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Novel CLCN7 mutation identified in a Han
Chinese family with autosomal dominant
osteopetrosis-2
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Abstract

Osteopetrosis is a heritable bone condition featuring increased bone density due to defective osteoclastic bone resorption.

Exome sequencing and Sanger sequencing were conducted in Han Chinese family members, some of whom had typical

osteopetrosis, and a novel missense variant c.2350A>T (p.R784W) in the chloride channel 7 gene (CLCN7) was identified.

This variant cosegregated with the disorder in the family but was not observed in 800 controls. The data indicate that exome

sequencing is a powerful and effective molecular diagnostic tool for detecting mutations in osteopetrosis, which is a gen-

etically and clinically heterogeneous disorder. This discovery broadens the CLCN7 gene mutation spectrum and has important

implications for clinical therapeutic regimen decisions, prognosis evaluations, and antenatal diagnoses.

Keywords

Autosomal dominant osteopetrosis-2, exome sequencing, the CLCN7 gene, mutation

Date received: 13 April 2016; revised: 30 April 2016; accepted: 6 May 2016

Introduction

Osteopetrosis is a term used to describe a group of rare
heritable conditions, including osteopetrosis, osteopoiki-
losis, pycnodysostosis, osteomesopyknosis, dysosteo-
sclerosis, osteosclerosis Stanescu type, melorheostosis
with osteopoikilosis, and osteopathia striata congenita
with cranial stenosis. It is featured by increased bone
density on radiographs.1 Generally, osteopetrosis is a
rare monogenic heritable bone condition characterized
by increased bone density due to defective osteoclastic
bone resorption,2–4 exhibiting variable clinical signs with
an incidence of about 5/100,000.2,5 It is an autosomal
dominant or recessive inherited disorder possibly
caused by mutations in the genes involved in the bone
formation or resorption.4,6 The present literature
describes at least nine disease-causing genes, including
the low-density lipoprotein receptor-related protein 5
gene (LRP5, MIM 603506), the chloride channel 7
gene (CLCN7, MIM 602727), the T cell immune regula-
tor 1 gene (TCIRG1, MIM 604592), the tumor necrosis
factor ligand superfamily, member 11 gene (TNFSF11,
MIM 602642), the carbonic anhydrase II gene (CA2,

MIM 611492), the osteopetrosis-associated transmem-
brane protein 1 gene (OSTM1, MIM 607649), the pleck-
strin homology domain-containing protein, family M,
member 1 gene (PLEKHM1, MIM 611466), the tumor
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necrosis factor receptor superfamily, member 11A gene
(TNFRSF11A, MIM 603499), and the sorting nexin 10
gene (SNX10, MIM 614780).7,8 Autosomal dominant
osteopetrosis-2 (OPTA2, MIM 166600), the most
common osteopetrosis, is caused by mutations in the
CLCN7 gene, which play important bone resorption
roles.9,10 The study’s aim was to detect the disease-causing
gene for a consanguineous Han Chinese family, some of
whom suffered from autosomal dominant osteopetrosis
featuring bone fracture, bone pain, increased bone min-
eral density (BMD) in spine and pelvis, and increased
alkaline phosphatase (ALP) levels. A novel heterozygous
mutation c.2350A>T (p.R784W) in the CLCN7 gene
was identified by exome sequencing and Sanger
sequencing.

Materials and methods

Subjects and clinical evaluation

A five-generation, 13-member Han Chinese family, living
in Changsha, China, and suffering from osteopetrosis,
was enrolled at the Third Xiangya Hospital, Central
South University, Changsha, China (Figures 1 and 2).
Peripheral blood was collected from six family members
including four patients (III:2, IV:1, IV:4, and V:1,
Figure 2(a)). Detailed records of clinical manifestations,
radiological evidences, and biochemical findings were
obtained from all available family members (Table 1).
The diagnosis of OPTA2 was made based on the above
medical records.11–13 Peripheral blood samples were also
taken from 100 ethnically matched unrelated control

volunteers (male-to-female ratio: 50/50; age 32.0� 8.2
years), having neither diagnostic features nor family his-
tory of osteopetrosis. BMD was examined using a dual-
energy X-ray absorptiometry (DXA) densitometer
(LUNAR DPX NTþ 74029, General Electric Medical
System, USA). Informed written consent was provided
by participants or their guardians. A research approval
was obtained from the institutional review board of the
Third Xiangya Hospital, Central South University,
China.

Exome capture

Genomic DNA isolation was performed via phenol-
chloroform extraction from the blood samples.14

Exome sequencing was performed by the Novogene
Bioinformatics Institute (Beijing, China). An exome
library was established using 1.5 micrograms of DNA
from the proband (IV:4, Figure 2(a)). The DNA was
sheared into fragments using Covaris sonicator
(Covaris Inc., Woburn, MA, USA). Exons were cap-
tured using the Agilent SureSelect Human All Exon V5
Kit. After evaluation of DNA quality, pooled samples
were intended for sequencing. Following the manufac-
turer’s protocols, sequencing of the library targeting
the exome was implemented on the Illumina HiSeq
2500 platform.15

Variant analysis

By Burrows-Wheeler Alignment tool (BWA), high-quality
paired-end reads were mapped to the human reference

Figure 1. Radiographic signatures of a patient (IV:1) with autosomal dominant osteopetrosis-2. (a) The typical ‘‘sandwich’’ sign of

vertebral bodies. (b) The typical ‘‘bone-in-bone’’ sign of iliac wing.
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Table 1. Clinical, radiological, and laboratory findings of four autosomal dominant osteopetrosis-2 patients with the chloride channel 7

gene c.2350A>T mutation.

Subjects III:2 IV:1 IV:4 V:1

Gender Female Male Male Male

Age (years) 67 46 37 15

Symptoms Osteoarthritis of

knees for five years

and backache for 20

years

Clavicle fracture at 11

years old

Diffuse bone pain in

the cervical verte-

bra for four years

Metatarsal fracture at

9 years old

X-rays Spine ‘‘Sandwich vertebrae’’

sign

‘‘Sandwich vertebrae’’

sign

‘‘Sandwich vertebrae’’

sign

‘‘Sandwich vertebrae’’

sign

Pelvis ‘‘Bone-in-bone’’ sign ‘‘Bone-in-bone’’ sign ‘‘Bone-in-bone’’ sign ‘‘Bone-in-bone’’ sign

BMD L1–4 " " " "
a

TH " " " "
a

ALP " " " "

IP N N " N

25-VitD3 N N N #

25-VitD2 N N N #

Serum calcium N N N N

Hemoglobin N N N N

BMD: bone mineral density; L1–4: lumbar spine 1–4; TH: total hip; IP: inorganic phosphorus; ALP: alkaline phosphatase; 25-VitD3: 25-hydroxy vitamin D3;

25-VitD2: 25-hydroxy vitamin D2; N: normal values; ": increased values; #: decreased values.
aThe Z score at L1–4 and total hip was calculated by comparison with the age-specific BMD reference value of Han Chinese children and adolescent.

Figure 2. Pedigree and sequence analysis of the family with autosomal dominant osteopetrosis-2 (OPTA2). (a) Pedigree of the OPTA2

family indicating affected family members (fully shaded). N: normal, M: the chloride channel 7 gene (CLCN7) c.2350A>T (p.R784W)

mutation. Arrow shows the proband. (b) Sequencing analysis reveals the heterozygous CLCN7 c.2350A>T (p.R784W) mutation in the

proband (IV:4). The arrow shows site of mutation. (c) The CLCN7 gene c.2350A wild type sequence in an unaffected family member (IV:3).
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genome sequence from UCSC database (UCSC hg19,
http://genome.ucsc.edu/).16 To explore single nucleotide
polymorphisms (SNPs) and insertions-deletions (indels),
high-quality alignment was called to assure variant call-
ing accuracy. The analysis-ready BAM alignment results
were procured after removing duplicated reads, conduct-
ing local alignment, and recalibrating base quality by
Picard (http://sourceforge.net/projects/picard/), Genome
Analysis Toolkit and SAMtools. A 100.83� mean
sequencing depth provided adequate depth and guaran-
teed 99% variant calling accuracy of each targeted exome.
Given that the variant of interest is rare in the normal
population, all variants were filtered against public data-
bases, including 1000 Genomes Project (2012 April
release, http://www.1000genomes.org/), database of
SNPs build 137 (dbSNP137, http://www.ncbi.nlm.
nih.gov/projects/SNP/snp_summary.cgi), and NHLBI-
Exome Sequencing Project (ESP) 6500. Variants retained
after the filtration of the above databases were ulteriorly
filtered by in-house exome database from Novogene
Bioinformatics Institute with 700 ethnically matched con-
trols. A prioritization scheme was utilized to for the filtra-
tion strategy, similar to those in previous studies.15-17

Annotate Variation (ANNOVAR) software was used to
annotate potential variants.18 Nonsynonymous SNPs
were evaluated using Sorting Intolerant from Tolerant
(SIFT, http://sift.jcvi.org/, variant with a score less than
0.05 is predicted to be deleterious) and Polymorphism
Phenotyping version 2 (PolyPhen-2, http://gen-
etics.bwh.harvard.edu/pph2/).19

Direct Sanger sequencing was performed to identify
potential causative variant using an ABI3500 sequencer
(Applied Biosystems, Foster City, CA, USA).14 Primer
sequences applied to locus-specific PCR amplification
and Sanger sequencing were: 50-CCCAGCCACACACA
AGG-30 and 50-AGTGACTCCGGGAGGAAATG-30.
MutationTaster (http://www.mutationtaster.org/) was
used to test amino acid substitution impact on protein
function. Multiple protein sequence alignment was carried
out across different species using the NCBI BLAST
(http://blast.st-va.ncbi.nlm.nih.gov/Blast.cgi).19

Results

Clinical characteristics of patients

Table 1 presents detailed clinical, radiological, and
laboratory results. Two patients (IV:1 and V:1,
Figure 2(a)) had fractures. The other two (III:2 and
IV:4, Figure 2(a)) complained of bone pain. One (III:2,
Figure 2(a)) was diagnosed with osteoarthritis of the
knees. X-rays disclosed that all four patients had high
bone density and typical OPTA2 ‘‘sandwich’’ and ‘‘bone-
in-bone’’ radiographic signatures (Figure 1). BMD
results showed high bone density in all four. All had

elevated ALP, but normal serum calcium and hemoglo-
bin. One patient (IV:4, Figure 2(a)) had elevated
inorganic phosphorus (IP). The youngest patient
(V:1, Figure 2(a)) had low levels of 25-hydroxy vitamin
D3 (25-VitD3) and 25-hydroxy vitamin D2 (25-VitD2).

Exome sequencing and identification of pathogenic
variants

Exome sequencing generated sequence reads having an
average read length of 148.27 bp for a total of
56,208,952. A total of 56,172,518 reads (99.94%) were
mapped to human reference genome sequence. A total of
35,234 SNPs, including 16,939 in the exon regions and
1,502 in the splicing sites, were detected. A total of 2,413
indels, including 377 in the exon regions and 177 in the
splicing sites, were identified. Variants which have been
recorded in 1000 Genomes Project with fre-
quency> 0.5%, dbSNP137 with a minor allele frequency
more than 1% and NHLBI-ESP6500, and synonymous
variants were excluded. Using a prioritized strategy,
potential disease-causing nonsynonymous variants were
retained after the bioinformatics predictions by SIFT
and PolyPhen-2. Except for a variant c.2350A>T
(p.R784W) in the CLCN7 gene (NCBI reference
sequence: NM_001287.5), no variants in known osteope-
trosis disease-causing genes were detected.

Sanger sequencing confirmed the heterozygous vari-
ant CLCN7 c.2350A>T in the proband, which was also
detected in the other three affected family members
(III:2, IV:1, and V:1, Figure 2(a) and (b)) but was
absent in the proband’s unaffected father and elder
sister (III:1 and IV:3, Figure 2(a) and (c)), and the 800
ethnically matched controls (100 normal controls in this
study and 700 Chinese controls without OPTA2 from
exome sequencing data of Novogene. By
MutationTaster, the variant was predicted to be dis-
ease-causing with a value close to 1, suggesting a high
security of the prediction. The p.Arg784 is shown to be a
highly conserved amino acid residue among different
species from zebrafish to human according to multiple
protein sequence alignment (Figure 3).

Discussion

Osteopetrosis is a rare condition with marked genetic
heterogeneity and high clinical variability.2,20 OPTA2,
also known as autosomal dominant osteopetrosis type
II (ADO-II) or Albers-Schönberg disease, was first
described by Albers Schönberg in 1904 and is generally
considered as an adult or adolescent onset condition
caused by CLCN7 mutations.11,20,21 It occurs in 0.2–1/
100,000 adults and generally manifests with osteosclero-
sis involving the spine, basis cranii, and pelvis,12,22

exhibiting a highly variable phenotype with penetrance
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of 56%–90%.12 Phenotypes can be present either asymp-
tomatically or with symptoms ranging from very mild to
severe. The highly variable phenotype, both in presence
and severity, may be due to the presence of modifier
gene(s) on chromosome 9q21-q22.21,23 CLCN7 mutation
carriers might present with bone fracture, bone pain,
chronic osteomyelitis, osteoarthritis, scoliosis, rickets,
deafness, blindness, or be asymptomatic,11,13,24–26

which may be caused by increased BMD and poor
bone quality.21 Fracture, especially in long bones, is
the most likely gender difference-free clinical sequela of
OPTA2.24,27 Other clinical changes may include elevated
creatine kinase (CK), CK isoenzyme-MB (CK-MB) and
moderate hematological failure.12,28

Here, a Han Chinese family, some members of which
had hereditary osteosclerosis and a variety of other clin-
ical findings, was studied. Patients were considered to
have autosomal dominant osteopetrosis via generation-
to-generation transmission. All patients manifested
similarly with such conditions as ‘‘sandwich’’ and
‘‘bone-in-bone’’ radiographic signatures, elevated BMD
and ALP levels. Bone fracture, bone pain, and osteoarth-
ritis were present in some of these patients. Exome
sequencing revealed a novel c.2350A>T (p.R784W)
variant in exon 25 of the CLCN7 gene in the proband.
Subsequently, Sanger sequencing disclosed that this vari-
ant co-segregated with the disease in this family but
was absent in 800 controls. The p.Arg784 is a phylogen-
etically conserved amino acid residue among various
vertebrates, implying its probable importance in struc-
ture and function, and bioinformatics predictions sug-
gest the alteration to be pathogenic. All these evidences
indicate that the c.2350A>T variant is likely deleterious
and may be the pathogenic mutation for OPTA2 in this
family.

The CLCN7 gene consists of 25 exons spanning over
30 kb in the human genome. It encodes the 805-amino-
acid chloride channel protein 7 (ClC-7). The ClC-7 pro-
tein is a member of the chloride channel family, which is

a homodimer having two homologous subunits. Each
subunit has eighteen intramembrane a helices, four Cl�

binding sites, and two cystathionine beta synthase (CBS)
domains.11 ClC-7, a 2Cl�/1H+ antiporter, is highly
expressed in the osteoclast ruffled membrane, providing
the chloride conductance necessary for osteoclast-
mediated bone degradation and supporting bone
resorption.10,12,21

In 2001, using linkage analysis, the OPTA2 disease
gene locus was mapped to chromosome 16p13.3 in five
French families and one Danish family. Subsequently,
several mutations in the CLCN7 gene were detected in
these OPTA2 families.9,29 Presently, there are more than
30 pathogenic mutations in the CLCN7 gene identified in
OPTA2 patients. The p.G215R, p.P249L, p.R767W, and
c.2385_2386delAG in the CLCN7 gene are considered
hotspot mutations.9,12,13,24,26,27,30–34

CLCN7 mutations include missense mutations, dele-
tions, insertions, splicing mutations, and repeat vari-
ations. At least 85 mutations in the CLCN7 gene are
recorded in the Human Gene Mutation Database
(http://www.hgmd.cf.ac.uk/ac/all.php). The vast major-
ity of mutations are found in patients with OPTA2 and
autosomal recessive osteopetrosis type IV (OPTB4),
which is another serious type of osteopetrosis.35

The mutation p.R784W is located in the CBS2
domain in ClC-7. More than nine mutations have been
detected in the CBS2 domain of ClC-7,9,24,27,31,32,34

which participates in protein sorting.36 The p.R784W
mutant might disturb the protein sorting and then inter-
fere with the protein formation in the ruffled-border for-
mation, which supports lysosomal function and bone
resorption.7,10

Conclusion

A heterozygous c.2350A>T mutation in the CLCN7
gene was found to be responsible for OPTA2 in members
of a five-generation family. The study revealed that
exome sequencing is a powerful and effective strategy
to diagnose OPTA2, a heterogeneous disease.15,20 The
findings broaden the CLCN7 gene mutation spectrum,
significantly impact clinical therapeutic regimen deci-
sions, prognosis evaluations, and antenatal diagnoses
for OPTA2 family members.37

Author Contributions

HD, DH, and YG conceived and designed the experi-
ments. HD, DH, and HX performed the experiments.
HD, DH, PR, HX, LY, LL, QL, and YG analyzed the
data. HD, DH, PR, LL, and YG contributed reagents/
materials/analysis tools. HD, DH, and YG wrote the
manuscript. All authors reviewed and approved the
final manuscript.

Figure 3. Conservation analysis of chloride channel protein 7

p.Arg784 amino acid residue.
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