from those that had a minor allele frequency 
(MAF) within a 0.01 to 0.30 range, with MAF being 
calculated from the averages of allele frequencies com-
puted separately for each breed at G0. These 250 SNPs 
were assigned to be QTL and were then excluded from 
the final set of SNPs before the analyses. Allele substi-
tution effects of the QTL were assumed to be identical 
across the breeds, and were sampled from the standard 

normal distribution. These substitution effects were then 
multiplied by the number of reference alleles (0, 1, or 2) 
at each locus to compute true breeding values (BV) for 
purebred and crossbred animals. Since allele frequen-
cies of QTL differed among breeds, the genetic variances 
(variances of true BV) also differed among breeds. The 
substitution effects of QTL were scaled such that the 
mean genetic variance across the three pure breeds was 
100 in G0. A residual simulated from a normal distribu-
tion ∼ (N

(

0, σ 2
e

)

 ) was added to the BV of an animal to 
form its phenotype, and the size of σ 2

e  was determined 
by the heritability of the trait, which was 0.4 at G0. The 
heritabilities of traits varied around 0.4 for the individual 
breeds at G0, due to the use of a single value of σ 2

e  for 
all breeds. The simulation was similar to that described in 
more detail in Karaman et al. [22].

Within each pure breed, genotypes from a set of ani-
mals were selected as reference genotypes for estimating 
marker effects for BBR estimation and for comparison of 
haplotypes to detect BOA. The reference set consisted of 
purebred bulls from generations G0, G1, G2 and G3 and 
10% of the cows from the same generations, resulting in 
1200 animals from each breed. Although the true phase 
of the simulated genotypes was known, in order to make 
the testing of the AllOr method and the prediction mod-
els more realistic and to include possible phasing errors, 
the genotypes were phased using Fimpute [18] including 
the genotypes of purebreds and crossbreds.

Marker effects for GEBV were estimated for each pure 
breed separately using phenotypes and genotypes of the 
purebred cows from generations G0, G1, G2 and G3, with 
8000 individuals from each breed. A SNP-BLUP model 
for the estimation of marker effects was used:

where yb is a vector of phenotypes of cows from breed b ; 
1 is a vector of 1 s; Zb is a matrix of allele content of the 
purebreds of breed b ; gb is a vector of random effects of 
markers for breed b following a normal distribution 
∼ N

(

0, Iσ 2
g

)

 , where σ 2
g  is the true genetic variance 

divided by 
∑

2pj(1− pj) with pj being the MAF of locus 
j ; and e is a vector of random residuals following a nor-
mal distribution ∼ N

(

0, Iσ 2
e

)

 . The marker effects were 
estimated using the dmu4 module of the DMU package 
[23], given true variances. Breed of origin of alleles, BBR 
and GEBV calculated with both BOM and BPM were cal-
culated for the 8400 animals, 2100 in each generation, in 
CRS_G1, CRS_G2, CRS_G3 and CRS_G4, using the 
marker effects and intercepts that were estimated in the 
purebreds, and estimated BOA and BBR.

All the steps in the simulation were repeated 10 times. 
Although the simulations used the same set of base 

yb = 1′µb + Zbgb + e,

Table 1  Overview of the simulated mating program for the 
rotational crossbreeding

Parents of the crossbred animals across the four simulated generation

Generations Sires Dams

G1 JER_G0 HOL_G0

G2 RDC_G1 CRS_G1

G3 HOL_G2 CRS_G2

G4 JER_G3 CRS_G3
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populations, and therefore, the number of SNPs that 
could be selected as QTL was fixed, the selection of SNPs 
as QTL was independent across replicates resulting in 
limited overlap between QTL in different replicates. Sim-
ilarly, the animals at G0 were randomly assigned as males 
and females for each replicate of simulated data.

Results
Detection of breed of origin
The detection of BOA for chromosome 1 that harbored 
3270 markers took around ten hours using the AllOr pro-
gram for the 8400 simulated crossbred animals. Investi-
gation of different values of WL on one replicate over the 
five chromosomes showed that 99.6% of the alleles were 
correctly assigned using WL = 100, but 99.2% and 98.8% 
using WL = 150 and WL = 200, respectively. The number 
of incorrectly assigned alleles was also larger with longer 
window lengths, i.e. 0.3% and 0.5% using WL = 150 and 
200 respectively, compared to 0.2% using WL = 100.

Figure  1 shows, for one replicate, the assignment 
results across the five chromosomes considered here; the 
accuracy of BOA detection was poorest close to the ends 
of chromosomes, i.e. as low as 97.7% of the alleles were 
assigned to the correct breed of origin and up to 2.0% 
of the alleles were incorrectly assigned (in both cases, it 
concerned the first marker of chromosome 5). For the 
animal (from CRS_G2) with the lowest percentage of 
correct BOA, 89.0% of the alleles were correctly assigned, 
but 10.8% were not assigned to a breed of origin. In this 
replicate, only this animal had less than 90% of its alleles 
correctly assigned, and in total only 0.1% of the simulated 
crossbred animals had less than 95% of their alleles cor-
rectly assigned.

Across the ten replicates and four types of crosses, 
BOA could be correctly assigned for 99.6% of the alleles 
(Table  2), 0.2% were incorrectly assigned, and 0.2% 
could not be assigned to a specific breed. One hundred 

percent of the assignments to breed of origin were cor-
rect for the alleles of the animals in CRS_G1, which are 
F1 crosses, whereas for the more complicated crosses, 
0.2 to 0.3% of the alleles were incorrectly assigned, and 
0.2 to 0.3% were not assigned to a breed of origin.

Breed base representation
The estimated values of GBC summed to 100% and the 
only correction to calculate BBR was for CRS_G1 for 
which the RDC contribution was estimated to be nega-
tive in some cases. Table  3 shows both the true breed 
proportions and estimated BBR. For all types of crosses, 
RDC proportions are slightly overestimated and HOL 
proportions are slightly underestimated on average. 
Average absolute errors were lowest for the JER pro-
portion in CRS_G1, 0.5%, and highest for the RDC pro-
portion in CRS_G2, 1.5%. The JER proportion was the 
most precisely estimated proportion in all groups.

Prediction
Reliability of GEBV was highest for CRS_G1 (F1 
crosses), both with BOM and BPM, and lowest for 

Fig. 1  Average breed of origin assignment across markers. Average proportion of alleles correctly, incorrectly and not assigned to breed of origin 
for the first five chromosomes in the first four generations of simulated rotational crosses of Holstein, Jersey and Red Dairy Cattle using the AllOr 
method

Table 2  Breed of origin assignment

Percentage of alleles on the first five chromosomes in the first four generations 
(CRS_G1-CRS_G4) of simulated rotational crossbreeding of Holstein, Jersey and 
Nordic Red Cattle cows that were correctly, incorrectly, or not assigned to breed 
of origin using the AllOr method

Group N Correct Incorrect Not 
assigned

CRS_G1 2100 100.0% 0.0% 0.0%

CRS_G2 2100 99.5% 0.2% 0.3%

CRS_G3 2100 99.4% 0.3% 0.3%

CRS_G4 2100 99.5% 0.3% 0.2%

All 8400 99.6% 0.2% 0.2%
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CRS_G4 (Table  4), which was the group of crossbreds 
that had the largest number generations of crossbreed-
ing. The BOM model resulted in more reliable pre-
dictions than BPM for all crosses. The difference in 
reliability was largest for CRS_G1, i.e. 0.097, but small-
est for CRS_G3, i.e. 0.054. The reliability of the aver-
age GEBV of purebred parents for CRS_G1 was 0.396, 
which is lower than the reliabilities obtained with either 
BOM or BPM.

Discussion
We present a novel method that is simple and accurate 
for detecting BOA in crossbred dairy cows in a rota-
tional crossbreeding scheme when pedigree information 
is available. We also show with simulated data that tak-
ing BOA into account in a genomic prediction model 
results in more accurate predictions for crossbred cows 
than predictions obtained by accounting for estimated 
genomic breed proportions in a setup where training was 
on purebred animals only.

Detection of breed of origin
The proportions of alleles correctly assigned to breed of 
origin (Table 2) were higher than those reported by Van-
denplas et  al. [13] for F1 and three-way crosses. In the 
rotational crossing system that was investigated here, we 
always had purebred sires. Therefore, we always had one 
haplotype, i.e., the paternal haplotype, originating as a 
whole from one breed, which greatly simplifies the detec-
tion of BOA. However, the maternal haplotype could be 
a mosaic of up to three breeds, although on average half 
of this haplotype originated from the breed of the mater-
nal grandsire. The proportion of correctly assigned BOA 
was similar in CRS_G2, CRS_G3 and CR_G4, which indi-
cates that the method was not sensitive at least up to four 
generations of rotational crossing on the maternal side. 
The method of Vandenplas et al. [13] does not consider 
pedigree information, which is a very important source 
of information in our method. It is especially useful when 
genotypes on the sires are included in the reference geno-
types, as was the case in our study.

The AllOr Fortran program took up to ten hours to run 
on the largest chromosome (that harbored ~ 3270 SNPs) for 
the 8400 simulated crossbred animals. However, there are 
many possibilities to increase speed, for example by saving 
the information about matching haplotypes across overlap-
ping windows, constructing a haplotype library of unique 
purebred haplotypes in order to avoid comparing the cross-
bred haplotype with the same common haplotype many 
times, and parallel computing. We did an additional trial 
with ChromoPainter [14] and the results showed that the 
running time of AllOr was still much shorter than that of 
ChromoPainter for which the processing of chromosome 1 
with the same number of genotypes of crossbred animals 
and same number of purebred reference genotypes took 
about two weeks. However, the accuracy of breed assign-
ment was higher for ChromoPainter for which 99.9% of the 
alleles were correctly assigned to breed of origin. Thus, for a 
relatively smaller number of BOA detection tasks and when 
a high accuracy is required, ChromoPainter seems to be a 
slightly better choice than AllOr.

The overlapping window approach adopted in AllOr is 
similar to that applied in the LAMP software [15]. How-
ever, combining assignments across rounds is based on 
an average pl value in AllOr, whereas in LAMP the com-
bination is based on the most common assignment across 
rounds, and therefore does not take differences in confi-
dence of the assignment of the windows in each round 
into account. In addition, the within-window assignment 
differs greatly between these methods. In LAMP, the 
window size is decided based on the number of genera-
tions of admixture, number of populations, and recom-
bination rate [15], and it is claimed that its length should 

Table 3  Breed base representation

Mean true genomic breed proportion (GBC) based on the true origin of all 
markers across five chromosomes, mean estimated base breed representation 
(BBR), and mean absolute difference of true and estimated GBC for the first four 
generations of rotational crossbreeding

CRS_G1 CRS_G2 CRS_G3 CRS_G4 All

True GBC

 Holstein 50.0% 25.0% 62.5% 31.3% 42.2%

 Jersey 50.0% 25.1% 12.5% 56.2% 35.9%

 RDC 0.0% 50.0% 25.0% 12.4% 21.9%

BBR

 Holstein 49.6% 24.8% 62.1% 31.1% 41.9%

 Jersey 50.1% 25.1% 12.6% 56.3% 36.0%

 RDC 0.6% 50.1% 25.3% 12.6% 22.1%

Absolute difference

 Holstein 0.9% 1.2% 1.4% 1.3% 1.2%

 Jersey 0.5% 0.9% 0.8% 0.7% 0.7%

 RDC 0.6% 1.1% 1.5% 1.3% 1.1%

Table 4  Reliability of genomic estimated breeding values

Reliability of genomic estimated breeding values estimated as the squared 
correlation between true breeding value and estimated breeding value from 
the breed of origin model (BOM), breed proportion model (BPM), and average of 
purebred parents (PA). Standard deviations of reliability estimates across the 10 
replicates are presented in brackets

Group CRS_G1 CRS_G2 CRS_G3 CRS_G4 All

BOM 0.73 (0.01) 0.62 (0.02) 0.62 (0.02) 0.59 (0.02) 0.65 (0.02)

BPM 0.64 (0.01) 0.56 (0.02) 0.57 (0.02) 0.52 (0.02) 0.58 (0.02)

PA 0.40 (0.02)
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be sufficiently short so that there is nearly no recombina-
tion sites within each window. The same is true for WL 
in AllOr, in which the windows should be sufficiently 
short to ensure that recombination between breeds is 
rare within each window. With more generations of 
crossbreeding in the ancestry of the crossbred animals, 
WL should be shorter, but shorter haplotypes are more 
likely to exist in more than one breed [24], which can 
lead to errors in BOA assignment. However, the three 
WL, i.e. 200, 150 and 100 markers, tested in this study, 
did not show more errors with shorter windows. The WL 
values tested here were within the range, or smaller, than 
those tested by Vandenplas et al. [13] (150–350) as core 
lengths for their program and phasing with AlphaPhase 
[25] for F1 and three-way crosses in pigs. Contrary to 
their approach, the running time of AllOr is shorter with 
shorter WL because the number of rounds in the first 
step of AllOr only increases marginally with longer WL, 
but the number of comparison within rounds increases 
with longer WL. Figure 1 clearly shows that the efficiency 
of AllOr was lowest for loci close to the extremes of the 
chromosomes. This was expected because BOA of hap-
lotype segments, which result from recombination that 
is located less than WL markers from either end of the 
chromosome, cannot be detected with AllOr, although 
this is partially compensated by including extra rounds 
with a shorter WL at the ends of the chromosomes. The 
performance of any haplotype-based assignment method 
will be poorest at the chromosome extremes because the 
number of possible matching haplotypes is smaller when 
only one direction can be considered.

AllOr, like Chromopainter [14] and the BOA program 
of Vandenplas et  al. [13], relies on the accurate phasing 
of the genotypes obtained with an external software. 
Vandenplas et al. [13] took possible inaccuracies in phas-
ing into account by using the output of multiple rounds 
of AlphaPhase [25]. In principle, phasing methods using 
pedigree information [19] or long-range phasing [25, 
26] do identify haplotype segments, which the animals 
have inherited from ancestors. Breed of origin assign-
ment can be viewed as an extension of this task, that is, 
if similarities of haplotypes between the crossbred and 
purebred animals are used for phasing the genotype of 
the crossbreds, information on the breed of the purebred 
animal could be stored. This information indicates breed 
of origin of the haplotype in the crossbreds. Phasing and 
BOA detection would thus be performed jointly in one 
step, instead of identifying the matching haplotypes again 
in a separate BOA detection procedure as we do here. 
Extending a phasing and imputation software to include 
BOA assignment of crossbred animals could be an inter-
esting topic for future research.

In spite of our effort to simulate a realistic situation, 
applying AllOr on real genotypes creates additional chal-
lenges. For example, genotype errors were not included 
in the simulations. Allowing some mismatches in the 
comparison of haplotypes, here a 1% mismatch was set, 
should allow assignment in many cases in spite of spo-
radic genotyping errors. In addition, potential errors in 
pedigree information and the presence of only a few or 
no genotyped ancestors could further complicate BOA 
assignment for individual animals. The BOA program 
of Vandenplas et  al. [13] showed a higher proportion 
of alleles in real genotypes that could not be assigned 
than in most of the simulated scenarios that they stud-
ied. Application of their program on three-way pig data 
assigned 95.2% of the alleles to breed of origin [10], but 
on chicken data 91.8% of the alleles could be assigned to 
breed of origin for the three-way crosses and 96.9% for 
the F1 crosses [27]. Our preliminary results of the appli-
cation of AllOr on real genotypes of crossbred dairy cows 
are promising with more than 99% of the alleles assigned 
to breed of origin (personal communication).

Genomic predictions
Comparison of GEBV with parent averages was only pos-
sible for CRS_G1 because, for the other groups, both 
parents were not purebred. Higher reliability of genomic 
predictions than of parent averages (Table 4) was expected 
and in agreement with multiple previous studies, e.g. Van-
Raden et al. [28], Su et al. [29] and Bengtsson et al. [30]. 
For crossbred dairy cows, VanRaden et al. [9] found that 
genomic prediction of breeding values of crossbred dairy 
cows with the breed proportion model was more accurate 
than parent averages for seven of the eight traits tested.

The reliability of GEBV obtained with both BOM 
and BPM was highest for CRS_G1, i.e. the F1 crosses 
(Table 4) and lowest for CRS_G4, i.e. the crosses that had 
the largest number of generations of crossbred ancestors. 
The reliability of GEBV using these methods is expected 
to drop for crossbreds with more generations for sev-
eral reasons. First, in the F1 crosses, the maternal and 
paternal haplotypes originate as a whole from their pure-
bred parents, and thus the linkage between markers and 
QTL in the pure breeds is fully consistent. In CRS_G2, 
this linkage starts to break in the maternal haplotype. In 
CRS_G3, an expected quarter of the genome originates 
from a crossbred grand-dam and has more breakage of 
linkage compared to CRS_G2, resulting in a further 
expected reduction of reliability. However, the degree 
of this reduction is smaller than between CRS_G1 and 
CRS_G2, because the effect is on an expected quarter 
of the genome compared to an expected half between 
CRS_G1 and CRS_G2. Similarly, one eighth more of the 
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genome is affected between CRS_G3 and CRS_G4. This 
could explain partly why the drop in reliability is much 
larger between CRS_G1 and CRS_G2 than between 
CRS_G2 and CRS_G3, and between CRS_G3 and CRS_
G4. An additional factor is the segregation variances in 
three-way crosses, and in crossbreds which have more 
generations of crossbreeding [31]. For CRS_G2-CRS_
G4, the differences in allele frequency between breeds 
contribute to the genetic variation, and in our study, 
this variation was not captured in the estimated marker 
effects because training was only within pure breeds. The 
inability to fully predict the variability in breeding values 
related to segregation variances could have affected the 
reliability in CRS_G2-CRS_G4, which could also con-
tribute to the drop in reliability observed from CRS_G1 
to CRS_G2. Another factor, which could have affected 
the reliabilities of predictions for different groups, was 
the difference in linkage disequilibrium levels between 
the breeds. Because the starting point of the simulations 
was real genotypes from the three breeds, differences 
in linkage disequilibrium between the breeds should be 
present in the simulations. The population structure of 
RDC is more complicated than that of JER and HOL [32], 
and it could have reduced the reliability of predictions of 
groups in which a high proportion of the genome origi-
nated from RDC. In order to investigate if this was the 
case, we checked the reliability of prediction for purebred 
animals from HOL_G4, JER_G4 and RDC_G4, using esti-
mated marker effects from the relevant breed. The result 
showed that the reliability was lowest (0.66) for RDC_G4, 
compared with 0.71 for HOL_G4 and 0.69 for JER_G4, 
which indicates that the estimated marker effects for 
RDC did not result in predictions as reliable as for the 
other breeds. In CRS_G2, RDC is the paternal breed with 
a 50% contribution, and thus the lower reliability of pre-
diction from RDC marker effects could have contributed 
to the relatively low reliability for CRS_G2 compared to 
CRS_G1 and CRS_G3, where the RDC proportion was 
0 and 25% respectively, in addition to the factors men-
tioned previously.

Our results indicate that BOM is superior to BPM for 
the prediction of genetic merit of crossbred cows for the 
first generations of rotational crossbreeding between 
HOL, JER and RDC. In CRS_G1 and CRS_G2, all hete-
rozygous loci had alleles from two different breeds. For 
CRS_G3 and CRS_G4 75% and 87.5%, respectively, of the 
loci were expected to have alleles from different breeds. 
Among those loci, BOA was relevant for the heterozy-
gous loci. Assuming correct BOA and correct BBR for 
the F1 crosses, the SNP estimates obtained with BOM 
and BPM are the same for homozygous loci but differ by 
half the difference in allele effects from the two breeds 
for heterozygous loci. To what extent the marker effects 

differ between breeds is therefore an important factor 
to determine if BOA should be accounted for as shown 
by Ibánẽz-Escriche et al. [4]. Although we simulated the 
same QTL effects across breeds, the estimated marker 
effects differed considerably across breeds because of 
differences in allele frequency and linkage between QTL 
and markers. The correlation between GEBV for cross-
bred animals, which was calculated with the estimated 
marker effects for HOL and JER respectively, was 0.07 
on average across the replicates, 0.14 between HOL and 
RDC, and 0.07 between JER and RDC. These differences 
reflect the relatedness between the breeds since the base 
generations of the purebreds (G0) in the simulations 
were real genotypes from the breeds [22]. In CRS_G2, 
the marker alleles at approximately half of the loci were 
from HOL and RDC, and at the other half from JER and 
RDC. The smaller difference in estimated marker effects 
between HOL and RDC compared to that between HOL 
and JER explains the smaller difference between BOM 
and BPM for CRS_G2 compared to CRS_G1. Over the 
four generations investigated, it was apparent that the 
benefit of BOM over BPM was largest for CRS_G1 and 
CRS_G4, in which the sires were purebred JER, which 
underlines the importance of how breeds are related in 
such a comparison.

In addition to accounting for the origin of the two 
alleles at heterozygous loci, BOM also accounts for varia-
tion in breed proportions across the genome, contrary to 
BPM. The breed proportions were constant throughout 
the genomes for CRS_G1 but varied for other crosses, 
depending on local ancestry, which should benefit BOM 
compared to BPM. However, the difference in the reliabil-
ity of the models was largest for CRS_G1, which indicates 
that other factors, such as the similarity of the breeds in 
question, were more important in this case.

Errors in the detected BOA will impair the reliabil-
ity of prediction with BOA models [11, 12], especially 
if the breeds are distantly related [4]. However, breed 
of origin detection is more accurate in less related 
breeds [13], which results in a lower risk of errors. In 
our study, the low correlation between marker effects 
makes correct assignment important but BOA assign-
ment was very accurate (Table 2). We investigated the 
effects of incorrect or missing BOA assignments in an 
additional analysis, in which we used the BOM model 
with true BOA rather than estimated BOA. The results 
showed that the reliability was not higher using true 
BOA, which indicates that inaccuracies in BOA detec-
tion did not affect reliability when they were as rare as 
in our study. Alleles that are not assigned to a definite 
breed have less effect on the prediction than incor-
rectly assigned alleles. In their analysis, Sevillano et al. 
[10] set loci with alleles that were not assigned to a 
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breed as missing. However, we considered that includ-
ing all markers was a better approach, and we included 
the effects proportionally by breeds if BOA could not 
be detected. As long as the correlations between esti-
mated marker effects from purebreds are positive, 
including markers regardless of whether BOA is incor-
rect or undetermined should be better than not includ-
ing them. Thus, with the BOM model, including all the 
markers should increase reliability compared to exclud-
ing the markers with undetermined BOA.

When training is done separately in different pure-
bred populations, we cannot detect genetic variation 
that exists only between breeds and not within breeds. 
This variation is therefore not included in the estimated 
marker effects and we cannot predict this part with 
the BOM or BPM models presented here. In particu-
lar, when an allele at a QTL is fixed in one breed, its 
effect is not estimated in this breed, and because it is 
common to all animals of the breed, it is included in 
the intercept. Thus, BOM cannot determine if a cross-
bred animal has markers connected to the allele and 
the effect of the allele will be included according to the 
proportion of the breed via the intercept, µb . Training 
on crossbreds would be necessary to account for alleles 
fixed in alternating states and for different fixed loci in 
two breeds. Future developments of prediction models 
should investigate how this is best done in rotational 
crossbreeding. In  situations where only the breeding 
value of the purebred is of interest, as in terminal cross-
ing systems [4, 10, 11], this is not relevant because the 
selection is within pure breeds.

It is well established in terminal crossbreeding sys-
tems that the genetic correlation between crossbred 
performance and purebred performance is lower than 
1 [33–35]. The difference between purebred and cross-
bred performance should be accounted for in prediction 
models where both purebred and crossbred records are 
included [10, 11, 33]. In this study, we included only the 
phenotypes of purebred, and thus the predictions were 
for purebred performance. In the simulation, QTL effects 
were the same in crossbreds and purebreds, and thus it 
did not take the possible effect of different genetic back-
grounds on the effects of QTL in purebred and crossbred 
into account. In rotational crossbreeding, the crossbred 
group is not uniform, and therefore a large number of 
traits would have to be defined if each breed combina-
tion was defined as a separate trait. Including dominance 
effect in the model to account for heterosis may be a 
more attractive approach, and for example Esfandyari 
et al. [36] proposed a model where dominance is included 
when training purebreds for the prediction of crossbreds.

Breed averages
The benefits of using the method of VanRaden et al. [9] 
and the BOM and BPM models presented here are that 
the estimated marker effects that are already available 
from genomic evaluations of purebred animals and the 
large reference populations that have been established 
for many purebred populations can be used. In this study, 
the intercepts for correcting for potential differences in 
genetic level of the breeds were available from the esti-
mation of marker effects. For genomic evaluations with 
more complicated models, and for example for which 
the input data are deregressed proofs or yield deviations 
from pedigree analyses rather than direct phenotypes, 
informative intercepts might not be available. The genetic 
evaluation that was the basis for the estimated marker 
effects in VanRaden et  al. [9] was from a multi-breed 
genetic evaluation, which made the estimated marker 
effects comparable between breeds. In the case of sepa-
rate genomic evaluations for each breed, a possible solu-
tion is to approximate breed differences by taking the 
phenotypic means of a group from each of the breeds in 
production environments that are similar across breeds, 
and subtract the mean direct genomic value of the same 
group using the estimated marker effects from the rela-
tive breed. With an increased number of genotyped 
crossbred cows, an alternative approach could be to 
determine the intercepts from phenotypes and genotypes 
on crossbreds with a varying proportion of purebreds 
and a correction for heterosis.

Conclusions
In the presence of reliable pedigree information and 
extensive genotyping of purebred sires, marker alleles 
of crossbred cows from rotational crossbreeding can be 
detected accurately using the AllOr method. Taking BOA 
into account can facilitate genomic prediction of cross-
bred cows by using marker effects estimated from the 
genomic evaluation of purebreds, and our results indi-
cate an advantage of BOM over BPM. The BOM model 
could be an interesting option for providing GEBV for 
crossbred dairy cows without having to establish a large 
reference set of crossbreds. Thus, it could contribute to 
more efficient dairy farming, where the benefits of the 
genomic prediction of cows and crossbreeding can be 
used simultaneously.
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