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Genome-wide association studies (GWASs) have identified abundant genetic
susceptibility loci, GWAS of small sample size are far less from meeting the previous
expectations due to low statistical power and false positive results. Effective statistical
methods are required to further improve the analyses of massive GWAS data. Here
we presented a new statistic (Robust Reference Powered Association Test1) to use
large public database (gnomad) as reference to reduce concern of potential population
stratification. To evaluate the performance of this statistic for various situations,
we simulated multiple sets of sample size and frequencies to compute statistical
power. Furthermore, we applied our method to several real datasets (psoriasis genome-
wide association datasets and schizophrenia genome-wide association dataset) to
evaluate the performance. Careful analyses indicated that our newly developed
statistic outperformed several previously developed GWAS applications. Importantly,
this statistic is more robust than naive merging method in the presence of small
control-reference differentiation, therefore likely to detect more association signals.

Keywords: GWAS, reference, public datasets, test statistic T, online tool

INTRODUCTION

Genome-wide association studies (GWASs) have been widely applied with the goals to detect
genetic variants which contribute to complex traits in the past decade (McCarthy et al., 2008).
In general, allele frequencies of genetic variants are compared between cases that are supposed
to have a high prevalence of susceptibility alleles and controls that are considered to have a lower
prevalence of such alleles. And genomic loci correlated with various traits had been detected using
the efficient approaches (He et al., 2009).

Although GWASs have led to abundant significant findings (Easton et al., 2007; Hakonarson
et al., 2007; Parkes et al., 2007; Zeggini et al., 2007; Thomas et al., 2008), a few practical difficulties
hinder the discovery of more rare or low-frequency genetic variants. For example, limited sample
sizes make it difficult to achieve high statistical power which shows the probability of identifying

1http://drwang.top/gwas.html
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the latent genetic variants (Wellcome Trust Case Control
Consortium, 2007; He et al., 2009). Besides, difference in genetic
background, also known as population stratification, between
cases and controls could inflate type I error rate, thereby, leading
to increasing level of false positive findings (Bacanu et al., 2000).

Availability of large public datasets contain large amount
of useful genetic information. Utilizing large public datasets
as reference may increase the sample size and ease the low
power brought by insufficient sample size. However, population
stratification and genotyping platform differences (He et al.,
2009) between public datasets and cases may lead to inflated
type I error rate. Our study aim is to appropriately utilize the
public datasets to conservatively ameliorate the situation of small
samples and low statistical power. In this manuscript, we describe
a novel method to properly use public datasets (gnomad) as
reference. In particular, we introduce a large public population
as reference which has similar genetic background with control
group. The null hypothesis was that allele frequency of SNPs
among case (ca), control (co) and reference (re) was equal,
and that the control and reference might compose a new large
reference (co+re).

Specifically, we constructed a new test statistic T = ln(P(ca−
(co+ re)))− ln(P(co− re)) in which P(ca− (co+ re)) is p-value
of 2 × 2 Fisher exact test (Fisher, 1922, 1954; Agresti, 1992) of
the SNP between case and control+reference, and P(co− re) is
p-value of 2 × 2 Fisher exact test (Fisher, 1954; Agresti, 1992)
of the SNP between control and reference. The T statistic takes
differences between control and reference into account, which is
more robust than P(ca− (co+ re)) or P(ca− re)).

In this manuscript, we present a method to use public datasets
as reference in the association analysis. The results of simulation
and real data application showed that our new method could
increase statistical power, particularly for small GWAS researches
in real application. And the online tool (Robust Reference
Powered Association Test2) has been made available.

RESULTS

Results From Simulation Study
To evaluate the performance of our model for various situations,
we simulated six parameters to compute the desired statistical
power. The parameters include case sample size, allele frequency
in case, control sample size, allele frequency in control, reference
sample size and allele frequency in reference. Six different
parameters were set to several typical values to simulate real
scenarios. The case and control size were set from small to
large. Also, allele frequencies were set from rare to common.
Additionally, we selected two different reference of 10,000 and
100,000 samples. In detail, we set case size (case = 100, 500,
1000, 3000), control size (control = 0.5∗case, 1∗case, 2∗case,
5∗case), reference size (reference = 10,000, 100,000). And
allele frequencies were set in the reference (ref = 0.001, 0.01,
0.05, 0.15, 0.3), in control (frequencies = 1∗ref, 1.1∗ref) and
in case (frequencies = 1∗ref, 1.1∗ref, 1.5∗ref, 3∗ref). Totally,

2http://drwang.top/gwas.html

TABLE 1 | Simulation power in representative cases.

Groups N Frequency Alpha ca−(re+co) co − re ca − co T

Case 500 0.150 0.050 0.0472 0.0463 0.0431 0.0481

Control 500 0.150 0.010 0.0092 0.0089 0.0079 0.0094

Ref 10000 0.150 0.001 0.0008 0.0008 0.0008 0.0008

Case 500 0.165 0.050 0.2290 0.2505 0.0426 0.1465

Control 500 0.165 0.010 0.0895 0.0998 0.0080 0.0568

Ref 10000 0.150 0.001 0.0193 0.0223 0.0008 0.0118

Case 500 0.165 0.050 0.2142 0.4228 0.0478 0.0979

Control 1000 0.165 0.010 0.0807 0.2098 0.0094 0.0359

Ref 10000 0.150 0.001 0.0182 0.0655 0.0009 0.0078

Case 500 0.165 0.050 0.1771 0.7398 0.0485 0.0323

Control 2500 0.165 0.010 0.0622 0.5127 0.0097 0.0109

Ref 10000 0.150 0.001 0.0124 0.2509 0.0009 0.0021

Case 500 0.165 0.050 0.2496 0.0464 0.1367 0.2383

Control 500 0.150 0.010 0.0992 0.0091 0.0429 0.0949

Ref 10000 0.150 0.001 0.0228 0.0009 0.0075 0.0215

Case 500 0.225 0.050 1.0000 0.0465 0.9891 0.9998

Control 500 0.150 0.010 0.9997 0.0092 0.9524 0.9990

Ref 10000 0.150 0.001 0.9965 0.0009 0.8300 0.9941

Case 500 0.030 0.050 0.9953 0.0418 0.8799 0.9919

Control 500 0.010 0.010 0.9808 0.0076 0.7038 0.9742

Ref 10000 0.010 0.001 0.9259 0.0008 0.4246 0.9152

there were 128,000 different combinations (see Supplementary
Table S1). Given sample size (N) and allele frequency (q),
we simulated the count of allele which followed binomial
distribution [B(2N, q)] for 100000 times. We drawn the QQ
plot (Turner, 2014) of a representative simulation under H0 to
assess the test statistic is well-calibrated (case size = 500, allele
frequency in case = 0.165, control size = 500, allele frequency
in control = 0.165, reference size = 10000, allele frequency
in reference = 0.165) (Supplementary Figure S1). We have
selected several representative cases to analyze the whole results
of simulations (Table 1). First, supposed that the sample size
of case, control and reference equaled 500, 500, and 10,000,
respectively which were close to the real conditions. And allele
frequencies in case, control, and reference were initialized to be
common (0.15). As indicated in Table 1, the type 1 error rate
of T was a bit higher than that of ca−(co+re), while both were
less than significant levels (alpha = 0.05, 0.01, 0.001). When there
was small population genetic differentiation between control and
reference, allele frequencies in case and control equaled 0.165
while allele frequency in reference was set as 0.15. In this case, the
type 1 error rate of T was less than that of ca−(co+re). Therefore,
as mentioned in Section “Materials and Methods,” our new test
is more robust than the simple P(ca− (co+ re)) method in the
presence of small control-reference differentiation.

As shown in Table 1, false positive results might occur
if there was small population genetic differentiation between
control and reference while no differentiation between case
and control. To evaluate the influence of control size, we
simulated different control sizes with the aim to detect the false
positive rate under different allele frequencies of case and control
(see Supplementary Table S2). We found that the false positive
rate of P(T) would decrease when control size was augmented.
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Furthermore, P(T)’s type 1 error rate was less than P(ca− co)’s
when the sample size of the controls was five times larger than
that of the cases. The false positive results were kept as low as
possible when the sample size of the controls was four times larger
than that of the cases (see Supplementary Table S2). In addition
to population stratification between control and reference, allele
frequency differentiation between case and control, between
case and reference due to different genetic background were
also simulated (see Supplementary Table S3). When there
was population stratification between case and control without
differentiation between case and reference, the type 1 error rate of
T was less than significant levels (alpha = 0.05, 0.01, 0.001) while
the type 1 error rate of ca−(co+re) and ca−co were large than
significant levels. In another scenario of population stratification
between case and reference without differentiation between case
and control, results of T might be false positive. However
increased sample size would control the type 1 error rate.

When the allele frequency in case was different from that in
control, T’s power was always higher than power of ca−co. We
could find that when there was a slight change of allele frequency
in case, the power of T was much higher than power of ca−co,
indicating that our method had high sensitivity for GWAS. When
the allele frequency in case was much higher than control’s, the
power approached to 1 with remarkable increase of T’s power.
When the allele frequency was rare, we could also draw the same
conclusion that our method could keep false positive rate low and
drastically increase the statistical power.

Results From the Psoriasis
GWAS Datasets
We applied our newly developed method to two psoriasis GWAS
(Nair et al., 2006; Fang et al., 2011) datasets to evaluate the
performance. 1,590 subjects (915 cases, 675 controls) in the
general research use (GRU) group and 1,133 subjects (431 cases
and 702 controls) in the autoimmune disease only (ADO)
group were analyzed.

For the GRU group and ADO group, SNPs that failed to pass
the HWE exact test were filtered (we used the p = 0.001 as the
threshold). Fisher exact test was used to compute the p-value of
allele frequency for each SNP. The threshold of p-value was set as
1.2 × 10−7 by Bonferroni Correction. Then we selected first 100
SNPs of lowest p-values for further analysis. Two different large
public datasets, gnomad.genome. NFE (Non-Finnish European,
N = 7,509) (ref1) (Lek et al., 2016) and gnomad.exome.NFE
(Non-Finnish European, N = 55,860) (ref2) (Lek et al., 2016),
were selected as the reference groups. So there were four
combinations: GRU group vs. ref1 (GRU_ref1), GRU group vs.
ref2 (GRU_ref2), ADO group vs. ref1 (ADO_ref1) and ADO
group vs. ref2 (ADO_ref2). For each condition, we computed the
p-value of our model (see Supplementary Table S4). Specially
for the exome dataset (ref2), some SNPs not in the exome were
excluded from the table.

To inspect the improvement of p-values in the whole level, we
drew the Manhattan plot of GRU group (Figure 1) and ADO
group (Figure 2) respectively. We observed notable changes of
p-values before and after performing our method. The peaks of

Figures 1, 2 jumped from about 1e-22 and 1e-32 to 1e-62 and
1e-52 respectively. Also the amount of SNPs with p-value between
1e-5 and 1e-8 has increased. The positive SNPs (rs12191877,
rs9468933, etc.) became more positive due to the added genetic
information of reference. Also, our method rescued a few SNPs
which turned from negative to positive (see Supplementary
Table S5). Then, we searched pubmed literature and found some
SNPs associated with psoriasis that had been reported by other
studies. Moreover we checked these novel significant SNPs in
GWAS catalog (Macarthur et al., 2016) to validate whether the
associations were replicated in recent related large GWAS studies.
By integrating the results of ref1 and ref2, we found that the SNPs
with ref2 as reference were included in the results of ref1. And
we presented the novel SNPs of GRU group (Table 2) and ADO
group (Table 3). We calculated the genomic inflation factor, also
known as lambda (λ). In GRU group, λ of P(T) and P(ca− co)
were 1.08 and 0.98 respectively. And in ADO group, λ of P(T)
and P(ca− co) were 0.81 and 0.96, respectively. Besides QQ plot
of P(T) and P(ca− co)were drawn to inspect the distributions
(Supplementary Figure S2).

For GRU group, rs13437088 [P(T) = 8.09E-17)], located 30 kb
centromeric of HLA-B and 16 kb telomeric of MICA (MIM:
600169), had been previously reported to be associated with
psoriasis (Feng et al., 2009). Besides, rs7192 [P(T) = 8.66E-
15] and rs20541 [P(T) = 1.13E-13] were candidate causal
SNPs at leukocyte antigen (HLA) loci (MIM: 142395) which
played an important roles in pathways of psoriasis (Lee et al.,
2012). Also, rs1051792 [P(T) = 4.77E-13] in the MICA gene
(rs1051792) had also been suggested to be specific for purely
cutaneous manifestations of psoriasis (Bowes et al., 2015). And
SNP rs2442719 [P(T) = 4.47E-11], located only 1 kb from the
telomeric end ofHLA-B (MIM: 142830), also exhibited significant
association with psoriasis (Feng et al., 2009). For the ADO group,
rs3130573 [P(T) = 1.70E-10] was located in PSORS1C1 (MIM:
613525) gene which was a major susceptibility locus for psoriasis
(Fan et al., 2008). Likewise we drawn the QQ plot of P(T) and
P(ca− co) (Supplementary Figure S3).

Results From the Schizophrenia
GWAS Datasets
We also applied our newly developed method to one
schizophrenia GWAS (Zuo et al., 2013) dataset to evaluate
the performance. The SNPs that did not pass the HWE exact
test were filtered (p = 0.001). Fisher exact test was used to
compute the p-value of allele frequency for each SNP. There
was no statistically significant SNP with the threshold as
7.14× 10−8 by Bonferroni Correction. The large public datasets,
gnomad.genome.NFE (Non-Finnish European, N = 7509) (ref1)
(Lek et al., 2016) was selected as reference to compute the p-value
of our model (see Supplementary Table S6).

For the schizophrenia GWAS dataset (Zuo et al., 2013),
the typical Fisher exact test did not yield genome-wide
significant findings. After the introduction of reference, we found
that several novel SNPs were associated with schizophrenia
(Table 4). The Manhattan plot (Figure 3) clearly showed
that before performing our method there were only a few
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FIGURE 1 | Manhattan plot of GRU group of Psoriasis GWAS datasets. The bottom figure corresponded to the P(ca−co) and top figure corresponded to the P(T),
and reference was ref1.

SNPs with p-value below 1e-5 in the bottom figure. And
after performing our method, plenty of SNPs came to the
fore with p-value between 1e-5 and 1e-8. In addition, there
were significant SNPs with p-value below 7e-8, some of
which had been reported in previous studies. The SNP
rs12140791 is located in NOS1AP (MIM: 605551) gene which
is essential for brain development and function and of
potential relevance to schizophrenia (Glessner et al., 2010). The
rs17021364 and rs110974077 were reported to be associated with
schizophrenia in a genome-wide meta-analysis (Wang et al.,
2010). The rs35648 (p-value = 9.65E-5) was also reported by
a previous large-scale GWAS (Shi et al., 2009). The genomic
inflation factors were 0.77 and 1.01 for P(T) and P(ca−co)

respectively. Also QQ plot of P(T) and P(ca− co) were drawn
(Supplementary Figure S4).

MATERIALS AND METHODS

Framework of Robust Reference
Powered Association Test
Suppose we have three populations: case, control and public data
pools, intuitively we want to merge the control and reference
population to form a large control pool to gain more power on
allele-disease association test. However, we are concerned about
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FIGURE 2 | Manhattan plot of ADO group of Psoriasis GWAS datasets. The bottom figure corresponded to the P(ca−co) and top figure corresponded to the P(T),
and reference was ref1.

the potential population differentiation and genotyping platform
difference between control and the reference (He et al., 2008).

A simplistic way to alleviate such concern is to perform a
control (co) vs. reference (re) Fisher exact test (Fisher, 1922).
If a p-value is not significant and the control sample size is not
too small, then this concern is resolved. However, choosing the
significance level is arbitrary and the decision is subjective. We
need an objective version of such procedure to correct the effect
of co-re (control vs. reference) difference.

Denote the p-value of 2 × 2 Fisher exact test (Fisher,
1922, 1954; Agresti, 1992) of the SNP between case and
control+reference as P(ca− (co+ re)). Denote the p-value of
2 × 2 Fisher exact test of the SNP between control and

reference as P(co− re). We define a test statistic: T = ln(P(ca−
(co+ re)))− ln(P(co− re)) (Figure 4). T will be smaller if the
difference between case and control + reference is larger, while
T will be larger if the difference between control and reference is
larger. Therefore, T is a more robust statistic than P(ca− (co+
re)) as it takes the control-reference difference into account by
penalizing P(co− re).

Our null hypothesis is that the allele frequency of the
SNP is equal among cases, controls and references. Under
the null hypothesis, both P(ca− (co+ re)) and P(co− re) are
independent and uniformly distributed on (0, 1). Under the
null hypothesis,− ln(P(ca− (co+ re))) and− ln(P(ca− co)) are
exponentially distributed with parameter 1 (Casella and Berger,
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TABLE 2 | SNPs rescued from negative to positive of GRU group.

RS P(co-re) P(ca−co) P(T) RS P(co-re) P(ca−co) P(T)

rs2021723 0.0943555 1.66E-07 7.99E-22 rs9266825 0.796691 2.03E-07 1.25E-13

rs1015465 0.0777779 2.22E-07 9.45E-22 rs9266845 0.747484 2.42E-07 2.50E-13

rs6906662 0.217811 3.06E-07 9.88E-20 rs9295991 0.747859 2.54E-07 3.28E-13

rs3094205 0.181069 1.76E-07 2.35E-19 rs9266813 0.974968 1.37E-06 3.87E-13

rs9262498 0.0562976 2.28E-06 2.62E-18 rs9266846 0.699231 2.37E-07 4.00E-13

rs9262492 0.0782655 2.24E-06 5.84E-18 rs1051792 0.949952 1.67E-06 4.77E-13

rs9295924 0.198905 1.04E-06 1.01E-17 rs176095 0.945133 2.04E-06 1.94E-12

rs6933779 0.225183 8.90E-07 1.15E-17 rs2239518 0.443697 1.48E-07 3.18E-12

rs2395471 0.419017 1.28E-07 1.37E-17 rs3130685 0.587326 5.00E-07 1.34E-11

rs10947208 0.470313 1.86E-07 2.65E-17 rs2894176 0.562234 6.25E-07 2.18E-11

rs13437088 0.534501 2.40E-07 8.09E-17 rs2442719 0.626544 1.07E-06 4.47E-11

rs4711229 0.663943 2.74E-07 7.27E-16 rs2734573 0.408163 4.93E-07 1.56E-10

rs2853950 0.863224 1.30E-07 1.70E-15 rs2858332 0.495284 1.11E-06 2.20E-10

rs7192 0.543898 8.41E-07 8.66E-15 rs3130048 0.156454 2.13E-07 2.73E-09

rs7194 0.563064 1.02E-06 1.25E-14 rs1003879 0.177049 4.68E-07 7.88E-09

rs12203586 0.269737 7.01E-06 1.27E-14 rs9391858 0.365437 6.00E-06 1.34E-08

rs2856726 0.309997 5.83E-06 1.90E-14 rs6894567 0.300402 4.80E-06 6.88E-08

rs20541 1 2.44E-07 1.13E-13

The SNPs reported in pubmed were shown in bold and italics.

TABLE 3 | SNPs rescued from negative to positive of ADO group.

RS P(co-re) P(ca−co) P(T) RS P(co-re) P(ca−co) P(T)

rs3095250 0.322996 1.94E-07 1.33E-12 rs3130043 0.6013 3.96E-07 3.30E-09

rs3095254 0.261656 2.77E-07 1.63E-12 rs1265762 0.498308 2.73E-07 4.85E-09

rs9468937 0.4478 4.06E-07 8.58E-12 rs2074504 0.551801 3.83E-07 6.91E-09

rs3094214 0.801659 1.38E-07 1.29E-11 rs3130573 0.413724 3.83E-07 1.15E-08

rs7772549 0.647633 5.40E-07 3.28E-11 rs6927461 0.527086 5.62E-07 1.45E-08

rs2524222 0.972433 5.09E-07 1.60E-10 rs2239518 0.328123 4.36E-07 2.12E-08

rs2524082 0.692881 1.29E-07 3.85E-10 rs2844724 0.397193 3.59E-07 2.32E-08

rs2523857 0.775127 4.12E-07 9.95E-10 rs16899213 0.209543 1.39E-07 6.49E-08

The SNPs reported in pubmed was shown in bold and italics.

TABLE 4 | SNPs rescued from negative to positive of schizophrenia dataset.

RS P(co-re) P(ca−co) P(T) RS P(co-re) P(ca−co) P(T)

rs12140791 0.497902 1.92E-05 5.73E-10 rs17021364 0.624051 5.04E-05 1.64E-08

rs10753758 0.399987 3.84E-05 8.91E-10 rs35648 0.677469 5.29E-05 4.46E-08

rs1109740777777 0.814451 2.03E-05 9.06E-09

The SNPs reported in pubmed was shown in bold and italics.

2002). And T is the difference of two exponentially distributed
variables, thus T is Laplace distributed as T∼ Laplace (0, 1)
(Mcneil, 2003). The one side p-value of T is as follow:

P(T) =


P(ca− (co+ re))

2P(co− re)
, P(ca− (co+ re)) ≤ P(co− re)

1− P(co− re)
2P(ca− (co+ re))

, P(ca− (co+ re)) > P(co− re)


From the above formula one can easily see that the

P(co− re) acts as a penalizer/normalizer against P(ca− (co+
re)). Therefore, our new statistic T is more robust than the simple

P(ca− (co+ re)) method in the presence of small control-
reference differentiation. However, in the presence of strong
population differentiation or genotyping platform difference,
even our correction may not be effective, we therefore need
to restrict P(co− re) to be not significant with a suggested
threshold of 0.01.

The Psoriasis GWAS Datasets
We obtained the psoriasis datasets (Nair et al., 2006; Fang et al.,
2011), as a part of the Collaborative Association Study of Psoriasis
(CASP), from the Genetic Association Information Network
(GAIN) database (dbGaP Accession No. phs000019.v1. p1),
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FIGURE 3 | Manhattan plot of schizophrenia GWAS dataset. The bottom figure corresponded to the P(ca−co) and top figure corresponded to the P(T), and
reference was ref1.

a partnership of the Foundation for the National Institutes
of Health. All genotypes were filtered by checking for data
quality (Feng et al., 2009). A dermatologist diagnosed all
psoriasis (MIM: 177900) cases. Each participant’s DNA was
genotyped with the Perlegen 500K array. Both cases and
controls agreed to sign the consent contract, and controls

(≥18 years old) had no confounding factors relative to a known
diagnosis of psoriasis.

The Schizophrenia GWAS Dataset
The schizophrenia dataset (Zuo et al., 2013) came from the
GAIN dataset (dbGaP Access No. phs000021.v1.p1), including
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FIGURE 4 | The summarized design of the test statistic T.

1,195 cases with schizophrenia (MIM: 181500) and 954 controls.
The subjects were genotyped on AFFYMETRIX AFFY_6.0
platform. All subjects were at least 18 years old. The cases
included 746 males (41.9 ± 10.8 years) and 449 females
(43.0 ± 9.8 years); and the controls included 362 males
(46.2 ± 13.7 years) and 592 females (45.0 ± 12.9 years).
Affected subjects met lifetime DSM-IV criteria for schizophrenia
(American Psychiatric Association 1994). Cases were excluded
if they had worse than mild mental retardation, or if their
psychotic illness was judged to be secondary to substance
use or neurological disorders. Controls were excluded if
they did not deny all of the following psychosis screening
questions: treatment for or diagnosis of schizophrenia or
schizoaffective disorder; treatment for or diagnosis of bipolar
disorder or manic-depression; treatment for or diagnosis
of psychotic symptoms such as auditory hallucinations or
persecutory delusions.

DISCUSSION

Associations between SNPs and complex traits were detected by
comparing frequencies of alleles in case and control group in
GWAS (McCarthy et al., 2008). Several significant SNPs have
been identified in classic GWAS studies (Duerr et al., 2006;
Hunter, 2007; Hunter et al., 2007; Scott et al., 2007). However,
other SNPs of low frequencies which contribute to the complex
traits remain hidden in the false negative results (Frayling et al.,
2007; Willer et al., 2008; Sanna et al., 2008; Nair et al., 2009;
Wang et al., 2013). To identify more novel susceptibility loci,
large-scale GWAS is a costly and time-consuming approach.
It is necessary to design more sensitive and accurate statistical
methods. Interestingly, the results indicated that our method
could increase the power which may contribute to detecting more
significant SNPs.

Our simulations focused on several representative cases to
evaluate the performance of the new model. When the allele
frequencies of case, control and reference were equal, the power

of T was higher than power of ca−(co+re), while both less than
false positive rate. False positive results would be produced in
the presence of small population genetic differentiation between
control and reference. However, as the control size increased, the
false positive rate of P(T) would be reduced (Table 1). The false
positive rate would be controlled well, when the control sample
was large enough. What’s more, T’s power was always higher than
power of ca−co, when the allele frequencies of case and control
were different, indicating that our method was more robust and
had high sensitivity for GWAS.

Considering that allele frequency divergence of multiple
variants due to different platforms is more serious than slight
population stratification in practical application, we designed the
statistic based on single variant rather than multiple variants.
Allowing slight population stratification between control and
reference, the simulation has shown the large sample size of
control would suppress the false positive results. Moreover the
statistical power and utility of our method were also elevated.

For the psoriasis GWAS datasets (Nair et al., 2006; Fang
et al., 2011), the positive SNPs became more positive and some
of the negative SNPs turned to be positive after application
of our method. The rescued SNPs, rs1343708 (Feng et al.,
2009), rs7192 (Lee et al., 2012), rs20541 (Lee et al., 2012),
rs1051792 (Bowes et al., 2015), rs2442719 (Feng et al., 2009),
and rs3130573 (Fan et al., 2008) were identified to be true
positive. For the schizophrenia GWAS dataset (Zuo et al.,
2013), typical Fisher Exact tests produced no significant positive
genetic loci. However, our method found that SNPs rs12140791
(Glessner et al., 2010), rs10753758, rs11097407 (Wang et al.,
2010), rs17021364 (Wang et al., 2010), rs35648 (Shi et al.,
2009) could potentially be associated with schizophrenia. The
results indicated that our method could be sensitive to generate
more positive SNPs.

In the aforementioned application of our method to the
psoriasis GWAS genetic datasets (Nair et al., 2006; Fang et al.,
2011), we selected two large public datasets as reference groups
(Lek et al., 2016). With different references, the model will
compute different p-values for the test statistic. In the case of
scenario, the p-value is lower than threshold of 0.01, indicating
significant differentiation between control and reference, the
result would be false positive. In this situation, selecting an
appropriate dataset as the reference is the key to obtain better
result. In addition, selecting multiple different references is
feasible with the online tool. By comparing and integrating
the output of different references, reasonable significant P(T)
could provide more effective information for SNPs associated
with the traits.

Novel SNPs with weak positive signals could be discovered
when the sample size of case and control are insufficient in GWAS
(He et al., 2009). With the support of reference database, the
new p-value of some false negative genetic loci would decrease
significantly down to the threshold. And our test statistic T
is more robust than P(ca− (co+ re)) as it takes the control-
reference difference into account by penalization of P(co− re).

We presented a new statistic T to use large public database as
reference to reduce concern of potential population stratification.
And the new statistic proposed here is effective to discover
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novel genome-wide significant loci with both small and
large sample sizes.
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