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Abstract The study of epidemic spreading in com-
plex networks is currently a hot topic and a large body
of results have been achieved. In this paper, we briefly
review our contributions to this field, which includes the
underlying mechanism of rumor propagation, the epi-
demic spreading in community networks, the influence of
varying topology, and the influence of mobility of agents.
Also, some future directions are pointed out.
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The epidemic spreading in various complex networks has
been quite extensively studied in recent years. One of
the main reasons is that by using the network struc-
ture and modern transports/mediums, the epidemic can
spread very fast and cause a series of problems to hu-
man society, such as an Internet virus, SARS (Severe
Acute Respiratory Syndrome), and sexually transmitted
diseases, etc. [1−3]. This topic has to do with the mod-
eling of the spread of a particular infectious disease in
a given network, with the aim of reproducing the actual
dynamics of the disease and designing the strategies to
control and possibly eradicate the infection. One of the
primary reasons for studying the spread process on net-
works is to understand the mechanisms by which diseases
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and other things such as information, computer viruses,
and rumors spread over these networks. In particular,
most researches have been directed in two distinct direc-
tions. On the one hand, research has been focused on
the configuration of networks, including the degree dis-
tribution, the clustering coefficient, and the assortativity
etc., which reveals that simple dynamical rules, such as
preferential attachment or selective rewiring, can gener-
ate complex topologies [1, 2, 4−13]. Many of these rules
are not only useful for the generation of model graphs,
but also believed to shape real-world networks like the
Internet or the network of social contacts. On the other
hand, attention has been paid to the dynamics in com-
plex networks [14−22]. These studies have shown that
the network topology can have a strong impact on the
dynamics of the nodes, e.g., the availability of the perco-
lation condition for networks with degree-degree correla-
tion or the detrimental effect of assortative degree cor-
relations on targeted vaccination. In the past, the cross
fertilization between these two lines of thought has led to
considerable advances. However, the network topology
and the dynamics on networks are still generally studied
separately and there is still a large enough space to com-
bine them. One of the representative examples is how
the epidemic is spread in complex networks.

Currently, researchers are try to model the epidemic
spreading in complex networks and propose some ef-
fective approaches for potential applications. Mathe-
matical models of viral transmission and control are
always important tools for assessing the threat posed
by deliberate release of the specific virus and the best
means of containing an outbreak, such as the small-
pox, measles, mumps, chickenpox, dengue haemorrhagic
fever, pandemic influenza, tuberculosis, HIV, and foot-
and-mouth disease, etc. [23−25]. Examples include the
design and evaluation of childhood disease immuniza-
tion programmes, predicting the demographic impact of
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the HIV epidemic in different regions, and analysing the
spread and control of the 2001 foot-and-mouth epidemic
in Britain [26] etc.

In this paper, we will briefly review the recent achieve-
ments of epidemic spreading in complex networks and
mainly focus on our contributions to this field. We will
first address the basic models of epidemic spreading in
Section 2. Then we address the epidemic spreading in
general networks in Section 3. Next, we discuss how an
epidemic is spread between two connected communities
in Section 4. This problem has been recently addressed
in the static community networks by Newman et al. [17,
27−29] and Liu et al. [30] where the community struc-
tures are fixed and the epidemic can be only spread from
one community to another one through the links between
them. After that, we study the mobile feature of social
networks in Section 5. Finally, we give our conclusions
and vision in Section 6.

In complex networks, nodes represent the individuals and
links represent the interactions between them. That is,
there is a link between nodes if they have interaction;
otherwise, there is no link. The infection can only be
removed through the link between two nodes. The in-
fection transmission is defined by the spreading rate at
which each susceptible individual acquires the infection
from an infected neighbor during one time step.

Suppose the infection rate is denoted by λ. One sig-
nificant notion in the epidemic spreading is the location
of the epidemic transition, i.e. a critical value of λc, such
that for the infection rate λ < λc, no endemic epidemic
is possible, while for λ > λc, a global epidemic spread-
ing occurs with a finite probability [31, 32]. Thus, much
attention has been paid to the study of the epidemic
thresholds by different network structures [6, 7, 16, 17,
27−30, 33].

In reality, epidemic spreading is a very complicated
process and its result depends on the concrete situations.
For example, some diseases have immunization ability
where a person cannot be infected again once he/she was
infected one time, such as a computer virus and gonor-
rhea, etc. Other diseases have no immunization abil-
ity where a person can be infected again even if he/she
was infected one time, such as parotitis, measles, and in-
fluenza, etc. Therefore, it is necessary to build different
models to model them. In fact, a large number of mod-
els have been presented to describe different situations of
epidemic spreading. Two of the typical models are the
SIS model and the SIR model. As being close to real

society, scale-free (SF) networks are the most popular
networks in which disease spreading is studied. The ab-
sence of epidemic thresholds on scale-free networks has
attracted lots of attention [33, 34].

2.1 SIS model

The SIS model relies on a coarse grained description of
the individuals in the population. In the SIS model, the
individuals may have two status, i.e., susceptible and in-
fected. These states completely neglect the details of the
infection mechanism within each individual. Once an in-
dividual is infected, he or she may become susceptible
again after a finite time. Thus, this model describes the
phenomenon that a susceptible node can become infected
and an infected node can recover and return to the sus-
ceptible state [16, 30, 35−37], such as a computer virus,
tuberculosis, and gonorrhea, etc. Suppose a neighbor of
the infected node can be infected by probability λ and
the infected node can be cured by probability μ. The
SIS model can be described as follows:

S(i) + I(j) → I(i) + I(j)
I(i)→ S(i)

(1)

where the first equation occurs with rate λ and the sec-
ond with rate μ, provided that i is one neighbor of j.
When the susceptible and infected nodes are fully mixed,
its dynamics can be described by the following differen-
tial equations:

ds(t)
dt

= −λi(t)s(t) + μi(t)

di(t)
dt

= λi(t)s(t)− μi(t)
(2)

where s(t) and i(t) represents the densities of susceptible
and infected nodes at time t, respectively. There is a
threshold λc in this model. The solution of Eq. (2)
is i(T ) = 0 for λ < λc and a stationary solution for
λ > λc. This model is mainly used as a paradigmatic
model for the study of infectious disease that leads to an
endemic state with a stationary and constant value for
the prevalence of infected individuals, i.e., the degree to
which the infection is widespread in the population.

2.2 SIR model

The second typical model is the three-state SIR
(susceptible-infected-refractory) model which is well-ff
known in mathematic epidemiology [31, 32]. This model
describes the phenomenon that the infected nodes will
become immunized or dead, such as parotitis, measles,
chickenpox, pertussis, and influenza etc. [38−42]. Dif-
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ferent from the case in the SIS model, here the infected
nodes will not return to the susceptible status but be-
come refractory status with probability μ. Once a node
is in refractory status, it will no longer be susceptible
to the infection. At a given time, each node in the net-
work is in one of these three states. The SIR model is as
follows:

S(i) + I(j) → I(i) + I(j)

I(i)→ R(i)
(3)

where the first equation occurs with rate λ and the sec-
ond one with rate μ. When the susceptible and infected
nodes are fully mixed, it allows writing down the SIR
model in the form of systems of ordinary differential
equations for the densities of individuals:

ds(t)
dt

= −λi(t)s(t)

di(t)
dt

= λi(t)s(t)− μi(t)

dr(t)
dt

= μi(t)

(4)

where s(t), i(t), and r(t) are the densities of suscepti-
ble, infected, and refractory nodes at time t, respectively.
As time goes on, obviously, this model will show an in-
creasing number of infection nodes. At sufficiently large
time, this number will begin to decrease until there is no
longer any infected nodes in the network, then the pro-
cess is over. Thus, there is a one-to-one correspondence
between the final infected density r(T ) and the infection
rate λ and the r(T ) can be used to measure the efficiency
of infection, where T is the time when i(t) becomes zero.
There is also a threshold λc in this model. The infection
will become endemic or global for λ > λc and cannot
spread out for λ < λc.

2.3 Other models

One of the differences between the SIS and SIR models
is the different final state. In the SIS model, the final
state is an oscillatory solution. While in the SIR model,
the final state is the zero infected nodes in the network.
Except these two typical models, there are other models,
such as the SI, SIRS, and SEIR etc.

In the SI model, once the nodes are infected, they
will be an infector forever [43−45]. This model usually
describes the disease that cannot be cured or break out
without any effective control at hand, such as bubonic
plague and SARS, etc. The SI model is as follows:

S(i) + I(j) → I(i) + I(j) (5)

where the infection occurs with rate λ. Its dynamics can
be described by the following differential equations:

ds(t)
dt

= −λi(t)s(t)

di(t)
dt

= λi(t)s(t)
(6)

In the SIRS model, the susceptible nodes can pass
to the infected state through contagion by an infected
one, the infected nodes can pass to the refractory state
after an infection time τIτ , the refractory nodes can re-
turn to the susceptible state after a recovery time τRτ [14,
46]. SIRS models are excitable systems, known to dis-
play relaxation oscillations in mean field or well-mixed
approaches.

In the SEIR model, there is a latent state E between
the susceptible and infected status [47, 48]. A suscepti-
ble individual acquires the infection from any given in-
fected individual, and becomes latent and then become
infected. This set of states do not correspond strictly
to any particular disease but encompasses the most rel-
evant features and parameters of a variety of different
virus transmission. The dynamical equations are as fol-
lows:

ds(t)
dt

= −ws→ee(t)s(t)

de(t)
dt

= ws→ee(t)s(t)− we→ie(t)

di(t)
dt

= we→ie(t)− wi→ri(t)

dr(t)
dt

= wi→ri(t)

(7)

where ws→e, we→i, wi→r are the probabilities for a sus-
ceptible individual to become latent, a latent to become
infected, and an infected to become refractory, respec-
tively. The related situations are the seasonal influenza
or SARS-like diseases [24, 25].

In general, networks can be classified into homogeneous
networks and heterogeneous ones, according to their de-
gree distribution. Correspondingly, the epidemic spread-
ing on them are different. For the former, the dynam-
ics can be shown by the mean field or fully mixed ap-
proaches; While for the latter, the influence of degree
distribution must be considered. A network is homoge-
neous provided its degrees are distributed around a mean
value and its degree distribution decays exponentially,
such as the Erdos and Renyi (ER) random network and
the small-world network (SW) [1, 2]. Also, a network
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is heterogeneous if its degree distribution satisfies the
power law, such as the Barabasi and Albert SF network.
In this section, we will briefly introduce the epidemic and
rumor spreading on the homogeneous and heterogeneous
networks, respectively, and show the surprising result of
zero threshold in the SF network by Pastor-Satorras and
Vespignani [35].

3.1 Epidemic spreading in homogeneous networks

Let us consider the SIS model first. At each time step,
each susceptible node is infected with probability v if it
is connected to one or more infected nodes. At the same
time, infected nodes are cured and become susceptible
again with probability μ, defining an effective spreading
rate λ = v/μ. Without loss of generality, we set μ = 1
which changes only the evolution time scale. In stan-
dard topologies the most significant result is the general
prediction of a nonzero epidemic threshold λc [31, 32]. If
the value of λ is above the threshold λ > λc the infection
spreads and becomes persistent in time. Below it λ < λc,
the infection dies out exponentially fast. We here use the
mean-field approach to deal with the situation of homo-
geneous networks [49]. The density of infected node ρ(t)
satisfies the following differential equation:

dρ(t)
dt

= −ρ(t) + λ 〈k〉 ρ(t)[1− ρ(t)] (8)

The first term on the right-hand side in Eq. (8) considers
that infected nodes become healthy with unit rate. The
second term represents the average density of newly in-
fected nodes generated by each active node. This is pro-
portional to the infection spreading rate λ, the number
of links emanating from each node, and the probability
that a given link points to a healthy node, 1− ρ(t). Be-
cause the homogeneous network has only exponentially
small fluctuations, we take k ≈ 〈k〉 as the first approx-
imation. Using the steady condition dρ(t)/dt = 0, we
obtain

ρ[−1 + λ 〈k〉 (1− ρ)] = 0 (9)

for the steady state density ρ of infected nodes. This
equation defines an epidemic threshold λc = 〈k〉−1, and
yields

ρ = 0, if λ < λc

ρ ∼ λ− λc, if λ � λc

(10)

For the SIR model, we use s(t), i(t), r(t) to represent
the densities of the susceptible, infected, and refractory
nodes, respectively. These three quantities are linked
through the conservative condition:

s(t) + i(t) + r(t) = 1 (11)

and they obey the following differential equations [39]:

ds(t)
dt

= −λ 〈k〉 i(t)s(t)
di(t)
dt

= λ 〈k〉 i(t)s(t)− i(t)

dr(t)
dt

= i(t)

(12)

This set of equations is based on the homogeneous mix-
ing hypothesis, which asserts that the force of infection is
proportional to the density of infectious individuals. The
homogeneous mixing hypothesis is indeed equivalent to
a mean-field treatment of the model, in which one as-
sumes that the rate of contacts between infectious and
susceptible nodes is constant. Another implicit assump-
tion of this model is that the time scale of the disease is
much smaller than the lifespan of individuals; therefore
we do not include in the equation terms accounting for
the birth or natural death of individuals.

Different from the SIS model, here the infection is
measured by the final infected population r∞. When
λ is below the threshold, λ < λc, the epidemic preva-
lence r∞ = lim

t→∞ r(t) is infinitesimally small in the limit
of very large populations. If the value of λ is above λc,
λ > λc, the disease spreads and infects a finite fraction
of the population. Integrating Eq. (12) for s(t) with the
initial conditions r(0) = 0 and s(0) ≈ 1 [i.e., assuming
i(0) ≈ 0], we obtain

s(t) = e−λ〈k〉r(t) (13)

Combining this result with the condition (11), we observe
that the total number of infected individuals r∞ fulfills
the following self-consistent equation:

r∞ = 1− e−λ〈k〉r∞ (14)

In order to have a nonzero solution, the following condi-
tion must be fulfilled:

d
dr∞

(1− e−λ〈k〉r∞)|r∞=0 > 1 (15)

This condition is equivalent to the constraint λ > λc,
where the epidemic threshold λc takes the value λc =
〈k〉−1 in this particular case. Performing a Taylor expan-
sion at λ = λc it is then possible to obtain the epidemic
prevalence behavior:

r∞ ∼ (λ− λc) (16)

3.2 Epidemic spreading in heterogeneous networks

In SF networks, because the degree distribution satisfies
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the power-law, a random chosen node is prone to be con-
nected to a hub node or a node with larger links. Thus,
those nodes with larger links will be easily infected and
then as seeds to infect other nodes, resulting in a faster
epidemic spreading than the homogeneous networks. To
characterize the influence of network topology, Pastor-
Satorras and Vespignani classify the nodes into different
groups where the nodes in the same group have the same
degree/links [16, 35, 36, 39, 49]. For the SIS model, us-
ing ρk to represent the density of infected nodes in the
group with degree k, then ρk(t) satisfies the following
differential equation:

dρk(t)
dt

=−ρk(t)+λk[1−ρk(t)]
∑
k′

P (k′|k)ρk′(t) (17)

The first term on the right-hand side represents the anni-
hilation of infected individuals due to recovery with uni-
tary rate. The creation term is proportional to the den-
sity of susceptible individuals, 1− ρk, times the spread-
ing rate, λ, the number of neighboring nodes, k, and the
probability that any neighboring node is infected. The
latter is the average over all degrees of the probability
P (k′|k)ρk′ that an edge emanated from a node with de-
gree k points to an infected node with degree k′. This
equation is somehow approximate because of the neglect-
ing of higher-order density-density and degree correla-
tions. Denoting

∑
k′

P (k′|k)ρk′(t) as Θ(ρ(t)), Eq. (17)

becomes

dρk(t)
dt

= −ρk(t) + λk[1− ρk(t)]Θ(ρ(t)) (18)

In the steady (endemic) state, ρ is just a function of
λ. Thus, the probability Θ becomes also an implicit
function of the spreading rate, and by letting ∂t∂∂ ρk(t) = 0,
we obtain

ρk =
kλΘ(λ)

1 + kλΘ(λ)
(19)

For an uncorrelated network, the probability P (k′|k)
equals kP (k)/ 〈k〉, thus Θ can be also written as:

Θ =
∑
k′

P (k′|k)ρk′ =
∑

k

kP (k)
〈k〉

kλΘ(λ)
1 + kλΘ(λ)

(20)

This is a self-consistency equation that allows to find
Θ(λ) and an explicit form for Eq. (19). Finally, we can
evaluate the order parameter ρ using the relation:

ρ =
∑

k

P (k)ρk (21)

The system (20) can be solved self-consistently obtaining
that the epidemic threshold is given by [50]

λc =
〈k〉
〈k2〉 (22)

For infinite SF networks with P (k) ∼ k−γ and γ � 3, we
have

〈
k2
〉

= ∞, and correspondingly λc = 0. Therefore,
the uncorrelated SF networks allow a finite prevalence
whatever the spreading rate λ of the infection! This re-
sult explains why the virus/rumor can be spread so fast
in the Internet or social networks.

For the SIR model, using the sk(t), ik(t), rk(t) to rep-
resent the densities of susceptible, infected, and refrac-
tory nodes in the group with degree k, these variables
are connected by means of the normalization condition:

sk(t) + ik(t) + rk(t) = 1 (23)

Doing the similar analysis of the SIS case we obtain the
following differential equations:

dsk(t)
dt

= −λksk(t)Θ(t)

dik(t)
dt

= −ik(t) + λksk(t)Θ(t)

drk(t)
dt

= ik(t)

(24)

Eq. (24) can be solved with the initial conditions
rk(0) = 0, ik(0) = i0, and sk(0) = 1 − i0. In the limit
i0 → 0, we can substitute ik(0) ≈ 0 and sk(0) ≈ 1.
Under this approximation, Eq. (24) can be directly in-
tegrated, yielding

sk(t) = e−λkφ(t) (25)

where φ(t) is an auxiliary function:

φ(t) =
∫ t

0

∫∫
Θ(t′)dt′ =

1
〈k〉

∑
k

kP (k)rk(t) (26)

The variation of the auxiliary function can be given by
its time derivative

dφ(t)
dt

=
1
〈k〉

∑
k

kP (k)ik(t)

=
1
〈k〉

∑
k

kP (k)(1− rk(t)− sk(t))

=1− φ(t)− 1
〈k〉

∑
k

kP (k)sk(t) (27)

Introducing the obtained time dependence of sk(t) we
are led to the differential equation for φ(t)

dφ(t)
dt

= 1− φ(t) − 1
〈k〉

∑
k

kP (k)e−λkφ(t) (28)

Eq. (28) is a self-consistency equation and can be solved
for a given P (k). Once Eq. (28) is solved, we can obtain
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the total epidemic prevalence r∞ as a function of φ∞ =
lim

t→∞φ(t). Since rk(∞) = 1− sk(∞), we have

r∞ =
∑

k

P (k)(1− e−λkφ∞) (29)

We can also calculate the threshold λc here. Since we
have that ik(∞) = 0 and consequently lim

t→∞dφ(t)/dt = 0,

we obtain from Eq. (28) the following self-consistent
equation for φ∞:

φ∞ = 1− 1
〈k〉

∑
k

kP (k)e−λkφ∞ (30)

In order to have a non-zero solution, the condition

d
dφ∞

(
1− 1

〈k〉
∑

k

kP (k)e−λkφ∞

)∣∣∣∣∣∣∣
φ∞=0

> 1 (31)

must be fulfilled. This relation implies

1
〈k〉

∑
k

kP (k)(λk) = λ

〈
k2
〉

〈k〉 > 1 (32)

This condition defines the epidemic threshold:

λc =
〈k〉
〈k2〉 (33)

which is the same with Eq. (22) of the SIS model.

3.3 Rumor spreading in complex networks

Rumor propagation can be considered as another kind
of epidemic spreading which also follows the SIR model.
Because of its characteristic feature, the explanation of
its three states has a little difference [6, 7, 51−55]. Sup-
pose there is a rumor or news in the network. The person
(node) who has heard it and wishes to spread it is in the
infected status, the one who has not heard it is in the
susceptible status, and the one who has heard it but is
no longer interested in spreading it is in the refractory
status. The SIR model of Rumor is as follows:

S(i) + I(j) → I(i) + I(j)

I(i) + I(j)→ R(i) + I(j)

I(i) + R(j)→ R(i) + R(j)

(34)

Rumor propagation was originally addressed by Sud-
bury [51] and recently investigated in networks by
Zanette [52] and Liu et al. [6, 7, 55]. Sudbury’s case
is equivalent to rumor spreading on a complete random
network, i.e., a homogeneous network. Sudbury finds
that the rumor can only be propagated to 80 % popu-
lation. Zanette studies the rumor propagation on small
world networks by a mean-field approach and found that
the percentage of nodes that have the chance to hear the

rumor is less than 80 %. Liu et al. studied the case of
a general network and found that the final percentage
of the population who heard the rumor decreases with a
network structure parameter p. We here follow the ref-
erence [55] to show how the network structure influence
rumor propagation.

The idea can be explained with the help of Fig. 1. Con-
sider two neighboring nodes A and B that are connected
by a link in the network. Suppose node A is infected
and transmits the rumor to node B at time t. Then at
time t + 1, node B will choose one of its neighbors as
the target to transmit the rumor, which include node A.
Because A is the “father” of B, A will not be at the same
footing with the other neighbors of B. When A is chosen
from the neighbors of B, B will become the refractory
with the probability of unity according to the propaga-
tion rules. When one of the other neighbors of B, except
A, is chosen, B becomes the refractory or remain as in-
fected, depending on the status of the chosen node. That
is, the probability for B to become refractory is less than
unity. If the degree of B is k, the probability for choos-
ing A is 1/k and the probability of choosing the others is
1 − 1/k. Combining this analysis and the homogeneous
mixing hypothesis, we obtain the evolution equations of
nk,S , nk,I , nk,R,

ṅk,S =−
∑
k′

nk′,I(t)
(

1− 1
k′

)
P (k′|k)

nk,S(t)
NkN

ṅk,R =nk,I(t)
[

1
k

+
(

1− 1
k

)

·
∑
k′

P (k′|k)
nk′,I(t) + nk′,R(t)

NkN ′

]
(35)

Fig. 1 Schematic illustration of the process of rumor transmit-
ting: Suppose there is a link between node A and node B. At time
t, node A gets the rumor and transmits it to node B. And then
at time t + 1, node B will transmit the rumor to one of its neigh-
bors which includes node A. The key point is that the possibility
for node B to become the refractory is unity when B chooses A
as its target and less than unity when B chooses one of the other
neighbors of B as its target.
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where NkN denotes the number of nodes with the same
degree k, nk,S(t), nk,I(t), nk,R(t) represent the numbers
of the susceptible, infected, and refractory nodes with
degree k at time t, respectively, the parts nk,S(t)/NkN

and [nk′,I(t)+nk′,R(t)]/NkN ′ come from the homogeneous
mixing hypothesis. nk,I(t + 1) can be obtained from the
conservation condition NkN = nk,S(t) + nk,I(t) + nk,R(t).

We focus on the final density of the population that
has the chance to hear the rumor. Let T be the
time when the process of rumor spreading is over, i.e.,∑

k

nk,I(T ) = 0. In obtaining the solution of Eq. (35)

at time t = T , we introduce a set of auxiliary variables
sk ≡

∫ T

0

∫∫
nk,I(t)dt. Assume that the initial infected seed

(at t = 0) has degree k0, we have the initial conditions:
nk,S = NkN , nk,I = 0, and nk,R = 0 for k 	=		 k0 and
nk,S = NkN − 1, nk,I = 1, and nk,R = 0 for k = k0. We
thus obtain the solutions of Eq. (35):

nk,S(T ) = NkN exp

[
−k

〈k〉N
∑
k′

sk′

(
1− 1

k′

)]

nk,R(T ) = NkN

{
1− exp

[
−k

〈k〉N
∑
k′

sk′

(
1− 1

k′

)]}

nk,I(T ) = NkN − nk,S(T )− nk,R(T ) = 0 (36)

By nk,I(T ) = 0 for different k, we may get a set of
transcendental equations on sk which can be accurately
solved numerically. Hence, the final density of the re-
fractory nodes with degree k is

ρ(k) ≡ nk,R(T )
NkN

= 1− e−αk (37)

where α =
1

〈k〉N
∑

k′ sk′

(
1− 1

k′

)
depends on the net-

work structure. Obviously, ρ(k) will monotonously in-
crease with k and approaches to unity for large k. The
total infected nodes during the spreading process is

NRN (T ) ≡
∑

k

nk,R(T ) = N −
∑

k

NkN e−αk (38)

The density of the total infected nodes is

ρR ≡ NRN (T )
N

=1−
∑

k

P (k)e−αk =
∑

P (k)ρ(k) (39)

which depends on the degree distribution P (k).
To confirm these predictions by numerical simulations,

we construct a general network first. Take m nodes as
the initial nodes and then add one node with m links at
each time step. The m links from the added node will go
to m existing nodes with probability ΠiΠΠ ∼ (1− p)ki + p,
where ki is the degree of node i at that time and 0 �

p � 1 is a parameter. The resulting network has average
degree 〈k〉 = 2m for large N . Obviously, (1− p)ki in ΠiΠΠ
represents the preferential attachment and p in ΠiΠΠ the
random attachment. According to Refs. [4, 5], for p = 0,
the model generates a strictly scale-free network, while
for p = 1, it generates a completely random network.
For 0 < p < 1, the resulting connectivity distribution is
shown to be P (k) ∼ [k + p/(1 − p)]−γ [4, 5], where the
scaling exponent γ is γ = 3 + p/[m(1− p)].

First, we consider the case of scale-free network and
let N = 1000, m = 5, and p = 0. We randomly choose
a seed at t = 0 from which the infection starts. At
each time step, every infected node contacts one of its
neighbors, i.e., the nodes that are connected to it. If
this node is susceptible, it will be infected; otherwise,
the original infected node itself will lose interest in the
rumor and become refractory. The whole process con-
tinues until time T at which there is no infected node.
We count the refractory nodes with degree k, nk,R(T ),
and the total nodes with degree k, NkN , and then cal-
culate the final density of infected nodes with degree
k through ρ(k) = nk,R(T )/NkN . We find that ρ(k) in-
creases monotonously with k when k < 35 and stay at
ρ(k) = 1 or nearby when k � 35. The result is shown
by “circles” in Fig. 2(a). Now we calculate the theoret-
ical value of ρ(k) through Eq. (37). The exponent α is
obtained through its expression by calculating all the sk

at t = T and then substituting α into Eq. (37) to get
ρ(k). “squares” in Fig. 2(a) shows how the theoretical
ρ(k) changes with k. Comparing the “circles” with the
“squares” in Fig. 2(a) one can see that the theoretical re-
sults are consistent with the numerical experiments very
well. We have found the similar results for the case of
random network with p = 1. Figure 2(b) shows the re-

Fig. 2 ρ(k) versus k. The results are obtained by 1000 real-
izations with N = 1000 and 〈k〉 = 10. “circles” denote the nu-
merical simulations and “squares” the theoretical predictions from
Eq. (37), and (a) represents the case of scale-free network with
p = 0 and (b) the case of random network with p = 1.
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sults where the lines with “circles” denote the numerical
simulations and the lines with “squares” the theoretical
predictions.

Then we investigate how ρ
R

varies with the structure
parameter p. In numerical experiments, we produce dif-
ferent network structures for different p and randomly
choose different seeds. Once the process of rumor spread-
ing is over, we count the number NRN (T ) of the total final
infected nodes for all the degree k and calculate the den-
sity ρR through ρR = NRN (T )/N . The result is shown
in Fig. 3 by the “circles”. For comparison, we also cal-
culate the ρR through Eq. (39) (see “squares” in Fig.
3). Obviously, in Fig. 3 “squares” are very close to “cir-
cles”. Furthermore, from Fig. 3 it is easy to see that
ρR increases with the structure parameter p. This can
be explained as follows: For the networks with the same
average degree, scale-free network has more nodes with
larger degree than that in the random network. There-
fore, in scale-free networks with p = 0 the rumor can
be easily transmitted to the hub nodes with the heaviest
degree and then to the other nodes. Once the hub nodes
are in the infected or refractory status, it will be easy for
the other infected nodes to become refractory as they
have larger probability to be connected to the hub nodes
than to the other nodes. When the infected nodes choose
the hub nodes as their targets of rumor spreading, they
themselves become refractory. This feature disappears
in the random network with p = 1, which results in a
faster ending of rumor spreading in a scale-free network
than in a random network.

Fig. 3 ρR versus p. The results are obtained by using 1000 re-
alizations with N = 104 and 〈k〉 = 10. “circles” denote the nu-
merical simulations and “squares” the theoretical predictions. The
lines are drawn to guide the eye.

A social network has a community structure [27−30].
The community may be classmates, friends, co-workers,

and club members etc. In a social network, there
are groups of nodes with many connections between
their members and few connections to nodes outside the
group, see the schematic Fig. 4. Thus, social networks
have completely different structures with the above dis-
cussed general networks. Several approaches have been
presented to construct the community networks [27−30,
56−60]. In this section, we follow the Ref. [30] to dis-
cuss how a community structure affects the infectious
propagation.

Fig. 4 Schematic illustration of the community network where
the big dotted circles denote the groups, the small solid circles
denote the nodes, the solid lines denote the links within the groups,
and the dashed lines denote the links between groups.

4.1 Case of static community network

Considering that community structure has a high clus-
tering coefficient and the links are dense in a community
but sparse between communities, the community net-
work can be constructed as follows [30]:

(1) Consider a network with N0NN nodes. Suppose the
N0NN nodes are divided into m groups with random ni (i =
1, 2, · · · , m) nodes in each group, and let them satisfy
m∑

i=1

ni = N0NN .

(2) In each group i we use probability p to add a link
between every two nodes, the resulting number of links

are
1
2
ni(ni − 1)p.

(3) Between groups i and j we use probability q to
add a link between every two nodes, the added links will
be ninjq.

Suppose the total number of added links is N , then

we have N =
m∑

i=1

1
2
ni(ni − 1)p +

m∑
i<j

ninjq. Let p/q ≡ σ

be the degree of community, we get
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p =
Nσ

σ

m∑
i=1

1
2
ni(ni − 1) +

m∑
i<j

ninj

q =
N

σ

m∑
i=1

1
2
ni(ni − 1) +

m∑
i<j

ninj

(40)

It is a random network when σ = 1 and community
network for σ 
 1. For fixed N0NN and N , σ will determine
the structure of the community network for a given set
of ni.

We use the SIS model to discuss the epidemic spread-
ing on this model. Suppose the susceptible has a prob-
ability λ of contagion with each infected neighbor. If
the node i is susceptible, and that it has ki neighbors, of
which kinf are infected, then at each time step node i will
become infected with probability [1− (1−λ)kinf ]. At the
same time, each infected node will become susceptible at
rate μ at each time step. To be brief, let us set μ = 1,
since it only affects the definition of the time scale of the
virus propagation [31].

Suppose we have one seed in the beginning, then each
neighbor of the seed will have possibility λ to be infected
and then to infect their neighbors. After a finite time,
the infection will reach a steady state which may be zero
for λ < λc and nonzero for λ > λc. Because of the
heterogeneous structure of the community network, the
final steady state will depend on the chosen seed and
the configuration of the network. Thus, the meaningful
result should be an average on different configurations
and different initial conditions. This average is in fact a
statistical average and can be obtained by a probability
approach. From the theory of probability [60] we have
λc = 1/ 〈ki〉.

For a community network of σ 
 1, when λ is
small, the epidemic spreading will be confined within
the group where the seed is chosen because the links
between groups is much smaller than that within the
group. Statistically, the seed will be chosen uniformly
in each group. For a specific group i, its epidemic sub-
threshold λi

c will be determined by its average linking
numbers. As the number of links between groups is much
smaller than that within a group for σ 
 1, we have
λi

c ≈ 1/ 〈ki〉 ≈ 1/p(ni− 1) ∼ 1/p and this relation works
for all the individual seed. The λc of the whole system is
an average on different configurations and realizations,
i.e., on different seeds, hence a qualitative relation be-
tween λc and p is λc ∼ 1/p. Substituting the expression
of p in Eq. (40) into λc we have

λc ∼ 1
N

(
1 +

a

σ

)
(41)

Thus, λc is inversely proportional to N . For a fixed N ,
Eq. (41) can be written as:

λc(σ)− λc(∞) ∼ 1
σ

(42)

which is how λc depends on the degree of community
when σ 
 1.

To check the above analysis, let us make numerical
experiments. We take N0NN = 1000, N = 4× 104, m = 10,
and 100 configurations with different sets of random
numbers m1(i), i = 1, 2, · · · , m. For each configuration,
we take 100 different initial conditions with exactly one
randomly chosen node infected. Thus we have 104 re-
alizations. For each individual realization, the epidemic
process will depend on its structure and the chosen seed.
We find that, all the epidemic processes in the 104 real-
izations for small λ will die after a finite time, and only
part of them will die for a relatively large λ, as shown
in Fig. 5 for two typical processes where n(t) is the in-
fected number of individuals at time t. From both Fig.
5 (a) and (b) we can see that there are a lot of peaks
corresponding to the disease quickly spreading through
a community and then waiting to jump to the next one.

Fig. 5 Two typical processes of epidemic spreading for parame-
ters N0NN = 1000, N = 4 × 104, m = 10, and σ = 100 where (a)
λ = 0.008 < λc, (b) λ = 0.015 > λc.

To check Eqs. (41) and (42), Fig. 6 shows the re-
sults of numerical simulations where (a) represents how
λc depends on N for fixed σ and (b) how λc depends on
σ for fixed N when σ 
 1. The slopes of the two lines
in Fig. 6(a) are unity, confirming λc linearly decrease
with N for fixed σ in (41). In Fig. 6(b), the dashed line
shows that the “circles” can be fitted into a straight line
of slope unity when σ > 200, confirming Eq. (42) which
is obtained under the condition σ 
 1.

These results show that, with the decrease of the de-
gree of community, the epidemic threshold of the com-
munity network will increase and reach its maximum at
the limit of random network. For larger spreading rate,
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it is easier for the epidemic on a random network to have
global reach than that of a community network.

Fig. 6 Thresholds of epidemic spreading for the average of 104

realizations with N0NN = 1000 and m = 10. (a) λc versus N where
the lines with “circles” and “stars” denote the cases of σ = 100
and 1, respectively. (b) λc versus σ for N = 4 × 104.

4.2 One application of the community network model

In this subsection we use the above community network
model as the underlying network structure to investigate
the mechanism in spatiotemporal data of an epidemic
in Thailand [61]. The dengue hemorrhagic fever (DHF)
is a mosquito-borne virus that infects 50−100 million
people each year. It has been reported that there is DHF
in the 72 provinces of Thailand and the infection is a
kind of periodic wave [24, 62]. The wave emanates from
Bangkok, the largest city in Thailand, moving radially
at a speed of 148 km per month to the outer provinces.
These waves, which are superimposed on the basic yearly
cycle, remain coherent up to 510 km from Bangkok. As a
consequence the incidence data show strong seasonality
and multiyear and intrayear oscillations and change in
period over time.

We consider the SIS model and focus on its stationary
state. In the stationary state, the links in one group are
uniform and the infected nodes and the susceptible nodes
are well-mixed. Hence, the evolution of infected nodes in
a group can be reflected by the variation of the infected
number kinf of a node. We use x(n) to denote kinf . Thus
the variation of x(n) will characterize the behaviors of
the steady state. By the infection rate [1 − (1 − λ)x(n)]
we know that the susceptible nodes will have a larger
probability to be infected for larger x(n). On the other
hand, more x(n) will result in less susceptible nodes, i.e.,
less candidates to be infected. Therefore, the iterated
equation of x(n) can be written as:

x(n + 1) = [1− (1 − λ)x(n)][〈k〉 − x(n)] (43)

where λc < λ < 1 and 〈k〉 − x(n) is the susceptible
neighboring nodes of a node at time n. This discrete
equation has a fixed point x̄ which satisfies

λ = 1−
( 〈k〉 − 2x̄

〈k〉 − x̄

)1/x̄

= 1− f(x̄) (44)

From Eq. (44) we can easily get the derivative ∂λ/∂x̄

and find that ∂λ/∂x̄ = f(x̄)/x̄2 > 0, indicating that
λ increases with x̄. When x̄ approaches 〈k〉 /2, ∂λ/∂x̄

will approach 0. To further increaseff λ, x̄ will not be
monotonous again but become period-2, i.e., one is larger
than 〈k〉 /2 and the other is smaller than 〈k〉 /2. That is,
there is a bifurcation point λb. The solution will jump
between x̄1 and x̄2 when λ > λb:

x̄2 = [1− (1 − λ)x̄1 ](〈k〉 − x̄1)

x̄1 = [1− (1 − λ)x̄2 ](〈k〉 − x̄2)
(45)

This is the epidemic spreading in a group. Considering
the fact that the links between groups may also influence
the epidemic spreading, the nodes in a group are not in
the same position because some nodes have only the links
in the group, while the others have both the links in the
group and the links between the groups. This will result
in the different infection rates for the neighbors of a node.
As the differences change with time, let us treat it as a
fluctuation of the infection rate. Considering that the
influence/fluctuation from other groups will be stronger
for the larger probability λ of contagion, Eq. (43) will
be modified as

x(n + 1)=[1− (1−λ)x(n)][〈k〉 − x(n)]+Dλξ(n) (46)

where ξ(n) is a uniform noise in [0, 1] and D is the noisy
strength. Figure 7 shows the stabilized solution of Eq.
(46). Obviously, it is period-1 for 0.015 < λ < 0.23
and period-2 for λ > 0.23, and the period-1 approaches
x̄(n) = 〈k〉 /2 = 30 when λ approaches to 0.23.

Fig. 7 In the stationary state, how the number of infected nodes
depend on the infection rate from the analytic map (46), where
〈k〉 = 60 and D = 0.2.
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Now we use the SIRS model to reconsider this sit-
uation [61]. Our numerical simulation shows that the
periodic waves are also possible in the SIRS model if we
take a proper parameter τIτ and τRτ . A difference from the
SIS model is that, there are two thresholds λc1 and λc2

for the SIRS model. The periodic waves exist only when
λc1 < λ < λc2 and disappear when out of this range. The
reason for λc1 is the same as in the SIS model. The rea-
son for λc2 is that the existence of the interval τIτ makes
more people become infected and hence it is possible for
all of them to become refractory during the time inter-
val τRτ . Once it happens, the epidemic spreading will
be ended. Figure 8 shows a typical pattern of periodic
wave when λ is in between the range [λc1, λc2] where
(a) represents the change of the infected locations with
time and (b) shows how the infected number changes
with time. Combined with the results obtained in the
SIS model, we see that the epidemic spreading in the
community network has illustrated the spatio-temporal
wave and may shed light on the understanding of the
mechanism of DHF.

Fig. 8 Evolution of infection in SIRS model with N0NN = 1000, N =
40 000, m = 10 and σ = 100 where (a) represents the infected
locations versus t and (b) the final infected number n(t) versus t
for τIτ = 4, τRτ = 4 and λ = 0.12.

4.3 Case of adjustable community network

The two most important quantities to characterize the
structure of complex networks are the degree distribution
and clustering coefficient. In this section, we discuss how
the changing of degree distribution and clustering coef-
ficient in a community network influences the epidemic
spreading.

Observing the fact that a new friendship is formed be-
tween two people through an introducer of a common old
friend in a community activity, the clustering of friends
in a community can be modelled by a triad formation ap-
proach [56] in which a link is put between two neighbors
of one node. This approach also fit for the links between

different groups. Considering the fact that a friendship
may also come from introducing oneself, the preferen-
tial attachment principle should also be taken. Based
on these aspects, Wu and Liu recently presented a so-
cial network model with multiple community structure
as follows [60]:

(1) Initially, there are m0 groups. In each group, there
are m1 nodes which are completely connected to each
other. In this paper, we let m0 = m1 = 3.

(2) At every time step, each group is added a new
node with probability p, i.e., the total added nodes are
m0p. Each added new node will emit m links to the
existing nodes of the same group. Here we choose m = 2.
The first link will be preferentially attached to a node-i
with probability ki/

∑
kj where ki represents the links

of node-i and j in the sum is for all the nodes in the
group. The second link will be randomly connected to
one of the neighbors of node-i with probability q and
be preferentially connected to anyone in the group with
probability 1 − q. Therefore, the evolution of ki can be
given by

∂ki

∂t
= p

[
ki∑

j

kj

+ qki

(
kn∑
j

kj

1
kn

)
+ (1 − q)

ki∑
j

kj

]

= 2p
ki∑

j

kj

(47)

where the term ki

(
kn∑
j kj

· 1
kn

)
comes from the ki neigh-

bors of node-i.
(3) At each time step, we preferentially choose a node-

i in each group with probability 1− p and let it emit m

links to m nodes in other groups, i.e., the total added
links are mm0(1 − p). The m nodes can be chosen as
follows: we first choose one group randomly from the
other two groups. Then we preferentially choose a node
from the chosen group for the first link, and the second
link will randomly go to one neighbor of the chosen node
with probability q and preferentially go to anyone in the
chosen group with probability 1− q. Their contribution
to the evolution of ki is

∂ki

∂t
=(1 − p)

[
2

ki∑
j

kj

+
ki∑

j

kj

+qki

(
kn∑
j

kj

1
kn

)
+ (1− q)

ki∑
j

kj

]
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= 4(1− p)
ki∑

j

kj

(48)

where the term
ki∑
j kj

+ qki

(
kn∑
j kj

1
kn

)
+(1− q)

ki∑
j kj

comes from the other two groups.
(4) Repeat the steps (2) and (3) until the nodes in each

group is N0NN . That is, the total nodes in the network
is N = m0N0NN and the evolution will be stopped when
t = (N0NN −m0)/p.

By adding Eqs. (47) and (48) we obtain

∂ki

∂t
= 2(2− p)

ki∑
j

kj

(49)

When t is large, we have
∑

j kj = m1(m1 − 1) + 2mt ≈
2mt. For a node added at time ti, its initial condition
is ki(ti) = m = 2. Substituting these into Eq. (49) we
obtain the solution

ki(t) = 2
(

t

ti

) 2−p
m

(50)

The probability of a node with degree ki(t) < k can be
written as

P [ki(t) < k] = P

[
ti >

(
2
k

) m
2−p

t

]

= 1−
(

2
k

) m
2−p t

t + m0
(51)

Thus, we have

P (k) =
∂P [ki(t) < k]

∂k
= 2

m
2−p

m

2− p
k−

m
2−p−1 (52)

Obviously, it is a power-law degree distribution.
Another important quantity to characterize the net-

work structure is the clustering coefficient, C, which
characterizes the possibility for one’s friends to become
friends with each other. For a node-i with degree ki,

its clustering coefficient CiCC =
2Ei

ki(ki − 1)
where Ei rep-

resents the total links among the ki neighbors of node-i.
The clustering coefficient of the network equals the aver-

age of all the CiCC , i.e., C =
1
N

∑
CiCC . From the algorithm

(1) to (4) we know that Ei is proportional to q. Thus,
we have

C ∼ q (53)

In sum, p controls the degree distribution and q con-
trols the clustering coefficient. Therefore, both P (k) and
C can be continually changed through p and q. A key
feature of this model is that the degree distribution P (k)
in Eq. (52) is independent of the parameter q! Therefore,
we can keep the P (k) unchanged and study the influence
of C on the epidemic spreading through adjusting q.

We consider the SIR model here. For a tree-like net-
work with the same degree k at every node, an infected
node will make k infected nodes in the first step and
k(k − 1) infected nodes in the second step. However,
for a clustered network with the same degree k and a
clustering coefficient C, an infected node will make k

infected nodes in the first step and k(k − 1 − 2E/k) =
k(k−1)(1−C) infected nodes in the second step where E

is the links among the neighbors of a node. When C = 1,
the epidemic spreading will stop at t = 1. Therefore,
the epidemic spreading is linearly reduced by a factor
1 − C. Returning to our model, we use f(C) to char-
acterize the influence of high clustering on the speed of
epidemic spreading, where f(C) satisfies 0 < f(C) < 1
and df(C)/dC < 0. Based on these analyses, we have

dsk(t)
dt

= −λksk(t)f(C)
∑
k′

k′P (k′)ik′(t)
〈k〉

dik(t)
dt

= −ik(t)+λksk(t)f(C)
∑
k′

k′P (k′)ik′(t)
〈k〉

drk(t)
dt

= ik(t)

(54)

where the mean-field approach is used, and the sum∑
k′ k′P (k′)ik′(t)/ 〈k〉 is the probability that a randomly

chosen link points to an infected node. Suppose, in
the beginning, every node has the same possibility to
be infected. Hence the initial condition is rk(0) = 0,
ik(0) = 1/NP (k), and sk(0) = 1 − ik(0). In the limit
ik(0) → 0, sk(0) ≈ 1. Integrating the first equation of
Eq. (54) we obtain

sk(t) = e−λkf(C)φ(t) (55)

where the auxiliary variable φ(t) is defined as:

φ(t) =
∫ t

0

∫∫ ∑
k′

k′P (k′)ik′(t′)
〈k〉 dt′ =

∑
k′P (k′)rk′ (t)
〈k〉

(56)

The derivative of φ(t) can be expressed as:

dφ(t)
dt

=
∑

k′P (k′)(1 − sk′(t)− rk′ (t))
〈k〉
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= 1− φ(t)−
∑

k′P (k′)e−λk′f(C)φ(t)

〈k〉 (57)

At the end of the infection process, we have t = τ and
dφ(t)/dt = 0, yielding

φ(τ) = 1−
∑

k′P (k′)e−λk′f(C)φ(τ)

〈k〉 (58)

The total epidemic prevalence is

R ≡
∑

P (k)rk(τ) = 1−
∑

P (k)e−λkf(C)φ(τ) (59)

From Eq. (52) one can obtain that dP (k)/dp >d 0 for
k < 5 and dP (k)/dp <d 0 for k > 5. Combining this
result with the exponential decay of e−λkf(C)φ(τ) with
k, we have the result that the second term in Eq. (59)
increases with p, which gives

dR

dpd
< 0 (60)

Recalling that C ∼ q in Eq. (53), then from Eq. (59)
one can easily get that

dR

dq
< 0 (61)

Hence, the prevalence R is a monotonous decreasing
function of both p and q.

Fig. 9 How the structure parameters p and q influence the epi-
demic prevalence for N = 3000 and λ = 0.2. (a) 〈I(t)〉 versus t
for p = 0.9 where the “circles” and “triangles” represent the cases
of q = 0.9 and 0.6, respectively; (b) 〈NrNN 〉 versus q for p = 0.9;
and (c) 〈NrNN 〉 versus p for q = 0.9. The results are averaged on 104

realizations.

To confirm the predictions (60) and (61), let us make
numerical simulations. Figure 9 (a) shows how the num-
ber of infected nodes I(t) changes with time for different
q. The integration of I(t) is the final infected nodes NrNN

in a realization. As 〈NrNN 〉 = NR, we here use 〈NrNN 〉 to
replace R to check Eqs. (60) and (61). Figure 9 (b) and
(c) show how 〈NrNN 〉 changes with q and p, respectively.
Obviously, 〈NrNN 〉 decreases with both p and q, confirming
the theoretic predictions (60) and (61). Moreover, com-
paring Fig. 9(b) with (c) we can see that p has a larger
influence on 〈NrNN 〉 than q, indicating that the efficiency
of epidemic spreading depends mainly on the degree of
community.

Through the above discussion, we may come to the con-
clusion that the epidemic behavior is determined by
both the epidemic dynamics and the network’s struc-
ture. Based on this conclusion, a number of methods
have been proposed to immunize or control the epidemic
spreading in complex networks [64−67]. It is generally
believed that a community is safe if its connections to
the surrounding infected communities are removed [64,
67]. However, the real situations are very complex. On
one hand, there is a time delay between the infection of
an agent and the knowledge of its status by others, which
causes some difficulty to timely figure out the dangerous
connections. On the other hand, the epidemic spreading
may go through a third one, i.e., a community between a
safe community and an infected one. However, to sustain
the normal function of a community, we cannot remove
all its connections to the surroundings, i.e., the connec-
tions to its safe surroundings should remain. Thus, if one
of our neighboring community contacts with an infected
community, how is our community influenced through
the neighboring community?

Consider the fact that an agent can freely move in
a community, with its neighbors changing with time
[68−72]. Hence, we may conceive a dynamical network
that is more close to a real society. Suppose an agent
interacts only with its neighbors within radius r, i.e.,
there are links between those agents whose distance is
smaller than r. Thus, the links are time dependent and
the degree k of an agent depends on how many agents
are within the circle of radius r. Each node in one com-
munity moves as follows:

xi(t + Δt) = xi(t) + vi(t)Δt (62)

where xi(t) is the position of the ith agent in the plane at
time t, vi(t) = (vcos θi(t), vsin θi(t)), θi(t) = ξi(t), ξi(t)
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are N independent random variables chosen at each time
with uniform probability in the interval [−π, π], and the
velocity amplitude v is chosen as 0.03.

Also noticing that agents may sometimes travel to
other communities, we let each agent have a possibility p

to jump to a neighboring community. That is, each agent
is a random walker with a probability p to travel to an-
other community and the probability 1−p to stay in the
community. Figure 10 shows the schematic network of
two communities where each one is a square-shaped area
with periodic boundary condition. In contrast to the real
world, these areas could represent different cities that
have a long geographical distance between them. People
can move freely in his own city and travel to other cities
by transports, such as an airplane, etc. We here follow
the Ref. [73] to discuss its epidemic propagation.

Fig. 10 Schematic illustration of epidemic spreading in the dy-
namical community network where the small segments with arrow
denote the moving individuals and the bridge between the two
communities represents the jumping of agents.

The SIS model is considered here. We let the length of
A1 be L1 and the length of A2 be L2, we have the thresh-
old λc1 ∼ L2

1/(πr2N) and λc2 ∼ L2
2/(πr2N). Without

the jumping between A1 and A2 (p = 0), our numerical
simulations have confirmed the λc phenomenon that the
infection will continue when λ > λc but die when λ < λc.
Using I(t) to denote the number of infected nodes at
time t, I(t) will become stabilized after a finite time,
which is zero for λ < λc and nonzero for λ � λc. We
fix N = 1000, r = 0.05, L1 = 0.5 and L2 = 1 if without
specific illustration. Hence, λc1 = 0.034 < λc2 = 0.125.
For convenience, we call the community with λ > λc as
an infected community and the community with λ < λc

as a safe community.
When p > 0, the situation will be totally changed.

Because of the jumping, it is even possible for the case
of λ < λc to sustain an epidemic. Taking λ in the regime
λc1 < λ < λc2, A1 is the infected community and A2 is
the safe community. We want to know if the jumping
can sustain a non-zero epidemic in the safe community
A2.

We use I1 and I2II to represent the numbers of infected
agents in A1 and A2, respectively. Considering that each
agent in A1 has the possibility p to jump to A2 and the
agent in A2 also has the possibility p to jump to A1, the
total infected number just before the time step t + 1 is

I ′1(t) = I1(t)(1− p) + I2II (t)p

I ′2II (t) = I2II (t)(1− p) + I1(t)p
(63)

Therefore, the infected number at the beginning of time
step t + 1 is

I1(t + 1) = [N − I ′1(t)][1− (1− λ)〈k〉1I′
1(t)/N ]

I2II (t + 1) = [N − I ′2II (t)][1− (1− λ)〈k〉2I′
2(t)/N ]

(64)

where 〈k〉1 and 〈k〉2 denote the average degrees in A1 and
A2, respectively. Eqs. (63) and (64) are based on a mean-
field approximation, their correctness can be checked on
statistical meaning. For a given λc1 < λ < λc2 and initial
nonzero I1(0) and I2II (0), Eq. (64) will go to a fixed point
solution I∗1 and I∗2II after the transient process. Of course,
this solution depends on the jumping probability p. By
letting I∗2II (t + 1) = I∗2II (t), we have

I∗2II =[N−I∗1p−I∗2II (1−p)]{1−(1−λ)〈k〉2[I
∗
2 (1−p)+I∗

1 p]/N}
(65)

For small p, we have I∗2II /N � 1. Approximately treating
the first part of Eq. (65) as N and expanding its second
part to the first order, we obtain

I∗2II =
λ 〈k〉2 I∗1p

1− λ 〈k〉2 (1− p)
(66)

It is easy to see that I∗2II increases monotonously with
p. This prediction has been well confirmed by numerical
experiments. In numerical simulations, we determine I∗1
and I∗2II by checking the evolution of I1(t) and I2II (t) and
taking their stabilized values, and then making average

Stabilized solution I∗1 and I∗2 versus the jumping prob-
ability p where the solid points represent the results of numerical
simulations and the hollow points the results from Eq. (64), and
the “circles” represent I∗1 and the “triangles” I∗2 . The results of
numerical simulations are averaged on 100 realizations.
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on a number of realizations. For example, Fig. 11 shows
the results for λ = 0.1 where the solid points repre-
sent the results of numerical simulations and the hol-
low points the results from Eq. (64). Obviously, the
numerical simulations are very well consistent with the
theoretical predictions.

Why can the jumping agents make the safe community
A2 sustain the epidemic? To understand its mechanism,
let us analyze the function of jumping agents in detail.
Without jumping agents, the initial seeds in A2 will die
after the transient time. While with jumping agents, af-
ter the transient time, the infected agents I2II (t+1) comes
partly from the jumping part I1(t)p and partly from the
remaining part I2II (t)(1 − p) which is also determined by
the previous jumping parts. That is, the stabilized I∗2II
comes completely from the jumping. Therefore, it is
necessary to introduce a parameter γ to represent the
efficiency of the jumping agents in A2 to re-produce in-
fectors. Notice that the slope of I∗2II in Fig. 11 decreases
with p, indicating that I∗2II does not increase linearly with
p. This point can be also seen from Eq. (66) where the
slope

dI∗2II
dpd

=
λ 〈k〉2 I∗1

1− λ 〈k〉2 (1 − p)

(
1− I∗2II

I∗1

)
(67)

decreases with p, indicating the influence of p in the de-
nominator of Eq. (66) makes the slope decrease. Thus,
the efficiency γ depends on p and can be given by the
following formula:

γ = I∗2II − pI∗1 (68)

which reflects the reproducing ability of the jumping
agents. We find that there is an optimal p0, γ increases
with p when p < p0 and decreases with p when p > p0.
Figure 12 shows the result for λ = 0.1 and p0 ≈ 0.1. The
decrease of γ for p > p0 comes from the fact that larger

Fig. 12 γ versus p for λ = 0.1 and p0 ≈ 0.1 where the solid points
represent the results of numerical simulations and the hollow points
the results from Eqs. (64) and (68).

p makes more infected I2II and less susceptible N − I2II ,
resulting in that the infected agents do not have sufficient
neighbors to be infected and thus reduce the reproducing
ability.

Another factor that influences the infected number I∗2II
in the safe community A2 is the average degree 〈k〉2.
〈k〉2 is determined by both the density of agents and the
interaction radius r. The density can be reflected by the
size L2 for a fixed N . From Eq. (66) we have

I∗1
I∗2II

=
1

λ 〈k〉2 p
− 1− p

p

=
L2

2

λπr2Np
− 1− p

p
(69)

It is easy to see that for a fixed p, I∗1/I∗2II is inversely
proportional to the average degree of the safe community
〈k〉2, i.e., proportional to L2

2 and inversely proportional
to r2. To keep λ = 0.1 in between [λc1, λc2], we let L2

increase from 1 to 2.4 for r = 0.05 and let r change from
0.03 to 0.055 for L2 = 1. Our numerical simulations have
confirmed the prediction Eq. (69), see Fig. 13 for three
typical p = 0.025, 0.05 and 0.1 where (a) represents the
relationship between I∗1/I∗2II and L2

2 and (b) I∗1/I∗2II versus
1/r2.

Fig. 13 How the parameters L2 and r influence the ratio I∗1/I∗2
for L1 = 0.5 and λ = 0.1 where the lines with “squares”, “circles”,
and “triangles” denote the cases of p = 0.025, 0.05 and 0.1, respec-
tively, and (a) represents the relationship between I∗1/I∗2 and L2

2
for r = 0.05 and (b) I∗1/I∗2 versus 1/r2 for L2 = 1.

After understanding the mechanism of epidemic



346 Jie ZHOU and Zong-hua LIU, Front. Phys. China, 2008, 3(3)

spreading in a model of two communities, let us move to
the model of three communities, i.e., epidemic spread-
ing through an indirect contagion. This situation occurs
very often in reality. For example, when an epidemic
breaks out in a community, its surrounding communities
will usually remove the links with it to keep their safety.
While for those communities not connected directly to
the infected one, they will not remove the connections to
their surroundings. Suppose one neighbor of the infected
community does not remove its links between them in
time, how the neighbor’s neighbor is influenced by the
infected community through an indirect way? To solve
this problem, let’s construct a model of three communi-
ties as shown in Fig. 14 where A1 denotes the infected
community with higher density of agents, A2 and A3 de-
note the safe communities with lower density of agents.
The jumping is allowed between A1 and A2 and also be-
tween A2 and A3 but forbidden between A1 and A3. For
simplicity, we let all the three communities have the same
population N = 1000 and the same jumping possibilities
p between A1 and A2 and also between A2 and A3. We
assume L1 < L2 = L3. Hence, the density of agents in
A1 is higher than that in A2 and A3, and the epidemic
threshold λc1 of A1 is smaller than λc2 of A2 and A3.
Like the discussed model of two communities, here we
let the three communities have the same contagion rate
λ and are also interested in the case of λc1 < λ � λc2.
Making the similar analysis, we find that the safety of
the third community cannot be guaranteed even if it is
not directly connected with the infected community, see
the details in Ref. [73].

Fig. 14 Schematic illustration of the epidemic spreading in a
model of three communities, see text for the detailed explanation.

We have briefly reviewed the epidemic and rumor prop-
agation in complex networks, especially in community
networks. The main results are as follows: (1) For the
rumor propagation in complex networks, we find that
the degree distribution influences seriously the final den-
sity of infected nodes. The homogeneous networks are
more prevalent than the heterogeneous networks. (2) A

simplified community model has been presented, which
is highly clustered and has nonsymmetric connectivity
distribution. We have also constructed a community
network model with varying clustering coefficients and
varying SF degree distribution to study the influence of
community structure on epidemic spreading. This model
shows that the clustering is against the epidemic spread-
ing. (3) A dynamical community network is presented
to discuss the influence of the mobile feature of agents
on the epidemic spreading. We find that for the case of
direct and indirect connection, it is possible to sustain
an epidemic spreading even when the contagion rate λ

is smaller than its critical threshold, which is impossible
for an isolated community.

Recently, epidemics in a metapopulation have received
a lot of interest [74−79]. In this case, the epidemic
spreading is considered as a kind of reaction-diffusion
(RD) process. The individuals can move between differ-
ent locations, such as cities or urban areas. The reaction
processes account for the possibility that individuals in
the same location may get in contact and change their
state according to the infection dynamics, and the diffu-
sion processes account for the spreading of the epidemic.
It is found that the diffusion process is a super-diffusion
on structured networks.

Models, based on RD, can be used not only in slow-
ing the spread of infectious diseases, but also in chem-
ical reaction, optimizing traffic flow, or predicting the
change in cell phone usage in a disaster. Therefore, the
methods developed in other related fields may be helpful
for the study of epidemic spreading in a metapopula-
tion. Because any model should be confirmed by ex-
periments or real data, a hopeful direction of studying
epidemic spreading may be data mining. In that case we
may imagine that both the random mixture and network
structure are important, and their combined results are
closer to the real data.
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