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Abstract

Pathogen spread can cause population declines and even species extinctions. Nonetheless, in the absence of tailored
monitoring schemes, documenting pathogen spread can be difficult. In the case of worldwide amphibian declines the best
present understanding is that the chytrid fungus Batrachochytrium dendrobatidis (Bd) has recently spread, causing
amphibian declines and extinction in the process. However, good evidence demonstrating pathogen arrival followed by
amphibian decline is rare, and analysis of putative evidence is often inadequate. Here we attempt to examine the
relationship between Bd arrival and amphibian decline across north-eastern Australia, using sites where a wave-like pattern
of amphibian decline was first noticed and at which intensive research has since been conducted. We develop an analytical
framework that allows rigorous estimation of pathogen arrival date, which can then be used to test for a correlation
between the time of pathogen arrival and amphibian decline across sites. Our results show that, with the current dataset,
the earliest possible arrival date of Bd in north-eastern Australia is completely unresolved; Bd could have arrived
immediately before sampling commenced or may have arrived thousands of years earlier, the present data simply cannot
say. The currently available data are thus insufficient to assess the link between timing of pathogen arrival and population
decline in this part of the world. This data insufficiency is surprising given that there have been decades of research on
chytridiomycosis in Australia and that there is a general belief that the link between Bd arrival and population decline is well
resolved in this region. The lack of data on Bd arrival currently acts as a major impediment to determining the role of
environmental factors in driving the global amphibian declines, and should be a major focus of future research.
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Introduction

Emerging infectious diseases are increasingly recognised as a

serious and growing threat to biodiversity [1,2]. While there are

now many well-documented cases of population collapses and

extirpations associated with disease [3–6], data linking the arrival

of a pathogen and the timing of the host population collapse are

relatively rare. This rarity stems from the inherent difficulty of

screening for as yet unidentified pathogens, problems in detecting

diseases [7], and a lack of established monitoring projects and

funding [8]. In particular, when an infectious disease is newly

emergent, it often takes time to identify the pathogen and develop

tailored monitoring strategies. Thus, many populations can decline

or even go extinct before it is possible to effectively monitor for the

presence or absence of the causal pathogen.

One of the best-studied globally emergent diseases of conser-

vation concern is amphibian chytridiomycosis. Globally, and in

the last thirty years, many species of amphibians have declined in

numbers and some have even gone extinct [9–12]. Although

widespread across the planet, these declines also often exhibited

clear spatiotemporal patterns: they were associated with high

elevations and some appear to have advanced in a wave-like

manner towards the equator [13–15]. In 1999 the chytrid fungus

Batrachochytrium dendrobatidis, (Bd, [16]) was identified as an

amphibian pathogen and suggested to be responsible for some

amphibian declines. It causes a disease (chytridiomycosis) that has

since been linked to amphibian declines around the world [17–19].

Evidence of chytridiomycosis outbreaks at the times of population

declines has led to the emergence of a strong paradigm: that Bd

has recently spread across the globe, wreaking havoc on

amphibian populations as it colonizes new sites [20].

Interestingly, the reported spatiotemporal patterns in amphib-

ian declines are now the primary evidence cited for the spread of

Bd (e.g., [15]) (although recent genetic data potentially also

support the idea [21,22]). Because of this, it is important to

remember that an observed wave of population declines does not

directly constitute evidence for the spread of a particular pathogen.

Direct evidence for the spread of a pathogen comes from

observation that the pathogen was absent at a site, but then

appeared at some later date. Additionally, such evidence needs to

come from multiple sites so that we can observe the spatial

dynamics of pathogen invasion. For Bd, as with many other

emergent diseases for which monitoring arose after population

declines, the wave of pathogen invasion is only evidenced

indirectly, via host declines (e.g., [14,15]). In the case of Bd,
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strong evidence for a state-shift from absence to presence of Bd

comes from only a handful of disconnected sites. At El Copé,

Panama, for example, Lips and collaborators [18] sampled

amphibians intensively for Bd in an initially healthy amphibian

assemblage, but only detected it for the first time immediately

before an epidemic outbreak of chytridiomycosis, which was

followed by the collapse of the assemblage [15]. Their data

indicate that Bd was likely absent at El Copé, then appeared and

quickly reached high prevalences, which coincided with declines of

many species. Because of the difficulty of obtaining such

longitudinal data, however, this is probably the only locality in

the tropics for which a clear link between the arrival of Bd and the

decline of an amphibian fauna has been shown. A few sites in

temperate regions may also have potentially useful longitudinal

series (e.g., California, [19]). In isolation, however, these sites

cannot demonstrate a spreading wave of Bd.

On Australia’s north-eastern seaboard, amphibian declines first

occurred in southern Queensland in 1978, then in central

Queensland in the mid 1980s, and commenced in northern

Queensland in 1989 [14]. This was the first observation of the

wave-like nature of declines and came several years before the

discovery that Bd causes chytridiomycosis. The observation of

Laurance and colleagues [14] was made without knowledge of Bd

as a possible driver, although they speculated that some kind of

‘‘waterborne virus’’ might be to blame. Despite the fact that Bd

was never mentioned in the paper, the Laurence et al. paper [14] is

now commonly cited as evidence that Bd has spread in a wave-like

manner (e.g., [2,19,23–25]). Given the massive research effort on

Bd in the ensuing 16 years, and the fact that Australia has been a

leader in this effort, is it now possible to conclusively demonstrate

that this wave of declines was, in fact, driven by the invasion of Bd?

Such a demonstration is of more than historical interest. If,

across multiple populations, there is little relationship between the

dates of Bd arrival and population decline, then we are faced with

the possibility that Bd is not the sole driver of declines. If Bd is

even occasionally present, possibly at very low prevalence, for

years before outbreaks, some other factor – such as the spread of

an immunodeficiency virus, changes in climatic patterns [26–28];

or increased stress, possibly due to climate change [29] – must be

involved in its emergence as a pathogen. Because of the severity

and geographic extent of these declines, but also because

amphibians have good historic records in museum collections

and amphibian chytrid is detectable in museum specimens, it

should be possible to test for the link between pathogen arrival and

the timing of decline, and it should be possible to test this link in

the place where the wave-like nature of declines was first noticed;

north-eastern Australia. We attempt to do so here.

Materials and Methods

The decline patterns presented in this paper stem from

Laurance and collaborators [30] and the Bd data were recently

published in an Australia-wide compilation of data from 1956 to

2007 [31]. To make our analysis consonant with the area discussed

in Laurance [30], we restrict the Australia-wide data used to only

that from the Australian east coast, north of Brisbane.

Spatial data were collapsed into spatial bins for the purposes of

estimating Bd arrival time at each locality. Bins were defined by

the three localities (from Laurence et al. 1996) where declines are

known to have occurred. We placed Bd sampling localities into the

bin defined by the closest decline locality. This ensured that each

Bd sampling locality was always associated with the closest decline

locality (see Figure 1). For each of these spatially aggregated

‘‘populations’’, we estimated the arrival time of Bd.

The basic premise of our analysis was to first estimate arrival

date of Bd, and then regress the decline date against this estimated

arrival date. A regression slope around 1 (with an intercept less

Figure 1. Model schematic, and the relationship between post-
arrival prevalence and minimum adequate pre-arrival sample
size. A) Schematic of the statistical model used to estimate the arrival
time of chytrid. The model is a threshold where the prevalence of
infection is zero up until some time, T, at which point the prevalence
jumps to some new, average value, P. B) The approximate number of
samples from a population with prevalence of zero required to provide
a lower (2.5th percentile) bound on the time of arrival (T) parameter in
our model. The number of samples required scales with the post-arrival
prevalence (P). This curve was generated by solving for the number of
samples with zero positives required to reduce the binomial probability
of that outcome below 0.025, given the stated prevalence.
doi:10.1371/journal.pone.0052502.g001

No Evidence Links Pathogen Arrival to Extinctions

PLOS ONE | www.plosone.org 2 December 2012 | Volume 7 | Issue 12 | e52502



than or equal to zero) would indicate a strong temporal link, across

sites, between Bd arrival and population decline. This analysis

would not only rigorously assess the link between arrival and

decline across multiple sites, but could potentially give us

important ecological information, such as the lag between Bd

arrival and population decline (estimated in the intercept). Our

plan was to estimate these regression coefficients in a hierarchical

Bayesian framework, in which the uncertainty in our estimates of

arrival time are incorporated into our final estimate of the

regression coefficients. Unfortunately, the first step in this analysis

(the estimation of arrival dates, described below) indicated that this

hierarchical analysis would be pointless because there is almost no

information in the data regarding Bd arrival date.

To estimate Bd arrival times at each aggregated locality, we

used the simplest appropriate model possible: a threshold model,

where prevalence is zero, up until a time (T), at which point

prevalence moves to a non-zero mean (P; Fig. 1A). Although

simple, the model points to the importance of possessing a

substantial sample of individuals before the pathogen is first

detected. This ‘‘pre-arrival’’ sample is critical for providing a lower

bound on our estimate of T. The model also displays another

important and unavoidable property: the lower bound on our

confidence interval around T is strongly contingent on the value of

post-arrival prevalence, P (Fig. 1B). If the post-arrival prevalence is

high, then only a small sample size is required to be confident that

Bd was not present before its first observation. Thus, sampling

effort required to generate precision around arrival time will vary

from site to site, but in all cases ‘‘pre-arrival’’ samples are needed

to have any way of estimating the earliest possible date of pathogen

arrival.

The threshold model was fitted for each site in a Bayesian

framework using the JAGS Gibbs sampler [32], with uniform

priors for arrival time, T (Uniform between 1950–2010) and P

(Beta (1, 1), which is uniform between zero and one). Restricting

the priors for T to between 1950–2010 was done for logistical

reasons rather than any belief that Bd did not exist before 1950.

Thus, 95% credible interval bounds that approach either 1950 or

2010 should be treated as conveying no information on actual

arrival time at that bound. The ability of the model to estimate

parameters was confirmed using simulated data in which

prevalence values followed the threshold model exactly, but

‘‘observed’’ data were drawn from this expectation using random

draws from a binomial distribution. When sample sizes in

simulated data before and after T were sufficient, the model

successfully recovered parameter values across a range of T and P.

Posterior densities for T and P were estimated from three chains

each with 100,000 samples following a burn-in of 10,000

iterations. In both simulated and real data sets, convergence

across chains was confirmed using Gelman and Rubin’s ‘potential

scale reduction factor’ (which almost always gave point estimates

of one for all parameters, confirming convergence between

chains). All data manipulation and analysis was conducted in R

[33], and the scripts and data are available from BLP upon

request.

Results

Figure 2 shows the spatial binning of the dataset and the spread

of sample effort and prevalence over time at each binned locality.

Importantly, at all three binned localities there are no ‘‘pre-

arrival’’ samples: there are no data on the prevalence of

Batrachochytrium dendrobatidis (Bd) before it was first detected

(Fig. 2). Thus, at all three localities we have no information

confirming the absence of Bd prior to the date of first sampling.

Figure 3 shows the resulting estimates of Bd arrival time from the

threshold model. As expected from the dearth of ‘‘pre-arrival’’

information, the lower bound of arrival time is identical to the

lower bound of our prior. Thus, in north-eastern Australia, the

model confirms that it remains possible that Bd was present (from

months to thousands of years) before it was first observed.

Discussion

Surprisingly, our analysis suggests that in north-eastern

Australia – across the sites where the wave-like pattern of

amphibian decline was first observed and where intensive research

has been conducted ever since – there is no evidence that the

arrival of Batrachochytrium dendrobatidis (Bd) coincided with amphib-

ian population decline. The reason for this is that we effectively

have no idea when Bd arrived at each of the decline localities. If

we have no idea when it arrived, we cannot claim to know that it

arrived immediately before the populations declined. Our analysis

is not evidence against the role of Bd in amphibian declines, or

against its recent range expansion, but clearly points to a missing

link in the logical argument linking the spatiotemporal pattern of

amphibian decline to the spread of Bd.

The threshold model presented in this manuscript is the most

basic analysis that should be performed on data when seeking an

arrival time. However, in all binned localities, Bd is present in the

first sampling period. Thus, there are no sampling periods before

the first detection of Bd and therefore no information on the

earliest possible arrival date of Bd at each binned locality. There is

no information in the data and so, to some extent, the choice of

model is irrelevant. Nonetheless, we have developed this model as

it is a very useful tool for understanding why the missing data

matters, and serves as a useful demonstration of the need for those

data. Without them, our lower bound on arrival time will remain

unresolved.

It is clearly important for conservation efforts to proceed,

however, and one of the factors that must be understood and

controlled is the spread of Bd. It is, nonetheless, critical to test the

assumption that the presence of Bd is the only important factor. In

the absence of tests it remains possible that the emergence of

epidemic chytridiomycosis is caused by factors other than the

spread of the pathogen, and even that Bd has been present for an

extended period in amphibian populations in north-eastern

Australia, and that some other factor triggered the onset of

epidemics and amphibian population declines.

Clearly, to resolve this issue in Australia we need to better target

our data collection. In particular, we need to increase the amount

of data on the prevalence or presence of chytrid before declines

were observed. The reason that the Australian data lack

information on arrival time is because there are no data on Bd

prevalence from before the dates of population declines (Fig. 2).

This is not from lack of specimens (museums in Australia have

collections of thousands of specimens dating back to the 1800s),

but rather from lack of analysis of those specimens. Detection of

Bd in museum specimens has traditionally been hampered by our

inability to extract and amplify DNA from formalin-fixed museum

specimens. Happily enough, however, this limitation has recently

been removed: new techniques are now available with which to

detect Bd in old museum specimens [13,34]. Combining these

techniques with careful double-checks using histological examina-

tion will yield the data that we need, and is critical if we are to

advance our understanding of Australian (and, indeed, the global)

amphibian declines.

Our analytical framework suggests that the most effective way to

increase precision of estimates of the date of arrival of Bd will be to
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start screening specimens from the earliest date of confirmed Bd

presence in an area, working backwards in time (Fig. 1). In this

way, we can concentrate our sampling density on the time when it

matters most: immediately before the putative arrival date. Dense

sampling in this period, if it yields zero prevalence, will rapidly

compress our confidence intervals around arrival date for Bd, and

allow us to make much clearer inferences regarding the correlation

between Bd arrival and population decline. We also suggest that,

to be conservative, sampling should aim to establish an upper 95%

confidence limit for pre-arrival prevalence that is below 5% before

concluding that Bd is absent. This requires a sample of 72 or more

individuals with zero prevalence (Fig. 1B).

Although several waves of amphibian declines have been

observed throughout the world (e.g., [15,19]), none of them have

made a quantitative assessment of the link between the arrival date

of Bd and the decline date of multiple amphibian populations;

indeed ours is the first attempt to rigorously estimate arrival dates

of Bd in a region anywhere in the world. Nonetheless, sufficient

data likely exist to quantify arrival dates for at least some localities

(e.g., [13,19]) and such quantification should be done. It is, for

example, already clear that substantial lags between introduction

Figure 2. Distribution of localities sampled for Bd along the north-east coast of Queensland, Australia. Decline localities are marked
with a large red cross and labelled by their approximate date of amphibian population decline. Left-hand-side inset panels show sample sizes (grey
bars) and prevalence (red series) by year for data aggregated around each of the decline localities. Note that earliest samples indicate the presence of
Bd, and that there are no earlier samples indicating its absence.
doi:10.1371/journal.pone.0052502.g002
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Figure 3. Posterior parameter estimates for arrival time (T, left hand column) and post-arrival prevalence (P, right hand column) of
Batrachochytrium dendrobatidis at the three binned localities. Each row in the panel represents the parameter posteriors for each site (where
sites are arranged from North to South as per Fig. 2). Figures report histograms of 300,000 samples (across three chains) from the posterior
distribution of each parameter. Solid lines show the prior distributions in each case. Posteriors for arrival time show lower bounds that are

No Evidence Links Pathogen Arrival to Extinctions
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of the pathogen and the decline of the population can occur (e.g.,

Figure 2B, [19]). How long were these lags, and what caused the

system to transition to one of population decline? Was it density

dependent population dynamics [35]; climate shift [27,29];

extreme weather events; or the invasion of novel Bd genotypes

[21] Without clear bounds on the potential arrival date of Bd,

elucidating the factors that interact with Bd to drive population

collapse will continue to be fraught with uncertainty [36].

Quantification of Bd arrival dates is, thus, a clear priority, and

applying the new Bd detection technologies [13,34] in a systematic

way to museum specimens is clearly an important direction in

research on Bd and the amphibian declines in general.

More generally, our discovery of a complete lack of evidence

linking the arrival of Bd and the timing of population declines in

north-eastern Australia points to the alarming ease with which

paradigms can become established even in the absence of critical

tests of those paradigms. The Laurence et al (1996) paper is

commonly cited as evidence for the recent spread of Bd, but that

paper makes no mention of Bd, and data collected on Bd

prevalence since then (analysed here) cannot be used to link Bd

arrival and frog population declines. That this should occur in one

of the world’s most intensively studied regions for chytrid ecology

and dynamics, and in a place where the spatiotemporal pattern of

amphibian declines was first observed, is sobering. Given the

difficulty of detecting and monitoring emergent diseases of wildlife,

however, it may often be the case that host decline dates are used

as a proxy for pathogen arrival date (e.g., [4,37]). While this is a

useful first step, we should be aware that we are using a proxy, and

should be clear that doing so makes it difficult to rule out other

potentially important drivers of population decline. A rapid

transition to a system that monitors the pathogen and, ideally,

reconstructs the historical dynamics of that pathogen is critical if

we are to advance our understanding of emerging wildlife diseases.

Acknowledgments

BLP and RP thank the Australian Research Council for support through its

fellowships program. JV was supported by The Centre for Tropical

Biodiversity and Climate Change.

Author Contributions

Conceived and designed the experiments: BLP RPF RAA. Analyzed the

data: BLP RPF JV RAA. Contributed reagents/materials/analysis tools:

BLP. Wrote the paper: BLP RPF JV RAA.

References

1. McCallum H, Dobson A (1995) Detecting disease and parasite threats to

endangered species and ecosystems. Trends Ecol Evol 10: 190–194.

2. Daszak P, Cunningham AA (1999) Extinction by infection. Trends in Ecology &

Evolution 14: 279–279.

3. Plowright W (1962) Rinderpest virus. Ann N Y Acad Sci 101: 548–563.

4. Plowright W (1982) The effects of rinderpest and rinderpest control on wildlife in

Africa. Symposia of the Zoological Society of London 50: 1–28.

5. Thorne ET, Williams ES (1988) Disease and Endangered Species: The Black-

Footed Ferret as a Recent Example. Conserv Biol 2: 66–74.

6. Ginsberg JR, Mace GM, Albon S (1995) Local Extinction in a Small and

Declining Population: Wild Dogs in the Serengeti. Philos Trans R Soc

Lond B Biol Sci 262: 221–228.

7. Scott ME (1988) The Impact of Infection and Disease on Animal Populations:

Implications for Conservation Biology. Conserv Biol logy 2: 40–56.

8. Aguirre AA, Ostfeld RS, Tabor GM, House C, Pearl MC (2002) Conservation

Medicine: ecological health in practice. New York: Oxford University Press.

432 p.

9. Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, et al. (2004) Status

and Trends of Amphibian Declines and Extinctions Worldwide. Science 306:

1783–1786.

10. McDonald K, Alford RA (1999) A review of declining frogs in northern

Queensland. In: Campbell A, editor. Declines and disappearances of Australian

Frogs. Canberra: Environment Australia. 14–22 p.

11. Pounds JA, Fogden MPL, Savage JM, Gorman GC (1997) Tests of null models

for amphibian declines on a tropical mountain. Conserv Biol 11: 1307–1322.

12. Wake DB (1991) Declining Amphibian Populations. Science 253: 860–860.

13. Cheng TL, Rovito SM, Wake DB, Vredenburg VT (2011) Coincident mass

extirpation of neotropical amphibians with the emergence of the infectious

fungal pathogen Batrachochytrium dendrobatidis. Proc Natl Acad Sci U S A 108:

9502–9507.

14. Laurance WF, McDonald K, Speare R (1996) Epidemic disease and the

catastrophic decline of Australian rain forest frogs. Conserv Biol 10: 406–413.

15. Lips KR, Diffendorfer J, Mendelson JR, Sears MW (2008) Riding the Wave:

Reconciling the Roles of Disease and Climate Change in Amphibian Declines.

PLoS Biology 6: 0041–0454.

16. Longcore JE, Pessier AP, Nichols DK (1999) Batrachochytrium dendrobatidis

gen et sp nov, a chytrid pathogenic to amphibians. Mycologia 91: 219–227.

17. Berger L, Speare R, Daszak P, Green DE, Cunningham AA, et al. (1998)

Chytridiomycosis causes amphibian mortality associated with population

declines in the rainforests of Australia and Central America. Proc Natl Acad

Sci U S A 95: 9031–9036.

18. Lips KR, Brem F, Brenes R, Reeve JD, Alford RA, et al. (2006) Emerging

infectious disease and the loss of biodiversity in a Neotropical amphibian

community. Proc Natl Acad Sci U S A 103: 3165–3170.

19. Vredenburg VT, Knapp RA, Tunstall TS, Briggs CJ (2010) Dynamics of an

emerging disease drive large-scale amphibian population extinctions. Proc Natl

Acad Sci U S A 107: 9689–9694.

20. Collins JP, Crump ML (2009) Extinction in Our Times:Global Amphibian

Declines. New York: Oxford University Press. 304 p.

21. Farrer RA, Weinert LA, Bielby J, Garner TWJ, Balloux F, et al. (2011) Multiple

emergences of genetically diverse amphibian-infecting chytrids include a

globalized hypervirulent recombinant lineage. Proc Natl Acad Sci U S A 108:

18732–18736.

22. Schloegel LM, Toledo LF, Longcore JE, Greenspan SE, Vieira CA, et al. (2012)

Novel, panzootic and hybrid genotypes of amphibian chytridiomycosis

associated with the bullfrog trade. Mol Ecol 21: 5162–5177.

23. Savage AE, Zamudio KR (2011) MHC genotypes associate with resistance to a

frog-killing fungus. Proc Natl Acad Sci U S A 108 : 16705–16710.

24. Tobler U, Borgula A, Schmidt BR (2012) Populations of a Susceptible

Amphibian Species Can Grow despite the Presence of a Pathogenic Chytrid

Fungus. PLoS ONE 7: 1–7.

25. Velo-Anton G, Rodriguez D, Savage AE, Parra-Olea G, Lips KR, et al. (2012)

Amphibian-killing fungus loses genetic diversity as it spreads across the New

World. Biol Conserv 146: 213–218.

26. Laurance WF (2008) Global warming and amphibian extinctions in eastern

Australia. Austral Ecol. 33: 1–9.

27. Pounds JA, Bustamante MR, Coloma LA, Consuegra JA, Fogden MP, et al.

(2006) Widespread amphibian extinctions from epidemic disease driven by

global warming. Nature 439: 161–167.

28. Pounds JA, Fogden MPL, Campbell JH (1999) Biological response to climate

change on a tropical mountain. Nature 398: 611–615.

29. Alford RA, Bradfield KS, Richards SJ (2007) Ecology: Global warming and

amphibian losses. Nature 447: E3–E4.

30. Szymura JM, Barton NH (1986) Genetic analysis of a hybrid zone between the

fire-bellied toads, Bombina bombina and B. variegata near Cracow in southern

Poland. Evolution 40: 1141–1159.

31. Murray KA, Retallick R, McDonald K, Mendez D, Aplin K, et al. (2010) The

distribution and host range of the pandemic disease chytridiomycosis in Australia

spanning surveys from 1956 to 2007. Ecology 91: 1557.

32. Plummer R (2011) rjags: Bayesian graphical models using MCMC. R package

version 2.2.0–4 ed. Available: http://cran.r-project.org/web/packages/rjags/

index.html. Accessed 2012 Nov 30.

33. R Development Core Team (2009) R: A language and environment for

statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

409 p.

34. Soto-Azat C, Clarke BT, Fisher MC, Walker SF, Cunningham AA (2009) Non-

invasive sampling methods for the detection of Batrachochytrium dendrobatidis

in archived amphibians. Dis Aquat Organ 84: 163–166.

indistinguishable from those of the priors, indicating no information in the data with which to estimate these lower bounds. Post-arrival prevalence
(P), on the other hand, is tightly estimated at each site.
doi:10.1371/journal.pone.0052502.g003

No Evidence Links Pathogen Arrival to Extinctions

PLOS ONE | www.plosone.org 6 December 2012 | Volume 7 | Issue 12 | e52502



35. Briggs CJ, Knapp RA, Vredenburg VT (2010) Enzootic and epizootic dynamics

of the chytrid fungal pathogen of amphibians. Proceedings of the National
Academy of Sciences 107: 9695–9700.

36. Rohr JR, Raffel TR, Romansic JM, McCallum H, Hudson PJ (2008) Evaluating

the links between climate, disease spread, and amphibian declines. Proc Natl
Acad Sci U S A 105: 17436–17441.

37. Lessios HA, Cubit JD, Robertson DR, Shulman MJ, Parker MR, et al. (1984)

Mass mortality of Diadema antillarum on the Caribbean coast of Panama. Coral Reefs 3:

173–182.

No Evidence Links Pathogen Arrival to Extinctions

PLOS ONE | www.plosone.org 7 December 2012 | Volume 7 | Issue 12 | e52502


