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Abstract: In previous studies, information dynamics methods such as Von Neumann entropy and
Rényi entropy played an important role in many fields, covering both macroscopic and microscopic
studies. They have a solid theoretical foundation, but there are few reports in the field of mechanical
nonlinear systems. So, can we apply Von Neumann entropy and Rényi entropy to study and analyze
the dynamic behavior of macroscopic nonlinear systems? In view of the current lack of suitable
methods to characterize the dynamics behavior of mechanical systems from the perspective of
nonlinear system correlation, we propose a new method to describe the nonlinear features and
coupling relationship of mechanical systems. This manuscript verifies the above hypothesis by
using a typical chaotic system and a real macroscopic physical nonlinear system through theory and
practical methods. The nonlinear vibration correlation in multi-body mechanical systems is very
complex. We propose a full-vector multi-scale Rényi entropy for exploring the chaos and correlation
between the dynamic behaviors of mechanical nonlinear systems. The research results prove the
effectiveness of the proposed method in modal identification, system dynamics evolution and fault
diagnosis of nonlinear systems. It is of great significance to extend these studies to the field of
mechanical nonlinear system dynamics.

Keywords: information dynamics correlation; Von Neumann entropy; nonlinear system; Rényi
entropy; full vector multi-scale Rényi entropy

1. Introduction

Quantum entanglement is one of the most interesting properties in quantum mechanics [1–3].
It describes the whole properties of the entangled system. In a quantum entangled system, the correlation
between the properties of the subsystems is not separable in the space domain. As long as there is
entanglement between the subsystems, no matter how far away they are, there is still interaction between
them. Because of the coherence and entanglement between quantum systems, there are a lot of available
information resources in the entangled system, therefore, it is possible for information transmission to
cross the space limit. Quantum entanglement plays an important role in quantum computation [4],
quantum information processing [5] and quantum physical systems [6–8]. The measurement of the
correlation between physical systems is the core of the research on complex physical systems under
the background of modern technology [9], but the correlation between physical systems cannot be
explained by classical physics [4,5]. In physics, entropy can be interpreted as the measurement of the
disorder degree of the system [3]. It can measure the uncertainty of the state of a physical system [9,10].
Methods such as Von Neumann entropy, relative entropy, Rényi entropy and linear entropy can
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measure the complexity of nonlinear systems [11–19]. Researchers have used Von Neumann entropy
and Rényi entropy and other information dynamics methods to conduct in-depth research [16–18]
in the fields of quantum information transmission [19–21], molecular dynamics systems [22] and
superconducting circuits [23,24].

For the non-entangled states, the mixed state can be decomposed into the product states of all pure
state subsystems, and the subsystems appear in the composite system with a certain probability. At this
time, the properties of other subsystems will not work, and the entropy can be used to measure and
quantify the system [25]. In a series of recent pioneering works, the application of information dynamics
methods such as Von Neumann entropy and Rényi entropy in microcosmic nonlinear dynamics system
is discussed. When the literature [26–30] quantifies the various behaviors of entanglement by Von
Neumann entropy or linear entropy [31], it is proved that nonlinear systems interactions can be
characterized by entanglement entropy. Vedral [32] discusses in depth the entanglement measure and
application of Von Neumann Reduced Entropy and Relative Entanglement Entropy. Feng et al. [33]
used algebraic methods to explore the entanglement dynamics of the non-harmonic vibration of real
molecules in triatomic molecules. Abdel-Aty et al. [34] comprehensively analyzed the information
entropy pattern generated during the time evolution of the interaction between ions and laser fields,
and established a clear relationship between precise information entropy and multi-level ions and
laser fields. Hou et al. [35] uses the reduced density linear entropy method to study the dynamic
entanglement of two kinds of stretching vibrations of triatomic molecules H2O and SO2 in algebraic
models under different MQN and initial states, so that different entanglement behaviors in these
two molecules can be characterized. Liu et al. [3] used an algebraic model to study the dynamics
entanglement of small molecule vibrations, and gave the analytical expressions of linear entropy, Von
Neumann entropy and Lyapunov function of the integrable dimer and the actual small molecule
in the initial Fock state and coherent state. Kis et al. [36] uses analytical methods to determine the
vibrational state of polyatomic molecules excited by the optically limited pulse, and uses Von Neumann
entropy to describe the size and vibration mode of the entanglement. Ecker et al. [37] used holography
to numerically study the entanglement entropy and quantum zero energy conditions in strongly
coupled far non-equilibrium quantum states. Wang et al. [38] studied quantum entanglement in
two-dimensional ion trap systems. The quantum entanglement between ions and phonons is discussed
by using the Reduced Entropy, and the quantum entanglement between the two degrees of freedom of
the vibrational motion in the x and y directions is discussed by using the quantum Relative Entropy.
Yuan et al. [15] studied the quantum entropy, energy and entanglement dynamics of different initial
states in an important spectral Hamiltonian of the curved triatomic molecules H2O, D2O and H2S.

The information dynamics methods such as Von Neumann entropy and Rényi entropy have
experienced the development from theory to experiment, from microcosmic to macroscopic, from
discrete to continuous [39–43]. In all of these studies, people prefer and focus on the entanglement
of microscopic physical systems. There are few studies on macroscopic physical systems. There are
complex connections and differences between microscopic quantum signals and macroscopic physical
signals. We use Von Neumann entropy and Rényi entropy to explore the modal identification, system
dynamics evolution and fault diagnosis of nonlinear mechanical system. It is of great significance to
extend these studies to the study of nonlinear system dynamics.

Rotating Machinery Structural Health Monitoring (SHM) is an important means to identify
potential faults, evaluate operation status and predict reliable operation probability based on collected
condition monitoring data [44,45]. In the case of structural health degradation, the corresponding
vibration signal will exhibit a change caused by a potential failure [46–49].

In large-scale rotating machinery transmission, due to the occurrence of sporadic failure of key
components to stimulate the nonlinear vibration of the entire mechanical system, the vibration signal
of the health monitoring of the rotating mechanical structure has many typical characteristics, which
can be roughly divided into two categories: (1) Internal characteristics: strong nonlinearity, instability,
strong coupling, etc. (2) External characteristics of the signal: external complex excitation and noise
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have obvious influence on system vibration. The internal and external characteristics of the signal
interact and couple with each other. We try to use the Von Neumann entropy and Rényi entropy to
analyze the strong nonlinearity, instability, strong coupling and other characteristics of the signal,
extract the sensitive characteristic variables of the signal, and perform modal identification. Then
the second problem we face next is how to reduce the interference of complex external excitation
and improve the signal-to-noise ratio to some extent, because noise has a great influence on the Von
Neumann entropy and Rényi entropy between the calculated signals. Therefore, robust data denoising
technology must be developed to keep the features sensitive to changes of interest [50]. The large
amount of data and low signal-to-noise ratio increase the difficulty of vibration signal processing.
Therefore, research on how to solve the problem of excessive data volume during state monitoring and
how to effectively reduce noise in data has attracted researchers in various fields [51].

As a new sampling theory, compressed sensing obtains discrete samples of signals by studying
the sparse characteristics of signals, and perfectly reconstructs signals by nonlinear reconstruction
algorithm [52–54]. Compressed sensing technology can be used to reconstruct sparse signals with
noisy interference and no-noise interference [55], and has strong robustness and sparsity for multi-level
quantization of measurement data [56]. Once proposed, it has received great attention in the
fields of information theory [57], image processing [58–60], radar imaging [61,62], and biomedical
engineering [63,64].

Changes in the environment in which the machine operates are unpredictable [65]. When critical
transmission components of large mechanical equipment, such as planetary gears and bearings, fail,
their vibration signals have typical strong nonlinear characteristics. Condition monitoring, fault
diagnosis and dynamic inversion of mechanical equipment have always been the hotspots and
difficulties of scholars in related fields in various countries. Therefore, it is very suitable to use the
chaotic system and the real rotating mechanical nonlinear system to verify the validity, superiority
and universality of the Von Neumann entropy and Rényi entropy theory. The nonlinear vibration
correlation in multi-body mechanical systems is very complicated. Therefore, it is very meaningful and
necessary to study the relationship between Von Neumann entropy and Rényi entropy and vibration
interaction in nonlinear systems.

The main contribution of this work is outlined as follows:

(1) By establishing the state density matrix of nonlinear mechanical systems, the state characteristics of
nonlinear mechanical systems and Lü’s chaotic systems are described. The full-vector multi-scale
Rényi entropy based on homology information fusion is constructed. A method is proposed to
quanlifies the degree of chaos, nonlinear characteristics and coupling relationship of the system
by using Von Neumann entropy and full vector multi-scale Rényi entropy. Von Neumann entropy
and Rényi entropy are successfully applied to the field of mechanical system dynamics.

(2) By using Von Neumann entropy and Rényi entropy, the chaotic degree, nonlinear characteristics and
coupling relationship of Lü’s chaotic system and nonlinear mechanical system can be quantified,
so as to achieve the purpose of mode identification, system time evolution and fault diagnosis.

(3) In the study, we found some rules between Rényi entropy and its scale parameters.

The outline of the manuscript is as follows: In Section 2, we describe in detail the theory and
properties of Von Neumann entropy and Rényi entropy. At the same time, the theory of compressed
sensing is introduced, and the noise reduction characteristics of compressed sensing are deeply studied.
In Section 3, we simulate the time evolution of chaotic systems, and use the Von Neumann entropy
and Rényi entropy to analyze the chaotic characteristics and coupling strength between the causal
information of Lü’s chaotic systems, and compare their dynamic behaviors in different initial states.
In Section 4, Von Neumann entropy and Rényi entropy is applied to the typical nonlinear physical
system signals such as planetary gear fault signal and bearing life-cycle experiment signal. The ability
of Von Neumann entropy and Rényi entropy for modal identification is studied in detail. Using the
Von Neumann entropy and Rényi entropy, the coupling between two degrees of freedom in nonlinear
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physical system and degree of nonlinearity between fusion signals in different state systems are
discussed. And the law between Rényi entropy and its scale parameter is also explored. In Section 5,
we discuss the results. In Section 6, we summarize and suggest possible extensions to our work.

2. Theory

2.1. Von Neumann Entropy and Rényi Entropy

If there is entanglement between two microscopic particles in a common system, by measuring
the properties of one of the particles, it is possible to predict the information of another particle that is
entangled with the particle, thereby avoiding the interference of the measurement technique with the
true physical state of the particle [66]. Entangled entropy reflects the degree of chaos of the entangled
system and the uncertainty of the quantum system. Von Neumann entropy and Rényi entropy are a tool
for measuring the degree of entanglement in the system. They can quantify the chaotic degree of the
system and the nonlinear feature and coupling relationship between different systems. The algorithms
for Von Neumann entropy and Rényi entropy applied to nonlinear mechanical systems are as follows.

Uncorrelated vectors are orthogonalized using Schmidt orthogonalization:∣∣∣ψ1
〉
= |I〉1
...∣∣∣ψk

〉
= |I〉k −

〈|ψk〉,|I〉k−1〉

〈|I〉k−1,|I〉k−1〉
|I〉k−1

(1)

In the formula, {I}k is the right vector of vibration signal and
{
ψ
}
k is the orthogonal signal of

vibration signal {I}k.Then, the orthogonal vectors
{
ψ
}
k is transformed into the form of left vector and

right vector.
The quantum state of the particle is described by the state vector function and exists in the Hilbert

space in the form of complex vector. In a mixed state system, each subsystem appears with a certain
probability, and there is no problem of coherence or interference between them. The entangled state
cannot be written as the product state of all pure state subsystems, which is composed of multiple
probability amplitude correlations in the non-fixed phase. The subsystems interact with each other
and cannot be separated. In order to describe the state characteristics of quantum system conveniently,
the density matrix is introduced. In the nonlinear mechanical system, the signal will inevitably be
affected by many external factors, which aggravate the degree of nonlinearity and chaos. We hope
to find a mathematical model to describe the state characteristics of nonlinear mechanical systems.
Therefore, in this manuscript, the state density matrix [67,68] of the nonlinear mechanical system
is established as follows. The Von Neumann entropy and Rényi entropy are used as quantitative
indicators to quantify the degree of chaos, nonlinear characteristics and coupling, and analyzes the
problems of nonlinear mechanical systems in modal identification, system time evolution and fault
diagnosis:

ρ =
∑

k

∣∣∣ψk
〉
pk

〈
ψk

∣∣∣ (2)

In the formula,
∣∣∣ψk

〉
is a column vector, and

〈
ψk

∣∣∣ is a transposed form of
∣∣∣ψk

〉
; in all directions,

the probability of the sensor collecting the fault information is equal (i.e., pk = 1/n), and n is the
number of subsystems.

In information theory, Renyi entropy is a function of τ, when τ takes different parameter values,
it represents different types of entropy functions. That is to say, it includes Hartley entropy, Shannon
entropy, collision entropy and minimum entropy. It is precisely that Renyi entropy has this generality,
we should fully consider its limitations and scope of application. τ > 2 is a generalized correlation
entropy, which has two limitations: All ranks of association refer to non-cross correlation and all
ranks of association refer to non-memory association [69]. However, Renyi entropy and its included
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generalized entropy represent the uncertainty of information and measured the chaotic, nonlinear and
coupled degree of the system.

Von Neumann entropy [67]:
SV = −tr(ρ lnρ) (3)

Rényi entropy [68]:

Sτ(ρ) =
1

1− τ
ln tr(ρτ), τ ∈ Z+ and τ , 1 (4)

2.2. Compressive Sensing

2.2.1. Theory

Compressed sensing exploits the sparseness and compressibility of a signal in a certain domain.
The original signal is observed with an observation matrix that is uncorrelated with the transform base
to form an observation value in a low-dimensional space. Finally, the reconstruction signal is obtained
by solving the convex optimization problem with known measurement matrix, transformation basis
and observation value. Improving the independent randomness between each observation base and
the degree of incoherence, between the observation base and the signal, the measurement number
and length of the observation value will be optimized accordingly, making the reconstruction result
more accurate. This manuscript will use the noise reduction capability [70] of compressed sensing to
reconstruct the acquired signal to reduce the noise impact.

Compressed sensing is divided into three main steps [53]:

(1) Sparse representation of the signal.
(2) The observation matrix is designed to ensure that the dimension is reduced and the loss of signal

characteristics is minimized.
(3) By using the minimum L_0 norm optimization algorithm, the approximate sparse coefficient is

obtained, and the X is restored from the observed value y.

Let one-dimensional discrete N × 1 time signal X:

X = (x1, x2 . . . . . . xN)
T (5)

The signal X is sparse by using the sparse basis matrix Ψ:

Ψ = [ψ1,ψ2 . . . ψN] (6)

si =
〈
X,ψi

〉
= ψi

TX (7)

X =
N∑

i=1

siψi = Ψs (8)

where ψi is the vector of N × 1 orthogonal to each other; si is the sparse coefficient of N × 1 and K,si are
non-zero values.

The original signal {x} is observed by using the observation basis (φ1,φ2 · · ·φM)T of the random
observation matrix Φ. The random observation matrix Φ should not be related to the sparse basis
matrix and the low dimensional observation value M× 1 of G is obtained:

G = 〈{x}, Φ〉 (9)

G = Φ{x} = ΦΨs = Θs (10)

where Θ is the sensing matrix.
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Limited to equal features:

1− ε ≤
‖Θu‖2
‖u‖2

≤ 1 + ε (11)

where, some ε > 0.
The l0 norm ‖s′‖0 of vector s′ represents the number of non-zero elements in s′. Because the more

sparse the sparse coefficient is, the more accurate the reconstructed signal is. Among the many s′

satisfying Θs′ = G condition, s′ with minimum l0 norm is the optimal sparse coefficient needed for
reconstruction:

ŝ = argmin‖s′‖0 s.t Θs′ = G (12)

s′ is the estimated value of sparse coefficient s, then the reconstructed signal is {x′} = ψs′.

2.2.2. Analysis of Noise Reduction Performance

In order to verify the sparse property and noise reduction performance of the compressed sensing
technology, a simulation signal f (t) composed of trigonometric function, exponential modulation sine
function, sinc function and diric function is constructed:

f (t) = 0.03e0.5tcos(10πt − 1) + 4.78sinc(t) + 5diric(t) + 2.5sin(2πt) + 3.11cos(20πt) (13)

The simulation signal is shown in Figure 1a. Add Gaussian white noise with signal-to-noise ratio
of −10 dB to the simulation signal, and the time domain diagram with noise is shown in Figure 1b.
The noise reduction process is performed on the simulation signal by using the compressed sensing
technology, and the obtained result is shown in Figure 1c. The figure shows that the reconstructed
signal basically guarantees the synchronization of the original signal feature elements. The Pearson
correlation coefficient between the original signal and the reconstructed signal is 0.8927. At the time
of 0.301 s, 1.2 s, 2.207 s, 3.302 s, 4.202 s and 5.303 s, the amplitudes of reconstructed signals are 9.726,
3.025, 7.635, 5.637, 4.6 and 8.545, respectively. At the time of 0.2 s, 1.202 s, 2.2 s, 3.305 s, 4.2 s and
5.203 s, the amplitudes of the original simulation signals are 14.31, 3.616, 6.272, 5.159, 4.969 and 6.235
respectively. The results show that the compressed sensing technology based on signal sparsity and
non-correlation can effectively reconstruct the original signal with high accuracy from redundant and
complex strong noise, and has strong robustness to noise.

The flow of the method proposed in this paper is as follows:

(1) The acceleration signal of the mechanical system is collected by the acceleration sensor: the
x-direction signal and the y-direction signal.

(2) The compressed sensing technology is used to reconstruct and reduce the noise of the signal.
(3) The state density matrix of the nonlinear mechanical system is constructed, and the degree of

coupling between two degrees of freedom signals is calculated by using Von Neumann entropy
and Rényi entropy, respectively.

The flowchart of the method presented in this paper is shown in Figure 2.
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3. Chaotic System Analysis

Chaotic system refers to the existence of random irregular motion in a deterministic system, and
its behavior has three characteristics: uncertainty, non-reproducibility and unpredictability. In 2002,
Lü and Chen discovered the Lü chaotic system through the idea of chaotic anti-control, which
established a bridge between the Lorenz system and the Chen system [71,72]. The dynamic equation
of the Lü chaotic system is:

.
x = a(x− y)
.
y = −xz + cy

.
z = xy− bz

(14)

Similar to the Lorenz system and the Chen system, the Lü system enters a chaotic state when the
parameters select certain values. a, b and c are the three control parameters of the Lü chaotic system.
When the parameters a = 36, b = 3, c = 20, the dynamic behavior of the system presents a chaotic
state [72]. We give x, y, and z initial values of −3, −6, and 3.6, respectively, and the Lü chaotic system
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attractors are shown in Figure 3. The phase diagram and three-dimensional image of the chaotic
attractor are shown in Figure 3.

In the Lü chaotic system, the parameter c plays a controlling role in the whole system. The dynamic
behavior of the Lü chaotic system has obvious stage with the change of the control parameter c. When
12.7 < c < 17.0, the attractor generated by the system similar to the Lorenz chaotic system attractor; it has
a transient shape when 18.0 < c < 22.0; and becomes similar to the Chen chaotic system attractor [73,74]
when 23.0 < c < 28.5.
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In order to further study the chaotic characteristics of the Lü system, in the simulation of dynamics,
the control parameter c is changed between [12,30] with a step size of 0.1. Considering that Von
Neumann entropy and Rényi entropy are good dimensionless measures, we will dynamically compare
the two metrics and calculate the Von Neumann entropy and Rényi entropy between x, y and z as the
control parameter c changes, as shown in Figures 4 and 5. It can be observed that this nonlinear system
shows complex and rich chaotic dynamics behavior. When the parameter c of the chaotic system
changes, the coupling degree between x, y and z also changes. In this process, the non-chaotic and
chaotic states of the system are included. But you can also see that all entropy values are negative,
and negative entropy indirectly illustrates the degree of chaos in the system through a new angle.
For chaotic systems, the negative entropy drawn from the external system cannot reduce its own
entropy increase like life body to maintain the orderly development of the system. Negative entropy
can be explained as the amount of definite information needed for the transformation of chaotic
systems to non-chaotic systems. The larger the amount of information required by the system means
that the more uncertain factors in the chaotic system, the more chaotic the system. When c = 12,
the Lü chaotic system does not enter the chaotic state, and the coupling degree of x-y and y-z is large,
and Von Neumann entropy value fluctuates near 0. With the increase of c, the system enters the
chaotic state, and the coupling degree between x, y and z decreases rapidly, and the value is further
away from 0, because they are further away from zero in the longer time evolution. This is because
nonlinear interactions and more states contribute greatly to the evolution of Von Neumann entropy
and Rényi entropy. Next, the coupling degree between x, y, z in Lü chaotic system is further reflected
by calculating two kinds of entropy. The range of parameter c varies from [12,30]. We discuss that the
Von Neumann entropy and Rényi entropy of Lü system with the variation of chaotic system control
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parameter c and c = 12 (that is, non-chaotic state) are shown in Figures 6 and 7, which are similar to
those in Figures 4 and 5.
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Next, from another perspective, we use the Rényi entropy at different scales to study the Lü
chaotic system in a comprehensive and three-dimensional way. When the characteristic parameter c is
taken as 12, 20, 28, 30, respectively, the Rényi entropy images of x-y and y-z are obtained, as shown in
Figures 8 and 9, respectively, wherein the parameter τ of the Rényi entropy are in a changing state.
In the four states, the Rényi entropy increases rapidly in the interval τ ∈ [2, 5] with the increase of
the scale parameter τ. In the interval τ ∈ [5, 10], the growth rate of Rényi entropy of the four states
slows down and converges to a value nearby. Generally, it shows the trend of Rényi entropyc=12 >
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Rényi entropyc=20 > Rényi entropyc=28 > Rényi entropyc=30. The two kinds of entropy measures can
accurately distinguish several different states of Lü system and the coupling degree among x, y, z,
which is the three degrees of freedom data of the system.
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The coupling degree measures of Von Neumann entropy and Rényi entropy can play an important
and roughly the same role in the study of the chaotic characteristics of the Lü system. These two
measurement methods can provide coupling measurement for a standard nonlinear system and
accurately judge the state of the chaotic system. Von Neumann entropy and full-vector multi-scale
Rényi entropy are robust enough to the change of Lü chaotic system state. However, in the signal
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processing of nonlinear mechanical system, more research is needed on Von Neumann entropy and
Rényi entropy.

4. Experimental Study

When the key transmission components of large mechanical equipment, such as rolling bearings
and planetary gears, fail, the vibration signal has typical strong nonlinear characteristics. Next,
the rotational mechanical nonlinear system is used to verify the validity, superiority and universality
of Von Neumann entropy and Rényi entropy in nonlinear mechanical systems. In order to further
study the coupling behavior of signals in nonlinear mechanical systems, the following two rotating
machinery experiments are used: (1) Accelerated life test of rolling bearing and (2) Fault Diagnosis
Experiments of Planetary Gear Transmission System. The above two experiments have typical strong
nonlinear characteristics, which are very suitable for studying the application of Von Neumann entropy
and Rényi entropy in real mechanical systems.

4.1. Accelerated Life Test of Rolling bearings

4.1.1. Introduction to the Experiment

The IEEE Reliability Association and the Femto-st Institute of France organized the IEEE PHM
rotating Machinery Fault Prediction Challenge in 2012. The challenge dataset was provided by Femto-st
Institute and tested on PRONOSTIA’s bearing accelerated aging platform [75].

The “PRONOSTIA” test bench simulates the natural degradation process of the bearing during its
service life [76]. The structure of the test bench is shown in Figure 10. The main goal of the experiment
was to provide real experimental data to characterize the degradation of the ball bearing over its
lifetime [76]. The bearing type to be tested is NSK 6804RS, and two acceleration sensors are arranged
on the outer ring of the bearing to synchronously collect the horizontal and vertical vibration signals of
the experimental platform. The operating conditions of the test bench are as follows: The motor speed
is 1800 rpm. The sampling frequency is 25.6 kHz sampling, and a radial force of 4000N is applied to
the rotating shaft and the bearing to be tested [77].
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4.1.2. Data Analysis

In the above, we have done a detailed study on the coupling relationship and chaotic evolution in
chaotic systems. Next, in the evolution of the dynamics state of the mechanical system, we separately
study the coupling relationship between the two vertical degrees of freedom signals in the same system
and the coupling relationship between the full vector signals of mechanical systems in different states.

Figure 11 shows the raw vibration signals in two orthogonal directions collected from PRONOSTIA
throughout the experiment.
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Figure 11. The raw data collected from PRONOSTIA bearing accelerated aging test.

The vibration signals of the accelerated life test of the bearing in the x and y directions are shown
in Figure 11a,b, respectively. Next, we will discuss the signal coupling degree of the mechanical system
in x, y degrees of freedom, and then determine the operating state of the mechanical system through
inversion. Figures 12 and 13 show the entropy calculated by Von Neumann entropy and Rényi entropy
with scale parameter 2, respectively. In Figure 14, in 0–230 min, the Von Neumann entropy between
the x-direction and y-direction vibration signals is stable at about −0.5 × 10−4. Compared with the later
entropy development trend, it can be said that the Von Neumann entropy before the 230th minute
is stable in a relatively high range, and the coupling degree of the two degrees of freedom signals
is relatively high, which reflects that the mechanical system is currently in a relatively disordered
state, further explaining the health of the mechanical system. After that, the entropy decreases rapidly.
In 230–400 min, the Von Neumann entropy decreases from −0.5 × 10−4 to −3.5 × 10−4, the coupling
degree between two degrees of freedom signals changes obviously, and the nonlinear characteristics
of the mechanical system are enhanced, which shows the evolution process of the occurrence and
development of mechanical system faults.

In Figure 13, in the 0–200 min region, the Rényi entropy between the two degrees of freedom
vibration signals is stable at about −18. At this time, the operation state of the mechanical system is
stable, and the coupling degree between the signals on the two degrees of freedom is high. Compared
with Von Neumann entropy, Rényi entropy discovered the state mutation of mechanical system
about 30 min earlier. Within 200 to 300 min, the Rényi entropy roughly decreases linearly to −25;
in 300–375 min, the rate of decline of entropy slows down and drops sharply after the 375th minute.
From 200 to 300 min, the entropy of Rényi decreased to about −25 in a linear trend roughly; from 300
to 375 min, the entropy decreased slowly, and then decreased rapidly after 375 min. The trend of Rényi
entropy first reflects the change of coupling degree of the signals on the two degrees of freedom of x
and y, which reflects the evolution process of the degree of nonlinearity in the mechanical system from
small to large.

We observe that the two measure entropies are consistent in judging the evolution trend of bearing
faults, but compared with Von Neumann entropy, Rényi entropy can better show the change process
of bearing mechanical state, and the effect is more accurate. In the case of Rényi entropy of different
scales, the coupling relationship between bearing signals is shown in Figure 14. The occurrence time
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of faults is about 200 min and the trend is similar. However, as the entropy scale of Rényi increases,
the amplitude change of entropy will gradually decrease, which is not conducive to the observation
and judgment of macroscopic physical nonlinear systems.

In Figures 12–14, Von Neumann entropy and Rényi entropy can invert the dynamic changes of
the system on the basis of the order degree of information. When the bearing fails, the bearing will
produce periodic signal with characteristic frequency, and the degree of nonlinearity is high, and
with the evolution of fault degree, the proportion of characteristic signal in the system will gradually
increase. Compared with the mechanical system in a healthy state, the regularity of the internal
signal of the system will be significantly enhanced and the value of entropy will significantly decrease.
Von Neumann entropy and Rényi entropy is a tool to measure the order degree of the system. The more
ordered the system is, the smaller the value of entropy is. This also explains the phenomenon that the
higher the degree of nonlinearity of the mechanical system is, the smaller the value of entropy is.
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In the macroscopical world, due to the interference and modulation of external factors, the system
signals tend to be nonlinear, which brings more challenges to the attribute recognition and prediction
of physical macroscopic nonlinear systems. Figures 12 and 13 present the dynamics coupling between
the x and y two degrees of freedom signals in the bearing drive train. By studying the occurrence
time of bearing failure and the evolution process of bearing dynamics, we verify the ability of the
macroscopic physical nonlinear system to judge the attributes of the macroscopic system through the
coupling relation generated by the dynamic signals with different degrees of freedom in itself. We
have studied the variation of the coupling degree between the x and y two-degree-of-freedom signals
of the mechanical system during the evolution of the dynamics state, and analyzed the rules and
connotations in detail. Next, we will study coupling degree between different states of the nonlinear
system through the experiment of “planetary gearbox fault diagnosis test bench”.
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4.2. Fault Diagnosis Experiment of Planetary Gear Transmission System

4.2.1. Experimental Introduction

Studying more complex mechanical systems is a challenging task. Compared with other mechanical
systems, the gear transmission system of planetary gear has some unique characteristics, such as high
signal complexity and high degree of non-linearity. The fault diagnosis test-bed of planetary gearboxes
can deeply study a complete nonlinear power transmission system [78].

As shown in Figure 15, the test bench includes a two-stage planetary gearbox, a parallel shaft gear
box, a bearing load and a programmable magnetic excitation brake. The test bench can simulate the
gear tooth breaking, tooth surface wear, gear tooth crack, tooth surface pitting corrosion and tooth
missing of the gear [79–81]. The vibration acceleration signals of five kinds of planetary gears in
different states are collected [82].
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4.2.2. Data Analysis

Whether the Von Neumann entropy and Rényi entropy calculated by mechanical dynamics system
will change in physical meaning or not when the Rényi entropy is at different scales, and what laws
will appear? Whether the idea of modal recognition is still vaild by calculating the Von Neumann
entropy and Rényi entropy between mechanical dynamics signals. Therefore, we will analyze the
coupling degree between the fusion signals in the planetary gearboxes of five different states, and
examine and explore the above problems.

When the planetary gear transmission system is in five different states, the Rényi entropy of the
two vertical degrees of freedom signals in each state is shown in Figure 16a, where the scale of the
Rényi entropy is τ ∈ [0, 5]. As shown in the Figure 16a, when τ ∈ [0, 0.3], the entropy is decreasing
and greater than zero, and the entropy of the planetary gears in different states is almost as difficult to
distinguish in this scale. When τ ∈ [0.3, 0.9], the entropy is positive and positively correlated with
the scale parameters and reaches the peak value at τ = 0.9. The five states of planetary gears are
distinguished. The peak values are about 7.5037, 11.963, 15.0302, 15.555 and 16.417, respectively. When
τ ∈ [0.9, 1), the entropy decreases sharply, completes the transformation from positive entropy to
negative entropy, and reaches the minimum at τ = 1.1. The state of planetary gears is distinguished,
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and the peaks are about −9.171, −14.621, −18.37, −19.012, −20.0654, respectively. When the Rényi
entropy scale τ ∈ [0, 5], the entropy value of each state increases and keeps the fault order. When τ = 5,
the entropy of each state converges to a certain value, which is about −1.04, −1.60, −2.05, −2.15, −2.25.
In order to judge the fault order more clearly, the scale parameter of Rényi entropy is taken to [2, 5]
for local amplification, as shown in Figure 16b. The negative entropy represents the energy that the
gear absorbs from the outside world in order to resist the increase of its own entropy, and indirectly
represents the chaos degree of the system state. On any parameter scale, the fault degree order of the
five states remains unchanged, just the physical meaning of positive entropy and negative entropy
is different.
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In the accelerated life experiment of the rolling bearing and the fault diagnosis experiment of
the planetary gear, we prove that the physical characteristics of the nonlinear mechanical system
can be analyzed by the coupling effect between the signals of different degrees of freedom under
a single working condition. However, Von Neumann entropy and Rényi entropy are still used as the
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measurement indexes of the physical characteristics of nonlinear mechanical systems. Whether the
state characteristics of nonlinear mechanical systems can still be determined through the coupling
effects between nonlinear mechanical systems in different states? Can Rényi entropy still perform
modal recognition processing on nonlinear mechanical systems when scale parameter τ changes?
When the scale parameter τ changes, what is the law of Rényi entropy? Based on this, we construct
a full-vector multi-scale Rényi entropy.

The feature parameters extracted by homologous information fusion meet the data calibration
in time and space. When the sampling frequency is high enough, full vector spectrum technology
can overcome the shortage of information caused by short-time Fourier transform. For the feature
information extraction of rotating rigid body motion state of mechanical system, the single channel
information from single sensor cannot describe its state feature comprehensively and accurately, but
through the multi-channel data from multiple sensors, it can reflect the motion information of rotor
from multiple directions, make up for the information defects and eliminate the uncertain factors,
so the fusion of homologous information is a key technology. Based on the same source signal, the full
vector spectrum technology shows the harmonics and their amplitudes in the form of spectrum chart.
In the case of ensuring the high resolution of the spectrum analysis, the fault characteristics of the
mechanical system are intuitively reflected [83].

The process of full vector Rényi entropy is as follows:

(1) Acceleration signals in different states of the same system are collected and obtained by
accelerometer: two signals x1, y1 in normal state, x2 and y2 in relative fault state.

(2) The compressed sensing technology is used to reconstruct and reduce the noise of the signal.
(3) Vector fusion of homologous signals
(4) Construct state density matrix of nonlinear mechanical system and calculate the Rényi entropy

between the two systems at different scales.

The full vector Rényi entropy flowchart is shown in Figure 17.
The density matrix between each fault state planetary gear and the healthy state planetary gear is

constructed and the full vector multi-scale Rényi entropy is calculated. Figure 18a shows the full vector
multiscale Rényi entropy image of wear-healthy, broken tooth-healthy, missing tooth-healthy and
root crack-healthy respectively, where the scale parameter of full vector Rényi entropy is [0–5]. When
τ ∈ [0, 0.3], the entropy value decreases and is greater than zero. In this parameter interval, the value
of Rényi entropy between fusion signals in different planetary gearboxes is almost the same When
τ ∈ [0.3, 0.9], the entropy value is greater than zero and positively related to the scale parameter and
reaches the peak value at τ= 0.9. Four kinds of planetary gear fault states are distinguished. The peaks
of the systems of wear-healthy, broken teeth-healthy, missing teeth-healthy and crack-healthy are about
0.654, 0.822, 1.115 and 1.2695, respectively.

When τ ∈ [0.9, 1), the entropy drops sharply, completing the transition from positive entropy to
negative entropy, and reaching the minimum value at τ= 1.1. The peak value of Rényi entropy of
fusion signal in planetary gearbox under four fault states is about −15.930, −20.247, −27.76, −31.721,
respectively. When τ ∈ (1, 1.5], the entropy value of each state increases and keeps the original fault
order. When τ→ 5 , the entropy values of the fused signals in the planetary gearboxes of each state
converge to a fixed value, which is approximately −1.80, −2.3, −3.1, −3.5. In order to judge the fault
order more clearly, the scale parameter of the Rényi entropy is taken to τ ∈ [2, 5], as shown in Figure 18b.
It can be seen that the state features of the nonlinear mechanical system can still be quantified by
the coupling effect between nonlinear mechanical systems in different states; the change of the scale
parameter τ does not affect the modal identification of the nonlinear mechanical system; The Rényi
entropy changes with the change of the scale parameter τ and presents a certain law.
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5. Discussion

The dynamic evolution processes of Lü chaotic systems and two typical mechanical systems
are studied in this manuscript. The dynamics behaviors of these two kinds of nonlinear systems are
characterized by uncertainty, repeatability and unpredictability. At the same time, these two kinds of
nonlinear systems have certain similarities. For example, when the Lü chaotic system is in chaotic
state, the coupling degree between subsystems decreases rapidly, and the dynamic behavior is highly
nonlinear. When the mechanical system is in the fault state, the regularity of the information in the
system is enhanced and the coupling degree decreases. The characteristic signals of the two kinds
of systems are highly nonlinear and unstable. Therefore, in the manuscript, we discussed in detail
the coupling of Lü chaotic system, the change of coupling degree between two degrees of freedom
signals of mechanical system in the process of dynamics state evolution, and the coupling relationship
between different states of planetary gear transmission system.

In the Lü chaotic system, we take the Von Neumann entropy and Rényi entropy as measures to
study the complex and rich chaotic dynamic behavior of the nonlinear system. Von Neumann entropy
and Rényi entropy is used to analyze the chaotic characteristics and coupling strength between the
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causal information of Lü’s chaotic system, and to compare their dynamics behaviors in different initial
states. When exploring the change of coupling degree between two degrees of freedom signals in the
evolution of dynamics state of mechanical system, we measured the same mechanical system with
Von Neumann entropy and Rényi entropy respectively, and find that both of them can respond well
to the change of nonlinear degree of the system, but Rényi entropy works better. Then we measure
the bearing transmission system with Rényi entropy of different scales and find that with the increase
of scales, the dynamics evolution process is more gentle, which is not conducive to the pick-up of
dynamics characteristics.

When studying coupling relationship between the different states of planetary gear transmission
system, we use Rényi entropy of different scales as a measure tool. We find that when τ ∈ [0.9, 1),
the entropy changes from positive entropy to negative entropy, and with the increase of Rényi entropy
scale, the Rényi entropy of systems in different states will approach a fixed value infinitely. Both
positive entropy and negative entropy explain the degree of nonlinearity in planetary gear transmission
systems in different states. Negative entropy represents the energy that individuals draw from the
outside world in order to reduce their own entropy increase. In the absence of external intervention,
the entropy owned by the individual will increase, and when the entropy reaches a certain value,
the individual will die out. When the negative entropy of the nonlinear mechanical system increases,
which shows that the system is developing towards strong nonlinearity. In the course of experimental
exploration, we have found some interesting properties of Rényi entropy: With the change of Rényi
entropy scale parameters, the positive and negative value of entropy may change, but this does not
affect the judgment of the dynamics behavior of nonlinear mechanical dynamics systems. With the
increase of the scale parameter of Rényi entropy, the Rényi entropy of the same state system converges
to one fixed value.

Von Neumann entropy and Rényi entropy can accurately measure the degree of disorder of
nonlinear systems, and provide important information for analyzing the dynamic properties of
nonlinear mechanical dynamic systems. Von Neumann entropy and Rényi entropy can analyze
the characteristics of strong nonlinearity, instability and strong coupling of signals, extract sensitive
characteristic variables of signals, perform modal identification on nonlinear mechanical dynamic
systems, and trace and describe the evolutionary state of mechanical dynamic systems.

6. Conclusions

In this manuscript we propose a new method to describe the nonlinear features and coupling
relationship of mechanical systems, and establish a state density matrix of nonlinear mechanical
systems, using Von Neumann entropy and Rényi entropy as measurement indicators to quantify
the degree of chaos, nonlinear characteristics and coupling between nonlinear systems. We apply
the proposed method to Lü chaotic systems and two typical nonlinear mechanical systems, and
study the capabilities of Von Neumann entropy and Rényi entropy in pattern recognition. For the
more complex planetary gear transmission system, we extend the coupling system on this basis, and
propose a new nonlinear system state measurement index-full vector multi-scale Rényi entropy, and
discuss the degree of nonlinearity and the coupling relationship among several nonlinear mechanical
systems. The research results build a bridge between nonlinear mechanical system dynamics and
information dynamics, and prove the effectiveness of the proposed method in modal identification,
system dynamics evolution and fault diagnosis of nonlinear systems. The conclusions are as follows:

(1) The state density matrix we have established can well describe the state features of nonlinear
mechanical systems in practical tests. The Von Neumann entropy and Rényi entropy are used
as indicators to measure the degree of chaos, nonlinear characteristics and coupling between
nonlinear systems. By coupling each fault system (or chaotic system) with the healthy system (or
non-chaotic system), we can identify the mode of the chaotic system and the nonlinear mechanical
system, dynamics inversion and fault diagnosis analysis.
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(2) Von Neumann entropy and Rényi entropy, two kinds of measurement methods, can play
an important role in the study of chaotic characteristics of L ü systems. These two measures can
provide a standard measure of coupling of nonlinear systems and accurately judge the state of
the chaotic system.

(3) When using the full vector multi-scale Rényi entropy to study the coupling relationship between
the vibration signals of the planetary gear transmission system in different states, there is a certain
rule. With the change of Rényi entropy scale parameter, the positive and negative of entropy
will change, which is just the expression of different physical meaning, and does not affect the
problem of mode identification, dynamic inversion and fault diagnosis of nonlinear mechanical
system; When the Rényi entropy scale parameter τ→ 5 the Rényi entropy of the multi-stage
planetary gear transmission system will converge to a fixed value.

(4) According to the characteristics of low signal-to-noise ratio of mechanical system signal, the noise
in vibration signal is reduced by using the compression sensing technology. The experimental
signal processing results show that the compression sensing technology has good noise reduction
ability and noise robustness.

(5) When the running state of the mechanical system is disturbed by noise, through the calculation of
Von Neumann entropy and multi-scale Rényi entropy, the dynamics characteristics of the system
are the same, that is, Von Neumann entropy and multi-scale Rényi entropy are robust to the
change of the running state of the mechanical system.
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