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In this work, we investigate event-based feature extraction through a rigorous framework

of testing. We test a hardware efficient variant of Spike Timing Dependent Plasticity

(STDP) on a range of spatio-temporal kernels with different surface decaying methods,

decay functions, receptive field sizes, feature numbers, and back end classifiers. This

detailed investigation can provide helpful insights and rules of thumb for performance

vs. complexity trade-offs in more generalized networks, especially in the context of

hardware implementation, where design choices can incur significant resource costs.

The investigation is performed using a new dataset consisting of model airplanes being

dropped free-hand close to the sensor. The target objects exhibit a wide range of

relative orientations and velocities. This range of target velocities, analyzed in multiple

configurations, allows a rigorous comparison of time-based decaying surfaces (time

surfaces) vs. event index-based decaying surface (index surfaces), which are used to

perform unsupervised feature extraction, followed by target detection and recognition.

We examine each processing stage by comparison to the use of raw events, as well

as a range of alternative layer structures, and the use of random features. By comparing

results from a linear classifier and an ELM classifier, we evaluate how each element of the

system affects accuracy. To generate time and index surfaces, the most commonly used

kernels, namely event binning kernels, linearly, and exponentially decaying kernels, are

investigated. Index surfaces were found to outperform time surfaces in recognition when

invariance to target velocity was made a requirement. In the investigation of network

structure, larger networks of neurons with large receptive field sizes were found to

perform best. We find that a small number of event-based feature extractors can project

the complex spatio-temporal event patterns of the dataset to an almost linearly separable

representation in feature space, with best performing linear classifier achieving 98.75%

recognition accuracy, using only 25 feature extracting neurons.
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INTRODUCTION

The last decade has seen significant development in the field

of event-based cameras. Cameras such as the Dynamic Vision

Sensor (DVS) (Lichtsteiner et al., 2008) and the Asynchronous
Time-based Image Sensor (ATIS) (Posch et al., 2011) attempt to

model the operation of the human retina by generating events
at each pixel in response to changes in illumination. By only
reporting changes in the visual field, event-based sensors perform
compressive sensing at the pixel level, significantly reducing the
output data-rate of the sensor relative to frame-based sensors that
generate output regardless of the salience of its visual content.
These cameras have spurred the development of a range of
visual processing algorithms to tackle existing problems such as
optical flow detection (Benosman et al., 2012), scene stitching
(Klein et al., 2015), motion analysis (Litzenberger and Sabo,
2012), hand gesture recognition (Lee et al., 2014), hierarchical
feature recognition (Orchard et al., 2015b), unsupervised visual
feature extraction, and learning (Giulioni et al., 2015; Lagorce
et al., 2015a), and tracking (Lagorce et al., 2015b; Glover and
Bartolozzi, 2016, 2017). In addition to these works, in Ghosh et al.
(2014) a frame based convolutional neural network was mapped
to an event-based network using conversion of the event stream
to static images via recent event presence, event counts, and event
polarity. In Zhao et al. (2015), a hierarchical feature extractor
network is presented where manually designed features are based
on models of features in the visual cortex. In Peng et al. (2017),
a bag of events method is used to perform feature extraction. An
especially useful feature of this method is that only a single hyper-
parameter needs to be tuned. This is in contrast to most proposed
methods, which often have a large number of parameters, such
that a rigorous analysis of their performance requires careful
characterization and/or adversarial parameter selection, both of
which are performed in this work.

More recently, the Hierarchy of Time Surfaces (HOTS)
(Lagorce et al., 2017) was introduced which makes use of layers
of time-decaying event-surfaces, or time surfaces, and feature-
based clustering, with the features learnt in an unsupervised
manner. The HOTS approach processes events in the temporal
domain and is functionally similar to the feature extraction layer
used in this work. The time surfaces which are used in HOTS
and which also form part of the investigation in this work
are a particularly effective method of implementing event-based
convolutional networks.

In this work, we set out to rigorously quantify in detail
the share in performance improvement attributable to each
element of the system, namely: the memory generation and decay
methods, commonly used memory kernels, use of raw events
relative to use of feature events, the event-based convolutional
structure of the feature extractors and the performance of the
back-end classifier.

An important question arising at every stage of any event-
based algorithm is whether the event rate should inform the
progression of the algorithm through time. In this work, we
investigate this question through comparisons of time surfaces
and index surfaces where the memory of events decay as a
function of time or event index, respectively.

Processing event memory as a function of time is straight-
forward and intuitive. By decaying event memory as a function of
time, all elements of an event-based system operate in a uniform
time-based manner regardless of the informational content in
any part of the sensor’s field of view. The behavior of time-
based decaying memory does not vary as a function of sensor
size or any aspect of the visual scene that alters the event
generation rate, such as scene contrast or texture. However,
once the sensor event rate is incorporated into the operation
of the system, these invariances may no longer hold, since a
change in event rate may alter the decay rate of the memory
of the event stream, potentially resulting in information loss.
Therefore, algorithms using event rate information in memory
decay require more careful testing, parameter selection, and
potentially secondary solutions such as localized memory decay
mechanisms to mitigate information loss. On the other hand,
processing event memory as a function event count or index does
have one crucial advantage over a purely time-based processing
system. In general, event-based vision sensors generate more
events in response to faster moving objects when holding other
variables constant. This approximately proportional relationship
between local event rate and local velocity allows an algorithm
operating as a function of event index to effectively make
computational decisions at approximately the same speed as the
object being observed. Previous works have suggested that the
use of event index to decay memory provides greater robustness
in the presence of such variance in target velocity (Ghosh
et al., 2014; Glover and Bartolozzi, 2016, 2017). In Glover and
Bartolozzi (2016) an event-based Hough transform was used for
tracking and in Ghosh et al. (2014) this was augmented with
an event-based particle filter to improve tracking performance.
The Hough transform in these works was implemented using
a window of fixed event size, thus incorporating the event-
rate information into the algorithm. The results showed that
higher target velocities increased the update rate of the algorithm,
allowing better tracking performance at high velocity. In Ghosh
et al. (2014), windows of fixed event number and fixed time
windows were compared in their performance in simultaneous
tracking and recognition, and a slightly higher recognition
accuracy was achieved when the algorithm was tested for velocity
invariance. Such robustness to observed velocities in the data
can be critical in a range of real world applications. These
results, and the potential utility of velocity robust algorithms
in real world applications of event-based sensors, motivate a
central element of the investigation presented in this work.
One such example is one of the few current applications of
event-based sensors: the field of event-based Space Situational
Awareness (SSA), where event-based sensors uniquely allow
observation and tracking of non-terrestrial targets during both
night and day (Cohen et al., 2017). However, a major challenge
in such a task is the extremely limited collection of event-
based observations of objects of interest. A major aspect of
this limitation is that particular targets may only have been
observed at a single velocity relative to the sensor yet must
be detected, tracked, and identified robustly regardless of their
relative velocity. This requirement of robustness to target velocity
variations motivates the detailed rigorous examination of time
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and index surfaces in combination with a range of commonly
used decay kernels.

Another important element in a wide range of event-based

algorithms is the use of feature extractors. The contribution of

the feature extraction layer as a whole is the simplest to determine

and yet can often be missing in the literature as a baseline

performance measure. This involves directly feeding sensor

events into the final stage classifiers in the same manner as the

output feature layer, skipping the intervening feature extraction

layer(s). A more subtle question is how effective the learnt

features are. In other words, howwell does the learning algorithm
orient the feature set with respect to the data so as to cover the

underlying non-linearities in the dataset? This can be ascertained

by comparing the mean recognition performance of multiple
independently learnt features against random instantiations of

features with the same network structure and feature weight

distribution. The power of random features to cover non-linear
feature spaces has been demonstrated by the Extreme Learning

Machine (Clady et al., 2015) literature. By comparing feature
extraction algorithms to a baseline of random features a better

understanding of the relative improvement can be ascertained.
Finally, the most complex measure that is investigated is the

role of the classifier on the performance. While there are a
wide range of potential back-end classifiers that may be used,
we propose that the combined use of linear classifiers and
large hidden layer ELMs have particular utility in providing a
rigorous measure of residual non-linearity following each stage
of processing. This is because, unlike other classifiers, which
through learning orient their non-linear features toward the
training data, the random non-linear projections of the ELM’s
hidden layer create projections that are approximately uniform
with regard to the structure of the data. As such the size of the
hidden layer provides a reasonably “unbiased” measure of the
residual non-linearities present after each a processing layer.

METHODOLOGY

Generating the Dataset
The system presented in this paper constitutes an event-based
and high-speed classification system, and makes use of a real-
world task, and its associated dataset, to demonstrate and
characterize its performance.

A variety of event-based datasets now exist, such as the N-
MNIST and N-Caltech101 (Orchard et al., 2015a), MNIST_DVS
(Serrano-Gotarredona and Linares-Barranco, 2015), and the
event-based UCF-50 datasets (Hu et al., 2016). One common
facet of these datasets is that they have been generated under
highly constrained conditions, especially with respect to the
range of target object velocities. For a static image, event-based
cameras only produce data in response to motion and therefore
require either the static image, or the camera itself to be moving.
Therefore, the velocities involved in many of the event-based
datasets are strictly controlled. This is often a desirable trait
to ensure consistency across all samples, but this constraint is
a strongly artificial one. Other event-based datasets, such as
the visual navigation dataset found in Barranco et al. (2016),
do not control velocity in the same manner, but represent a
fundamentally different task and are therefore not well-suited to
exploring detection and feature extraction mechanisms.

The need to explore the effect of variances in velocity
is important as these tend to produce significant variance
in the spatio-temporal event patterns generated by event-
based cameras. This can have a significant impact on the
performance of a classifier or detection algorithm. A primary
focus of this work is on the comparison of different event-
based processing approaches in the presence of such variance.
This required the creation of a new dataset designed to test
event-based classification algorithms under conditions that are
less constrained and closer to those found in real-world tasks.
However, as well as being reasonably difficult, the dataset was

FIGURE 1 | Data collection setup and samples of the airplane dropping dataset. (A) The physical setup used for recording dataset in which an ATIS camera is

attached to a table and the airplanes dropped freehand in front of the camera. (B) A top-down and labeled view of the four model airplanes used to generate the

dataset. (C) Examples of the variation in the dataset in terms of position, scale, orientation, and speed. Each image represents a frame rendered from the same 3ms

of events extracted from each recording with ON events represented with white pixels and OFF events represented with black pixels. The twenty random samples

clearly demonstrate the difficulty of the recognition task. Unlike most event-based datasets, the camera was not tuned or biased for the application, simulating real

world noisy dynamic environments where such fine tuning would be difficult or impossible. As a result of this arbitrary untuned camera configuration the OFF events

(black) in the entire dataset produced essentially noise clouds and as such were discarded. Airplane class key ordered from top left to bottom right, Mig-31: {2, 3, 7,

11, 12}, F-117: {9, 15, 16, 18, 19}, Su-24: {1, 5, 8, 14, 20}, and Su-35: {4, 6, 10, 13, 17}.
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also designed to be constrained enough to allow a rigorous
comparison of the various parameters and architectures of
interest. As such the dataset was specifically designed to act as
a proxy for a noisy local region in a larger real-world dataset.

The task is to identify model airplanes as they rapidly pass
through the field of view of an ATIS camera. The airplanes
were dropped free-hand, and from varying heights and distances
from the camera, as shown in Figure 1A. Four model airplanes
were used, each made from steel and all painted uniform gray,
as shown in Figure 1B. This served to remove any distinctive
textures or marking from the airplanes, thereby increasing the
difficulty of the task. The airplanes are models of a Mig-31, an F-
117, a Su-24, and a Su-35, with wingspans of 9.1, 7.5, 10.3, and
9.0 cm, respectively.

The recordings were captured using the same model of ATIS
camera and the same acquisition software used in capturing the
N-MNIST dataset in Orchard et al. (2015a), and the recordings
were stored in the same file formats, thereby maximizing
compatibility with other neuromorphic algorithms and systems.
Themodels were dropped 100 times each from a distance ranging
from 120 to 160 cm above the ground and at a horizontal distance
of 40 to 80 cm from the camera. This ensured that the airplanes
passed rapidly through the field of view of the camera, with
the planes crossing the field of view in an average of 242 ±

21ms. No mechanisms were used to enforce consistency of the
airplane drops, resulting in a wide range of observed speeds
from 0 to >1500 pixels per second. Additionally, there were
variable delays before and after each drop, resulting in recordings
of varying lengths. The dataset was augmented with left-right
flipped versions of the recordings, resulting in 200 drops for each
airplane type. An example of the variability in the airplane drops

is demonstrated in Figure 1C, which shows binned events in the
same 3ms slice of data from 20 randomly selected recordings
from the dataset. The samples demonstrate significant variations
in the positions of the airplanes, their orientations, and their
sizes. No attempt was made to fine tune the sensors biases for
the particular light condition or target velocities. This lack of
tuning is likely in real-world environments where the recording
conditions may not be known a priori. An example of this is
the previously mentioned SSA application (Cohen et al., 2017),
where acquired data is inevitably noisy, often with one of sensors
polarities entirely unable to capture useful events from the target
due to the sensor biases not being matched to the lighting or
velocity profile of the target. Even when the sensor biases are ideal
for the lighting and temperature conditions of the recording,
there are always fainter targets of interest in the field of view
which can only be viewed by lowering sensor biases and “delving
deeper into the noise” to accumulate events from these fainter
objects. Thus, allowing noise and un-tuned biases into datasets,
additional real-world challenges, such as structured noise and
unevenly performing polarities, become apparent, motivating the
implementation of robust solutions and new network behaviors
that would otherwise be missed.

Figure 2A shows the event time vs. event index profiles of
all recordings in the dataset showing the significant inter and
intra recording variance in data-rate present in the dataset.
While the number of recordings in the augmented dataset is
800, the number of surface samples making up the data points
presented to the detection and recognition algorithm is >20,000
samples. The free-hand drop methodology resulted in significant
variance in velocity and orientation of the model airplane
within each recording. As a result, the spatio-temporal output

FIGURE 2 | The Dataset Summary. (A) Event timestamp profiles of all airplane drops in the dataset showing the event timestamps of each recording as a function of

event index. The timestamp profiles demonstrate the variable rates of event generation within and across the recordings. These differences are a function of the

speed, size, and shape of the airplanes and the distance from the camera. Note the color assigned to each recording profile is arbitrary. (B) Distribution of the number

of frames per recording for each recording in the dataset. (C) Distribution of the number of events per recording for each recording in the dataset. (D) Distribution of

the duration of each recording in the dataset.
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patterns varied significantly through each recording, as shown in
Figure 2A and discussed in later sections. The distribution of the
number of surface samples per recording is shown in Figure 2B.
Figures 2C,D show the distribution in the number of events per
recording and recording duration for the dataset. The full dataset
can be found at Afshar et al. (2018).

Time-Surface vs. Index Surfaces
An event evi from the ATIS camera can be described
mathematically by:

evi = [xi, ti, pi]
T (1)

where i is the index of the event, xi = [xi, yi] is the spatial address
of the source pixel corresponding to the physical location on the
sensor, pi ∈ {−1 , 1} is the polarity of event indicating whether
the log intensity increased or decreased, and ti is the absolute
time at which the event occurred (Clady et al., 2015). The time
ti is applied to the event by the ATIS camera hardware and has a
resolution of 1ms.

Event-based algorithms require iterative processing of each
event, and therefore require that each new observation be
combined with previously observed local events, both in space
and in time. This is accomplished using a variation of the time
surfaces from the HOTS algorithm (Lagorce et al., 2017), but
extended to cover surfaces decaying based on time (time surface)
and based on event index (index surface). Each new incoming
event updates the surface and defines a region representing the
spatio-temporal neighborhood on which further processing may
be performed.

The timing and polarity information contained in each event,
as shown in equation (1), allows the generation of two useful
surfaces, based on time and polarity, from which more complex
surfaces can be constructed. The first surface, referred to as Ti,
maps the time of the most recent event to spatial pixel location
and is described in (2), with the corresponding surface Pi for
event polarity given by (3). Note as discussed above due to the
noisiness of the OFF events due to untuned biases, only ON
events with pi = 1 were used.

Ti :R
2 → R

x : t → Ti(x) (2)

Pi :R
2 → {−1, 1}

x : p → Pi(x) (3)

Here, we compare the time surfaces introduced in the HOTS
algorithm, which decay as a function of time, with index surfaces,
where the surface values for all pixels decay not as a function of
time, but in response to new incoming events. We then define
the analogous function to (2) for index surfaces. This surface, Ii,
is defined in (4) and stores the indices of incoming event for each
spatial pixel.

Ii :R
2 → R

x : i → Ii(x) (4)

In addition to exploring time-based decay and index-based
decay, three different transfer functions or temporal kernels are

investigated. These kernels are event binning (BTS/BIS), linear
decay (LTS/LIS) and exponential decay (ETS/EIS). As a point
of reference, the HOTS algorithm makes use of exponential
decaying time kernels.

In all surface generation methods, when a new event arrives,
the surface at xi is set to Pi. When using the event binning
technique, the value on the surface maintains its value over a
temporal window τe or index window Ne, after which it is reset
to zero. The event binning method for surface generation is
described by equations (5) for the time-based binning (BTS) and
(6) for the index-based binning (BIS).

BTSi (x, t) =

{

Pi (x) , t − Ti (x) ≤ τe
0, t − Ti (x) > τe

(5)

BISi (x) =

{

Pi (x) , i− Ii (x)≤ Ne

0, i− Ii (x)> Ne
(6)

For the linearly decaying time surface (LTS) and linearly decaying
index surface (LIS), the initial value set on the surface in response
to a new event instead decays toward zero linearly as a function
of time. These surfaces are described by (7) for time-based linear
decay or in response to incoming events as described by (8) for
index-based linear decay.

LTSi (x, t) =

{

Pi (x) .(1+
Ti(x)−t
2τe

), t−Ti (x) ≥ 2τ e
0, t−Ti (x) < 2τ e

(7)

LISi (x) =

{

Pi (x) .(1+
Ii(x)−i
2Ne

), i− Ii (x) ≥ 2Ne

0, i− Ii (x) < 2Ne
(8)

The exponential decay method works in a similar manner to
the linear decay, with the value placed on the surface decaying
exponentially instead of linearly with respect to either time or
event. This results in the equations for the exponentially decaying
time surface (ETS) shown in (9), and the exponentially decaying
index surface (EIS) shown in (10).

ETSi (x, t) = Pi (x) .e
Ti(x)−t

τe (9)

EISi (x) = Pi (x) .e
Ii(x)−i
Ne (10)

The equations for these surfaces make use of a constant
parameter, time constant τe for time-based methods and index
constant Ne for the index-based methods and the chosen values
for these parameters are shown in Figures 3A,B. The plots show
the time surface and index surface generation kernels which have
an area under the curve of 3ms in (a), and 554 events in (b),
respectively. These values were chosen based on the mean data
rate over all recordings.

Given the 184.5 k event/s event rate for the entire dataset
the area under the curves in Figures 3A,B, τe = 3 and Ne =

554, respectively were chosen to be approximately equal, thus
resulting in approximately equal total surface activation for the
time and index based decay methods over the entire dataset, but
not for any individual recording or section thereof.

To illustrate the difference in the two decay methods, Figure 4
shows index surface subtracted from the time surface for a
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FIGURE 3 | Plots of the six methods for generating time and index surfaces.

(A) Shows the three time-based kernels over time. Note that the area under all

kernels is the time constant τe=3 ms. (B) shows the value of the index-based

kernel as a function of event index. Here the mean dataset event rate over all

recordings (∼184.5 k events/s) was used to obtain equivalent sized kernels

with index constant Ne=554 events.

single recording from the dataset. The figure shows that the
binning time surface has a lower activation than the binning
index surface when the speed of the airplane is low (at the start of
the recording). As the airplane speeds up through its fall, the total
time surface activation continues to increase whilst the index
surface remains approximately constant. In fact, at t = 157ms,
the total activation on the time surface is approximately twice
that of the index surface which remains relative stable throughout
the recording. This stability of index surface activation is the
direct result of the decay process. Since both the increase and
decrease in surface activation are a function of event index,
all decay kernels with a finite impulse response will inevitably
generate stable surface activations. This is in contrast to the time
decay method where no coupling exists between the activation
and decay of the surface. Figures 4D–F show that the difference
between the two decay methods are greatest for the binning
method, followed by linear decay and finally exponential decay,
which is the result of a slight reduction in surface activation
from binning to linear to exponential decay for the time surfaces.
This reduction is due to the kernel width such that the arrival
of new events overwrite the entries for pixels that have recently
been activated. This effect is more pronounced for kernels with
a longer time window as the surface maintains the value for
longer. This same effect is also present in the index surfaces, but
is less prominent due to the lower variance of the index-based
activation plots. Overall, Figure 4 highlights the event-overwrite

effect for different decay methods and kernels, as well as the
significantly lower variance of index surface activation in the
presence of change in velocity (due to gravity) relative to time
surfaces. Such lower variance potentially allows downstream
processing stages to be optimized for the stable operating point
of the index surface.

Target Velocity vs. Surface Activation
Prior to the feature extraction and recognition, the airplane is
detected and the location within the field of view is determined.
The speed of the airplanes is much faster than any other stimulus
expected within the field of view of the camera, such as the
body of the author accidently entering the frame, as can be seen
in the lower right pane of Figure 5c. Therefore, summation of
events across the rows and columns of the camera’s field of view
(after normalization and thresholding as shown in Figures 5a,b

provides a simple method to detect the boundary of the airplane
in the limited context of this investigation. While the presence of
slow moving objects in the background can be rejected as shown
in Figure 5c, complex background objects with similar velocities
to the target would impair this simple object detector.

In terms of limitations, the presented dataset is constrained in
the sense of having only a single high-speed object in the field
of view against an effectively blank background. This restriction
allows a more focused investigation of different methodologies
as well as of the sources of variance in the data such as target
orientation and velocity. While the restriction may appear to
limit the generalization of the results to more complex scenes, the
dataset and the resulting network solutions should be viewed as
investigating a local region within a more complex visual scene
and the processing required for it which would be represent a
small section in a larger system.

By using the detection method described we can plot the
estimated vertical position of each target airplane as shown
in Figure 6, both in terms of time in Figure 6A and event
index Figure 6B. These vertical position profiles serve to further
highlight the difference between the index-based and time-
based approaches in the context of local velocity. Whereas,
the estimated position plots take on their expected parabolic
shape when plotted against time, when plotted against index, the
trajectories are linear to a first approximation. The linearity of
target position with respect to event index provides an interesting
insight into the potential use of index surfaces for tracking,
however, this is beyond the scope of the work presented here,
which focuses on detection and recognition.

Figure 7 illustrates the wide range of velocities in the dataset
and the associated mean rate of change in surface activation
for time surfaces, index surfaces. The exponentially decay kernel
was used for this test. The line of best fit through the data
demonstrates different relationships between velocity and change
in surface activation which arise from the different geometries
of the airplanes. In all cases, however, surface activation is
significantly more sensitive to velocity when using time surfaces
than index surfaces. This invariance hints at potential utility
of index surfaces for velocity invariant feature generation,
where features learnt from a dataset with a particular velocity
distribution operate equally well on a dataset with an entirely
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FIGURE 4 | Comparison of surface activation for a single recording. (A–C) show the surface differences (BTSi−BISi ),
(

LTSi−LISi
)

, and (ETSi−EISi ), respectively at the

beginning of the recording (t=36 ms). This moment in the recording is marked (1) on (D) which displays total surface activation for the binning method
∑

x,y BTSi and
∑

x,y BISi . The two traces in (D) show that at the beginning of the recording when the target airplane’s speed is low the binning time surface has a lower activation

than the binning index surface. However, as the target speeds up, the total time surface activation also increases, while the index surface remains approximately

stable, such that by t=157ms the time surface activation
∑

x,y BTSi is approximately twice that of
∑

x,y BISi . (E,F) show a similar but slightly less pronounced relative

increase for the linear and exponential decay surfaces. (G–I) show this relative increase for the binning, linear, and exponential decay surfaces by plotting the

differences of (A–C) at t=157ms.

different velocity distribution, which is not the case for time
surfaces. We explore the ramifications of this invariance further
in section Velocity Segregated Dataset.

Event-Based Feature Extraction
An event-based feature extractor was used to learn the most
common spatio-temporal features generated by the recordings.

The unsupervised spike-based feature extraction algorithm
was developed for hardware implementation, as previously
described in Afshar et al. (2014). In this algorithm, the Synapto-
dendritic Kernel Adaptation Network (SKAN), a single layer of
neurons with adaptive synaptic kernels and adaptive thresholds
compete in the temporal domain to learn commonly observed
spatio-temporal spike patterns. These adaptive synapto-dendritic
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FIGURE 5 | Screenshot from a live demonstration of the airplane drop test after 0.08 s. (a,b) are a smoothed summation of recent events across columns and rows,

respectively. The smoothing was performed by using an 8-pixel wide rectangular moving average window. Due to the relatively high speed of the airplane these

summations, when normalized and thresholded at 0.1, could reliably be used to extract the fast-moving airplane from the static background or slower moving objects.

The generated target object’s boundary is shown in (c). Note that movement of the body of the author (light vertical trace on the left) as he drops the airplane is slow

relative to the airplane and generates relatively few events and so does not reach even the low set (th = 0.1) detection threshold.

kernels provide an abstracted representation of the coupling
of pre- and post-synaptic neurons via multiple synaptic and
dendritic pathways allowing unsupervised learning and inference
of precise spike timings. By conceptually combining multiple
synapses, the most numerous elements of any neuromorphic
system, into a single adaptive kernel, the SKAN algorithm allows
an efficient yet reasonably complex model of STDP to be realized
in hardware. In Afshar et al. (2015) the algorithm was extended
using a simplified model of Spike Timing Dependent Plasticity
(STDP) (Markram et al., 1997) to provide synaptic encoding
of afferent Signal to Noise Ratio. In Sofatzis et al. (2014) the
algorithm was used to perform real-time unsupervised hand
gesture recognition using an FPGA. In this work, the event-based
approach is continued at the feature extraction layer with the
output spike of the winning neuron representing a feature event.

The SKAN layer operates via two simple feedback loops: a
synaptic kernel adaptation loop and a threshold adaptation loop.
Each input event ui(t) in a spatio-temporal pattern activates a
triangular post synaptic kernel ri(t) as described by (11) and (12).
The kernels are summed at the soma to generate a membrane
potential. While this membrane potential is above the neurons

adaptive threshold Θ(t), the neuron output s(t) goes high, which
is analogous to a series of action potentials or a neuronal burst,
as described in (13). While the neuron output s(t) is high, the
kernels perform their temporal adaptation operation as described
by (12). According to this rule every time step where the neuron
output is high and the kernel is rising (pi = 1), the synaptic
kernel’s slope 1ri is reduced by a small amount ddr, thus moving
the kernel peak later in time to better match the observed pattern.
Conversely if the event is too early, the kernel’s slope1ri is raised
contracting the kernel and moving its peak earlier in time.

pi (t) =























1 if
(

ui (t) = 1 ∧ pi (t − 1) = 0
)

∨
(

pi (t − 1) = 1 ∧ ri (t − 1) < wi

)

−1 if
(

pi (t − 1) = 1 ∧ ri (t − 1) ≥ wi

)

∨
(

pi (t − 1) = −1 ∧ ri (t − 1) > 0
)

0 else

(11)

[

ri (t)
1ri (t)

]

=

[

ri (t − 1)
1ri (t − 1)

]

+ pi (t − 1)

[

1ri (t − 1)
ddr × s (t − 1)

]

(12)

s (t) =

{

1 if
∑

i ri (t) > 2 (t − 1)
0 else

(13)
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FIGURE 6 | Estimated vertical position of the target as a function of time (A)

and as a function of event index (B). The dashed black line marks the mean

position over all recordings. For the entire dataset, the mean time interval from

the first valid object boundary detection event to the last was 156.2ms with a

standard deviation of 17.8ms. The target’s position was defined as the

midpoint between the object boundaries as shown in Figure 5 (C). The gray

bar at the top left in (A) indicates the time window used for investigating the

effect of target velocities on surface activation in Figure 7. The same gray time

window bar is shown in lower (B) panel as a function of event index. The

relative thickness of the bar is proportional number of recordings in the time

window of (A) at each event index. Note the color assigned to each recording

profile is arbitrary.

The neuron’s thresholds adapt via a similar mechanism to the
kernels. At each time step where the neuron output is high the
neuron’s threshold also rises. In addition at the falling edge of the
neuron output pulse, the threshold falls by a small value. A single
inhibitory neuron prevents multiple neurons spiking at the same
time thus preventing duplicate learning of the same pattern by
multiple neurons.

2(t) =















2(t − 1) + 2rise if
∑

i ri (t) > 2 (t − 1)
2 (t − 1) − 2fall if

∑

i ri (t)

= 0 ∧
∑

i ri (t − 1) > 0
2(t − 1) else

(14)

This simple hardware implementable rule-set allows the neurons
to orient their spatio-temporal receptive fields from a random
starting point toward the most commonly observed patterns,
thus attempting to optimally represent the observed data
given a limited number of features. It is in the class of
unsupervised training algorithms used in wide range of
neuromorphic algorithms such as STDP. For detailed description
of the hardware implementation of the algorithm and resultant
behaviors see (Afshar et al., 2014).

When the camera detects a new event, a 13 × 13-pixel region
of the surface around it is converted to a temporally coded spatio-
temporal spike pattern. This value to time encoding method was
originally used inMasquelier and Thorpe (2007). The normalized
real-valued intensity of the surface is first rescaled from 0–1
to 0–255 and then mapped to an 8-bit unsigned integer. This
8-bit encoding of the surface allows for potential hardware
implementation of the SKAN kernels, without needing floating
point operations. This integer representation of the local surface
region is then encoded into spike delays forming a spatio-
temporal spike pattern. The resultant pattern is then used as
the input to a 25-neuron network. The neurons were trained
10 times independently using half the dataset consisting of 50
recordings from each plane type augmented by the left-right
flipped version of these recordings. Learning (adaptation) in
the feature detection neurons was then disabled. Independent
training of SKAN on randomly selected sections of the dataset
consistently resulted in similar spatio-temporal features being
learnt. The panels in Figure 8 show the resulting feature set from
two independent trials at different network sizes to demonstrate
this. As the comparison of the trained feature sets shows the
same consistent features were learnt at each network size,
with the features coding for the leading edge of the airplane
nose cones and wings dominating the feature sets. In addition,
variants of a solitary noise spike produced often by the ATIS
camera are represented as noise features appearing in top left of
Figures 8B–D. This consistency was also observed over training
epochs of the individual trials. As the number of neurons is
increased some of the neurons no longer code for the same
features, as can be best seen in the bottom right neurons of
Figure 8D. Note also the increasing number of variants of the
“noise feature” as the network size is increased. These variants of
the “noise feature” encode weak traces of features which are too
weak to show in the full color scale.

Of the many network sizes shown in Figure 8 the 25 neuron
network was chosen for the investigation of the other parameters
in the system. In section Feature Extractor Size and Number,
we return to investigate the effect of network and feature sizes
in greater detail. Following feature extraction, and with learning
disabled, the neurons compete to recognize incoming spatio-
temporal event patterns generated from the same 13 × 13-
pixel region of the surface following each new event with the
spike output of the winning neuron representing a feature event.
These feature events were then stored onto 25 separate feature
time surface or feature index surfaces, which were generated
identically to the event surfaces described in section Time-
Surface vs. Index Surfaces using the same decay method and
decay factor.
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FIGURE 7 | Relationship between change in surface activation and target velocity and the resultant mean rate of change in surface activation. Each point represents a

single recording in the dataset. The mean value of target velocity and change in surface activation was calculated over the time window indicated in Figure 6 (A). For

each panel m indicates the slope of the line of best fit.

Spatial Pooling of Feature Surfaces
In order to reduce the required processing and speed up
simulation, the subsystems following the feature surfaces were
operated in a frame-based manner such that at periodic intervals
the estimated target region from each feature surface was
sampled to generate feature frames. The interval used for
sampling was the same as the time surface decay constant τe =

3ms. The surface sampling was time-based for both the time
and index surfaces so as not to bias the comparison. To reduce
the input size to the classifier, spatial pooling of the feature
surfaces was performed. To perform this spatial pooling, the
estimated object boundary region was summed along the rows
and columns, generating two one dimensional feature vectors,
one for the rows and one for the columns. The length of these
vectors would vary at each feature frame depending on the size of
the estimated target region. Thus, in a network with N neurons

for each feature a target region of size R rows and C columns
would generate two one-dimensional vectors (of length R and C,
respectively) resulting from the summation of the image region
across rows and columns for each of N surfaces. In order to
provide the classifier with a uniform input layer size, the varied
length feature vectors R and C need to be resampled to a uniform
length. This was done using linear interpolation and the uniform
vector length chosen was 72, which, when multiplied by the
number of pooling dimensions (2), and the number of features
(25), produced a 3,600-input layer for the classifier. The resultant
end-to-end system is shown in Figure 9.

Parameter Selection
In order to fairly evaluate the relative performance in terms
of recognition accuracy resulting from different decay kernels,
surfaces decay methods, feature extractor numbers, and their
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FIGURE 8 | Consistency of feature generation at multiple network scales. (A–D) show 4, 9, 25, and 64 spatio-temporal features, respectively, extracted from the ATIS

airplane drop dataset. Each panel show results from two independent trials. To allow for visual comparison of the two feature sets, the features from the first trial have

been ordered based on the sum of the squares of the weight of each pixel in each feature. The features of the second trial were then sorted based on cosine distance

to the first feature set. Only the feature-set obtained from two instances of the time-based, exponentially decaying surface is shown above for brevity. The features

resulting from the other kernels resulted in qualitatively similar features dominated by wing edge, nose cone tail features as well as features coding for noise.

FIGURE 9 | Block diagram of the full event-based detection feature extraction and recognition system. The target is sensed by the sensor and the generated ON

events are processed using a time or index surface. Each event triggers a comparison of a local patch around the event with a set of features or neurons. The winning

neuron outputs an event which in turn is placed on a feature surface. The feature surfaces are summed across the rows and columns and presented to the back end

classifier. The classifier is here depicted as a network with a hidden layer but we also use a linear classifier. Note that in the feature surface pooling stage only the

vector summing the feature surfaces across columns is shown, with the second vector showing the summation across rows omitted for clarity.

receptive field sizes, a large number of free system parameters
must first be selected. These parameters, listed in Table 1, are
used to implement event and feature surface generation, surface
sampling, object detection, feature extraction, spatial pooling,
regularization, and classification. In order to ensure that the
selected parameters do not advantage the index-surfaces or the

feature extraction methods that are the focus of this work, all
subsystem parameters would need to be evaluated in terms
of their combined effects on the performance of each method
under testing. However, this represents a prohibitively large
search space to explore in a brute force fashion. Instead, the
approach taken in this work to remove possible parameter
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TABLE 1 | Free parameters used in the system (unless otherwise stated).

Subsystem Parameter Value

Surface generation Time constant τe = 3 ms

Surface generation Index constant Ne = 554 events

Detector Smoothing window size 8 pixels

Detector Smoothing window type Moving average

Detector Normalized threshold 0.1

SKAN Number of features 25

SKAN Number of input channels 13 × 13 = 169

SKAN Other parameters Same as Afshar

et al. (2014)

Classifier Input size using raw event surface (E) 72 × 2 = 144

Classifier Input size feature event surfaces (F) 72 × 25 × 2 =

3,600

Classifier ELM hidden layer size 30,000 Neurons

Classifier Surface sampling interval 3 ms

selection bias in favor of the proposed methods was to optimize
all parameters to achieve the highest recognition accuracy on
what may be considered the null hypothesis: that simple time-
based binning kernels used on raw input events outperform other
kernels, decay methods, and feature extractors. To this end, the
parameters in Table 1 and all algorithm design choices where
selected via a manual heuristic search for optimal recognition
performance using the time-based binning surface BTSi whose
spatially pooled output was fed directly to the classifier without
the use of feature extractors. The classifiers were then selected
for optimal performance on the output data generated by the
selected parameters. Once optimized in this way for the “null
hypothesis,” these same parameters and network structures were
used for all other tests, ensuring that recognition results were
biased in favor of the simple time-based binning approach and
not those proposed in this work.

Classification
Choosing Classifiers
The choice of a back-end classifier used to map feature
outputs to classes can play a critical role in the performance
of a convolutional feature extraction layer or network. Well-
regularized high capacity classifiers with internal non-linearities
can provide significant improvement in performance over and
above the underlying feature extractors used. In many proposed
event-based recognition systems, only a single type of classifier
is tested and often only a single instance of such a classifier
(the best performing configuration) is reported. While this
approach encourages greater attention to the presented work,
it can also overstate the performance of the overall system, due
to fine tuning. What’s more, the use of well-optimized powerful
classifiers without concurrently testing simple linear classifiers
obscures the role of the event-based feature extractors in the
system performance. Here, we propose a dual classifier testing
protocol, which ideally should be applied before and after each
stage of processing, to provide insights into the effectiveness of
the elements under test. For the baseline test, a simple linear

classifier is used tomeasure how linearly separable the underlying
data is before and after processing. In addition to this baseline
classifier we utilize a large capacity ELM, which, by virtue of
the large number of random hidden layer neurons, is likely to
project the non-linearities of the dataset into a linearly separable
higher dimensional feature space. In addition, the lack of feature
learning in the ELM allows a reasonable unbiased estimate of the
residual non-linearity in data. This framework of testing provides
significant insights, as detailed in the results section, which would
not be revealed if only the results from the best performing
classifier were reported.

To evaluate the performance of the system, two measures of
recognition accuracy were considered: per-frame accuracy and
per-drop accuracy. For the per-framemeasure, the feature vectors
described Section Event-Based Feature Extraction were presented
to the classifier at periodic time intervals τe. At each frame, the
class with the largest output was selected as the winner for that
frame. For the per-drop accuracy measure, the class with the
highest number of per-frame during the entire recording was
selected.

A linear classifier and an Extreme Learning Machine (ELM)
classifier (Cohen et al., 2017) with a hidden layer size of 30,000
neurons were trained using the time-based binning method to
achieve the highest per-frame recognition accuracy. Figure 10
details the results from this parameter search and the selected
classifiers.

RESULTS

Results on the Full Dataset
The per-frame recognition results on the full dataset are shown in
Figure 10. For each of the panels, the same performance pattern
is observed: when operating on raw event surfaces as inputs,
the large capacity ELM (ELM-E) significantly outperforms the
linear classifier (L-E). This demonstrates the non-linearity of
the classification boundaries in this case. In comparison, when
feature surfaces are used as inputs, the improvement margin
gained by the ELM (ELM-F) is small relative to the linear
classifier (L-F) suggesting that the output of the 25 feature
extractors is significantly more linearly separable, with less room
for improvement through further non-linear expansion. Also
noteworthy is that the linear classifier operating on feature
surfaces (L-F) outperforms the ELM operating on the event
surfaces (ELM-E) for all surfaces generationmethods. This shows
that the application of a small number of trained local feature
extractors is more effective than using a much larger globally
connected network of neurons with random input weights. The
ratio of errors between the ELM and the linear classifier indicated
at the bottom of each panel quantifies this reduction in error for
each case.

Comparing the results across the panels for the linear classifier
operating on events (L-E), the exponentially decaying surfaces
outperform linear surfaces by a margin of 1.75% for the index
surfaces and 0.24% for the time-surfaces. In turn the linear
surfaces outperform the binning method by 3.06 and 1.36% for
the index surfaces and time surfaces, respectively. For the case
of the linear classifier operating on feature surfaces (L-F), the
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FIGURE 10 | Per-frame recognition accuracy on the full dataset over n = 20 independent trials. Each panel shows results from four network arrangements. In (L-E),

and (ELM-E) the linear classifier and the 30K hidden layer ELM chosen in section Choosing classifiers operate on inputs from raw event surfaces. In (L-F), and (ELM-F)

the same classifiers use 25 feature surfaces as inputs. Each panel shows results for a different surface generation method: The top three panels show time-based

methods using (A) binning, (B) linear decaying, and (C) exponentially decaying surfaces. The bottom three panels show corresponding index-based binning (D), linear

decaying (E), and exponentially decaying surfaces (F). The two ratios at the bottom of each panel indicate the median error ratio of the ELM over the linear classifier.

exponentially decaying surfaces outperform linear surfaces by
a margin of 0.57% for the index surfaces and 0.22% for the
time-surfaces, and in turn the linear surfaces outperform the
binning method by 3.07 and 1.91% for the index surfaces and
time surfaces, respectively. Also, consistently, the improvement
of exponential kernels over linear kernels is not as significant as
their margin with the binning method.

It is worth noting that, when the ELM is chosen as the back-
end classifier, the margin in performance improvement obtained
from feature extraction is reduced. This is to be expected, since
the randomly situated hidden layer neurons of the ELM have a
greater chance of improving the linear separability of segments
of the dataset, if such segments are not already linearly separable
due to processing in the preceding layer. This effect of obscuring
the performance of other subsystems is not limited to the ELM.
A similar effect would be expected with any other classifier
performing non-linear expansion. This underlines the need to
include results from a simple linear classifier when comparing
alternative systems. Also worth noting is that for the preceding
results (features outperforming raw events, and exponential and
linear kernels outperforming binning) all system parameters
were optimized for the time-based binning method. These results
therefore confirm the suitability of exponential kernels for time

and index-surface generation. This conclusion is also supported
by results in Akolkar et al. (2015), where the information from
the visual scene is found to rapidly rise within a small initial
temporal window, but thereafter fall gradually with increasing
window size, as is best described by an exponentially decaying
kernel. By weighing events in an approximately compensatory
manner to their information content as described in Akolkar et al.
(2015), the exponentially decaying kernel results in the highest
information content for the classifier. Another observation from
Figure 10 is that all time-based decay methods outperform the
index-based decay methods by ∼1% on the full dataset with the
largest performance disparity observed between the index-based
binning method BISi and the time-based binning method BTSi.
This would be expected, since the later method was used during
all parameter optimizations and would be most advantaged by
the selected parameters. Based on the results shown in Figure 10

we narrow further investigations by selecting linear classifiers L-
E and L-F and focus on exponentially decaying surfaces EISi and
ETSi.

Frame Balanced Dataset
In order to generate a balanced dataset, an equal number of
frames from each recording was selected. In this way, the total
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number of presentations to the classifier for each class was
equalized. As Figure 11 shows 1, 2, 4, 8, 16, and 32 frames were
sampled from each of the airplane recordings and presented to
the linear classifier operating on events surfaces L-E and feature
surfaces L-F for each of the EISi and ETSi surfaces.

As Figure 11 shows, both the per-frame and per-drop
accuracy increase as a function of the number of frames used
during training. Additionally a sharper increase and higher final
accuracy is observed for the per-drop accuracy measure, as
would be expected, since the per-drop measure is analogous to a
max pooling operation which benefits from increased pool size.
The relative performance margin of the network using feature
surfaces over raw event surfaces is reduced in the per-drop
measure, as more information is accumulated over a recording,
reducing error, and approaching the 100% accuracy upper bound.
The highest number of random frames used per recording was
32, as this was approximately equal to the total number of
frames in the shortest recording (see Figure 2B). Table 2 details
the accuracy results for this balanced dataset while Figure 12

shows misclassified recordings for one instance of the highest
performing network using index-based decaying feature surfaces
and a linear classifier, illustrating that some drops are almost
impossible to classify correctly.

Interestingly, in contrast to the full unbalanced dataset results
detailed in section Results on the Full Dataset, the per frame
balanced results in Figure 11 and Table 2 show little significant
difference in accuracy between the index-based and time-
based surfaces for either the per-frame or per-drop measures,

suggesting that the observed slight advantages in accuracy on the
full dataset may be due to the use of time-based surfaces during
parameter selection of section Parameter Selection and linked to
imbalances in the number of frames per recording present in the
full dataset for the two different methods.

Velocity Segregated Dataset
As outlined in section Target Velocity vs. Surface Activation, the
apparent velocity invariance property of index surfaces motivates
a test using a modified dataset which is split in terms of target
velocity. Thus, in order to compare index-based and time-based
surfaces in terms of target velocity invariance, the recordings
were divided into 200 “slow” and 200 “fast” recordings based
on the estimated vertical airplane velocity at the midpoint (in
time) of each recording. Since the airplanes speed up during

TABLE 2 | Per-frame and Per-drop accuracy results on the frame balanced

dataset for four selected systems: Linear classifier operating on events surfaces

(L-E) and feature surfaces (L-F) for each of the EISi and ETSi surfaces.

Per-frame (%) Per-drop (%)

Time-based Event surface 90.60 +/−1.02 96.64 +/−1.47

Index-based Event surface 91.03 +/−0.89 96.90 +/−1.34

Time-based Feature surfaces 95.64 +/−0.79 98.52 +/−0.75

Index-based feature surfaces 96.15 +/−0.84 98.75 +/−0.78

Number of trials used is 20.

FIGURE 11 | Comparison of (B) per-drop and (A) per-frame recognition accuracy as a function of the number of randomly selected frames used during training from

each recording. The index-based EISi surface and time-based ETSi surfaces are compared. Results shown are over N = 20 trials. A linear classifier was used in all test.
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FIGURE 12 | The three drops misclassified by an instance of a linear classifier using 25 exponentially decaying index-based feature surfaces. Captured frames show

airplanes at mid-point (in time) of recording.

the fall, the system was trained on the n-first (slowest) frames
of the slow recordings and tested on the n-last (fastest) frames
of the fast recordings. In this way, by varying the number of
frames n, datasets with different degrees of velocity segregation
could be tested. The resulting recognition accuracies in Figure 13
demonstrate that with increasing n, and thus decreasing velocity
segregation in the data, the recognition accuracy of all systems
rise. Figure 13 further shows that although training on a speed
segregated dataset significantly reduces accuracies for all systems
in comparison to training using a randomly sampled dataset
(such as shown in Figure 11), the decline is significantly larger
for time-based decaying surfaces. This difference demonstrates
the relative robustness of index-based decay surfaces to variance
in velocity and their utility in applications where the full range of
potential target velocities to be encountered during testing is not
available in the training data.

Therefore, given the results in the previous section, it can
be concluded that, at the local scale, with a single target in the
field of view, systems using index-based decay surfaces tend
to match equivalent systems using time-based decay surfaces,
when presented with an adequately wide range of velocities in
the training data, since their advantage of velocity invariance
is effectively neutralized. But when the available range of
velocity distributions for training is incomplete, index-based
decay surfaces tend to produce more robust performance. Given
this finding, and in order to limit the scope in the next section,
we narrow our focus exclusively on index-based surfaces and
investigate the effect of different feature extraction networks
and their effect on recognition accuracy. This is also supported
by findings in Ghosh et al. (2014), where a small superiority
was found when using fixed event windows over time windows.
However, those tests were performed using a randomly sampled
training set, likely containing data with velocity distributions that
were similar to the test set. As such their results are similar to the

FIGURE 13 | Mean and standard deviation per-frame accuracy on a speed

segregated dataset over 10 trials clearly demonstrates superior performance

of index-based surfaces in the presence of velocity varying data.

full dataset results examined in section Frame Balanced Dataset
of this work, which only showed a slight improvement due to the
velocity variance available in the training dataset. In this work,
by additionally testing the algorithms using a range of velocity
segregated datasets, the robustness of the index surface method is
more completely investigated.

The Decay Constants
An important element of any event-based surface is the value
of its decay constant. In this work the value of decay constants,
τe = 3ms andNe = 554 events were effectively chosen arbitrarily.

Frontiers in Neuroscience | www.frontiersin.org 15 January 2019 | Volume 12 | Article 1047

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Afshar et al. Index Surfaces vs. Time Surfaces

This raises an important question about the optimality of the
chosen decay constants and the robustness of the generated
features and recognition accuracy to different values of these
decay constants. A closely related question, which applies only
to index surfaces, is whether targets which generate more or
fewer events, e.g., due to different object size or contrast,
could still be learnt and recognized with the decay constants
chosen. To investigate these questions a wide range of decay
constants across six orders of magnitudes were tested on a frame
balanced randomized training and testing dataset. The resulting
recognition accuracies and selected feature sets are shown in
Figure 14. The results show a similar pattern for time and index
surfaces with little significant difference in accuracy. At the
extreme decay rate of 10 events and 54 µs the systems perform
little better than chance, since virtually all event information
is decayed away before it can be extracted. This leaves all the
features coding for variants of the noise feature. As the decay
constant increases to by two orders of magnitude, coherent
features begin to emerge coinciding with a rapid increase in

recognition accuracy. At this event rate there are still multiple
features coding for a single noise spike. Index decay constants of
between three and four orders of magnitude of events correspond
with a plateau in recognition performance. This region coincides
with the range where the noise feature is only represented by one
or two neurons with all remaining neurons coding for complex
features. After four orders of magnitude increase in the decay
constant, the accuracy begins to decline slightly. In this region
the noise features begin to be represented oncemore but this time
with a highly activated background which is a direct result of the
much slower decay rate.

As Figure 14 illustrates, when sweeping the decay constant,
the number of variants of the noise feature in the network roughly
correlates to the feature extraction performance of the network.
The feature set with the fewest representations of the noise
feature (ideally only one) performs the best. This is expected since
the noise feature is unlikely to be correlated to any particular class
of object and the frequency of its representation in a feature-set
reduces the efficiency of that feature-set, leaving fewer neurons

FIGURE 14 | Classification accuracy and typical feature sets as a function of the decay constants for time and index surfaces. The lower panel shows accuracy

plotted against the index decay constant Neon a logarithmic scale. The time surface results are plotted on the same logarithmic scale where a 1event to 5.4152 µs

conversion rate is used to align the results. This conversion rate is based on the average event rate over the entire dataset. The vertical solid line at Ne = 554 and

τe = 3ms (τe = 554 × 5.4152 µs) indicates the value of the index and time decay constants used in rest of the work. The horizontal dotted line indicates chance

accuracy. All tests were performed over N = 20 independent feature extraction trials. The feature sets above the panel show instances of the feature sets for four

points on the decay constant axis. The feature set shown are from index-based surfaces.
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to represent classification relevant feature information. Figure 14
also shows a wide central region of stable performance that is
robust to the choice of τe and Ne. The results also show that
over estimating the optimal value of the decay constant is less
harmful than under estimating with significantly less reduction
in accuracy.

Feature Extractor Size and Number
In order to characterize the effectiveness of the feature extraction
subsystem in an unbiased manner, a range of feature sizes and
a number of feature extractors were investigated and assessed
in terms of the resultant recognition accuracy. In addition,
for each point on the feature size-feature number space, the

results of the learning algorithm described in section Event-
Based Feature Extraction was compared to those of equivalent
sized networks using random feature sets. The mean accuracy
results in Figure 15 (top panels) demonstrate that learnt features
outperform random features at every scale while exhibiting
slightly lower variance in accuracy (bottom panels).

In addition, while the results from the random features suggest
a slight trend toward increased accuracy as a function of both
feature numbers and feature size, the learnt feature results clearly
show that the larger feature sizes (17 × 17 and 13 × 13)
generate higher accuracy with increasing number of features,
while the smallest feature sizes (3 × 3 and 5 × 5) exhibits
a weak downward trend with the number of features. When
the feature size is small, only a few distinct combinations exist.

FIGURE 15 | Per-frame accuracy on the full dataset as a function of feature size and number of features used in the feature extraction layer for both learnt and

random features. N = 10 independent feature sets with 10 cross validating classifications per feature set. Note that the baseline linear accuracy using the raw event

surface with no feature extraction layer was 91.38 +/− 0.81% as shown in Table 2.
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Therefore, when and a large number of them are trained, several
features will be very similar, resulting in near identical input
generating very different input to the classifier. This reduction in
accuracy resulting from the addition of more redundant features
is due to the OR operation which must be performed by the
back-end classifier. This insight demonstrates that convolutional
features layers can, if poorly configured, “over-fit” the data
by representing overly specific variants of the same pattern.
This effect only becomes apparent with the combined use of a
large number of feature, small feature sizes, and relatively small
datasets. But this might be an issue in future applications of
event-based convolutional networks, where resource efficiency of
a hardware implementation may allow a very large number of
features in a layer to be trained (especially in the first layer) while
the level of independent features in the recorded data may be
limited.

We can also note that for both the random and learnt
feature sets, the feature size has little effect on accuracy when
the number of features becomes very small. This is because
there is very little additional discriminatory information that
can be captured by the larger sized features when a wide
range of unrelated, heterogeneous spatio-temporal patterns
become effectively averaged together to generate the (too) few
features used in the network. Thus, local spatial complexity
of observed data determines optimal feature size and feature
number relationships, which, if not considered during hardware
implementation, can result in inappropriately scaled network
architectures and effectively wasting hardware resources.

DISCUSSION

While binning methods examined in this work were shown
to perform less well than linearly decaying surfaces and
exponentially decaying surfaces, the significantly simpler
implementation of the binning method allows for much more
efficient implementations of event surfaces in neuromorphic
hardware. In a similar fashion, the selection of feature sizes and
number of features implemented at any layer of a multi-layer
event-based network generates trade-offs between hardware
resource and performance. In this context, the network and
feature size investigations presented here provide guidelines for
such network designs.

The four class dataset presented allows reasonably accurate
classification using a single layer of feature extraction in
combination with a linear classifier; the task can be made
increasing difficult by increasing the number of classes in the
dataset. In such a case the output of the feature extraction
layer would retain significantly greater residual non-linearity.
This would increase the performance of gap between the linear
classifier and the large ELM. Conversely adding additional feature
extraction layers will work in the opposite direction, producing
output that is more and more linearly separable and thus
reducing the performance gap between the linear classifier and
ELM.

The presented recordings in the dataset were varied to cover
a wide range of target speeds. As a result any random splitting

of training and testing data provided an overlapping range of
target speeds in both set. This overlap removed any advantage
of index-based decaying surfaces which provide robustness to
target velocity. However, in many applications, such as the
SSA applications of Cohen et al. (2017), the range of velocities
in the training set is limited so that features trained on this
limited set of target velocities must generalized to a wide range
of as yet unobserved velocity profiles. In this work, such a
condition was simulated by iteratively segregating the data based
on speed to highlight the utility of the index-based decay
method.

One weakness of the index-based decaying method is that
it can only be used locally (or globally but on a single target).
If events from other non-target object cause a decay in the
surface activation of the target, vital information may be lost.
Such information loss is not present if target segregation has
already occurred via an upstream system, or, more generally, if
the surface decay mechanism is viewed as a local mechanism
acting on a sub-region of a larger global surface. As such, the
presented dataset and the resulting performance of the index-
based systems can best be viewed as focusing on a locally
operating subsystem within a larger processing system. When
viewed as a rigorous analysis of such a central building block
of a larger event-based network the value of the investigation
presented here becomes more apparent. On the other hand,
if a system needs to operate with a single decay method,
then the standard time-based decay mechanism would be
more optimal, as it can process the entire surface in a global
manner.

CONCLUSION

In this work, we investigated in detail an event-based feature
extraction layer. In order to rigorously investigate the effects
of different kernels, decaying methods, classifiers, and feature
sizes and numbers, we limited the exploration to a single
layer network. Yet the design of deeper networks can be
informed by these single layer results. Using a dataset
featuring a range of target shapes, scales, orientations, and
velocities, it was observed that exponentially decaying kernels
outperform other kernels, and that index-based decaying surfaces
perform equally as well as time-based decaying surfaces, when
robustness to target speed is not required, and outperform
them when it is required. We also showed a clear superiority
of learnt features over random features and showed that
the largest networks of neurons with the largest receptive
fields using the most complex kernels outperform all other
configurations.

AUTHOR CONTRIBUTIONS

SA, GC, and TH designed dataset. SA and GC generated the
dataset. SA and GC performed pre-processing. SA, GC, JT, and
AvS designed the algorithms. SA implemented the algorithms.
SA analyzed the data and results. SA wrote the manuscript. All
authors assisted in editing.

Frontiers in Neuroscience | www.frontiersin.org 18 January 2019 | Volume 12 | Article 1047

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Afshar et al. Index Surfaces vs. Time Surfaces

REFERENCES

Afshar, G., Hamilton, S., Tapson, T. J., van Schaik, J., and Cohen, A. (2018).

ATIS Plane Dataset. Available online at: https://www.westernsydney.edu.au/

bens/home/reproducible_research/atis_planes

Afshar, S., George, L., Tapson, J., van Schaik, A., and Hamilton, T., J. (2014). Racing

to learn : statistical inference and learning in a single spiking neuron with

adaptive kernels. Front. Neurosci. 8:377. doi: 10.3389/fnins.2014.00377

Afshar, S., George, L., Thakur, C. S., Tapson, J., van Schaik, A., de Chazal,

P., et al. (2015). Turn down that noise: synaptic encoding of afferent SNR

in a single spiking neuron. IEEE Trans. Biomed. Circuits Syst. 9, 188–196.

doi: 10.1109/TBCAS.2015.2416391

Akolkar, H., Meyer, C., Clady, Z., Marre, O., Bartolozzi, C., and Panzeri,

S. (2015). What can neuromorphic event-driven precise timing add

to spike-based pattern recognition? Neural Comput. 27, 561–593.

doi: 10.1162/NECO_a_00703

Barranco, F., Fermuller, C., Aloimonos, Y., and Delbruck, T. (2016). A dataset

for visual navigation with neuromorphic methods. Front. Neurosci. 10:49.

doi: 10.3389/fnins.2016.00049

Benosman, R., Ieng, S. H., Clercq, C., Bartolozzi, C., and Srinivasan, M. (2012).

Asynchronous frameless event-based optical flow. Neural Netw. 27, 32–7.

doi: 10.1016/j.neunet.2011.11.001

Clady, X., Ieng, S. H., and Benosman, R. (2015). Asynchronous event-

based corner detection and matching. Neural Netw. 66, 91–106.

doi: 10.1016/j.neunet.2015.02.013

Cohen, G., Afshar, S., van Schaik, A., Wabnitz, A., Bessell, T., Rutten, M., et al.

(2017). “Event-based Sensing for Space Situational Awareness,” in Advanced

Maui Optical and Space Surveillance Technologies Conference (AMOS) (Maui,

HI), 1–13.

Ghosh, R., Mishra, A., Orchard, G., and Thakor, N. V. (2014). “Real-time object

recognition and orientation estimation using an event-based camera and

CNN,” in IEEE 2014 Biomedical Circuits and Systems Conference, BioCAS 2014

- Proceedings (Lausanne), 544–547.

Giulioni, M., Corradi, F., Dante, V., and del Giudice, P. (2015). Real time

unsupervised learning of visual stimuli in neuromorphic VLSI systems. Sci. Rep.

5:14730. doi: 10.1038/srep14730

Glover, A., and Bartolozzi, C. (2016). “Event-driven ball detection and gaze fixation

in cluttter,” in IEEE International Conference on Intelligent Robots and Systems

(Daejeon), 2203–2208.

Glover, A., and Bartolozzi, C. (2017). “Robust visual tracking with a freely-moving

event camera,” in IEEE International Conference on Intelligent Robots and

Systems (Vancouver, BC), 3769–3776.

Hu, Y., Liu, H., Pfeiffer, M., and Delbruck, T. (2016). DVS benchmark datasets

for object tracking, action recognition, and object recognition. Front. Neurosci.

10:405. doi: 10.3389/fnins.2016.00405

Klein, P., Conradt, J., and Liu, S. C. (2015). “Scene stitching with event-driven

sensors on a robot head platform,” in 2015 IEEE International Symposium on

Circuits and Systems (Lisbon: ISCAS), 2421–2424.

Lagorce, X., Ieng, S. H., Clady, X., Pfeiffer, M., Benosman, R., et al. (2015a).

Spatiotemporal features for asynchronous event-based data. Front. Neurosci.

9:46. doi: 10.3389/fnins.2015.00046

Lagorce, X., Meyer, C., Ieng, S. H., Filliat, D., and Benosman, R. (2015b).

Asynchronous event-based multikernel algorithm for high-speed visual

features tracking. IEEE Trans. Neural Netw. Learn. Syst. 26, 1710–1720.

doi: 10.1109/TNNLS.2014.2352401

Lagorce, X., Orchard, G., Galluppi, F., Shi, B. E., and Benosman, R.

B. (2017). Hots: a hierarchy of event-based time-surfaces for pattern

recognition. IEEE Trans. Pattern Analy. Mach. Intell. 39.7, 1346–1359.

doi: 10.1109/TPAMI.2016.2574707

Lee, J. H., Delbruck, T., Pfeiffer, M., Park, P. K. J., Shin, C.-W., Ryu, H., et al.

(2014). Real-time gesture interface based on event-driven processing from

stereo silicon retinas. IEEE Trans. Neural Netw. Learn. Syst. 25, 2250–2263.

doi: 10.1109/TNNLS.2014.2308551

Lichtsteiner, P., Posch, C., and Delbruck, T. (2008). A 128× 128 120

dB 15 µs latency asynchronous temporal contrast vision sensor.

IEEE J. Solid State Circuits 43, 566–576. doi: 10.1109/JSSC.2007.

914337

Litzenberger, S., and Sabo, A. (2012). Can silicon retina sensors be

used for optical motion analysis in sports? Proc. Eng. 34, 748–753.

doi: 10.1016/j.proeng.2012.04.128

Markram, H., Lübke, J., Frotscher, M., and Sakmann, B. (1997). Regulation of

synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275,

213–215. doi: 10.1126/science.275.5297.213

Masquelier, T., and Thorpe, S. J. (2007). Unsupervised learning of visual features

through spike timing dependent plasticity. PLoS Comput. Biol. 3, 0247–0257.

doi: 10.1371/journal.pcbi.0030031

Orchard, G., Jayawant, A., Cohen, G., K., and Thakor, N. (2015a). Converting

static image datasets to spiking neuromorphic datasets using saccades. Front.

Neurosci. 9:437. doi: 10.3389/fnins.2015.00437

Orchard, G., Meyer, C., Etienne-Cummings, R., Posch, C., Thakor, N.,

and Benosman, R. (2015b). “HFirst: a temporal approach to object

recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37, 2028–2040.

doi: 10.1109/TPAMI.2015.2392947

Peng, X., Zhao, B., Yan, R., Tang, H., and Yi, Z. (2017). Bag of events:

an efficient probability-based feature extraction method for AER

image sensors. IEEE Trans. Neural Netw. Learn. Syst. 28, 791–803.

doi: 10.1109/TNNLS.2016.2536741

Posch, C., Matolin, D., and Wohlgenannt, R. (2011). A QVGA 143 dB

dynamic range frame-free PWM image sensor with ldossless pixel-level video

compression and time-domain CDS. IEEE J. Solid State Circuits 46, 259–275.

doi: 10.1109/JSSC.2010.2085952

Serrano-Gotarredona, T., and Linares-Barranco, B. (2015). Poker-DVS and

MNIST-DVS. Their history, how they were made, and other details. Front.

Neurosci. 9:481. doi: 10.3389/fnins.2015.00481

Sofatzis, R. J., Afshar, S., and Hamilton, T. J. (2014). “Rotationally invariant

vision recognition with neuromorphic transformation and learning networks,”

in 2014 IEEE International Symposium on Circuits and Systems (ISCAS)

(Melbourne, VIC), 469–472.

Zhao, B., Ding, R., Chen, S., Linares-Barranco, B., and Tang, H. (2015).

Feedforward categorization on AERmotion events using cortex-like features in

a spiking neural network. IEEE Trans. Neural Netw. Learn. Syst. 26, 1963–1978.

doi: 10.1109/TNNLS.2014.2362542

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Afshar, Hamilton, Tapson, van Schaik and Cohen. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Neuroscience | www.frontiersin.org 19 January 2019 | Volume 12 | Article 1047

https://www.westernsydney.edu.au/bens/home/reproducible_research/atis_planes
https://www.westernsydney.edu.au/bens/home/reproducible_research/atis_planes
https://doi.org/10.3389/fnins.2014.00377
https://doi.org/10.1109/TBCAS.2015.2416391
https://doi.org/10.1162/NECO_a_00703
https://doi.org/10.3389/fnins.2016.00049
https://doi.org/10.1016/j.neunet.2011.11.001
https://doi.org/10.1016/j.neunet.2015.02.013
https://doi.org/10.1038/srep14730
https://doi.org/10.3389/fnins.2016.00405
https://doi.org/10.3389/fnins.2015.00046
https://doi.org/10.1109/TNNLS.2014.2352401
https://doi.org/10.1109/TPAMI.2016.2574707
https://doi.org/10.1109/TNNLS.2014.2308551
https://doi.org/10.1109/JSSC.2007.914337
https://doi.org/10.1016/j.proeng.2012.04.128
https://doi.org/10.1126/science.275.5297.213
https://doi.org/10.1371/journal.pcbi.0030031
https://doi.org/10.3389/fnins.2015.00437
https://doi.org/10.1109/TPAMI.2015.2392947
https://doi.org/10.1109/TNNLS.2016.2536741
https://doi.org/10.1109/JSSC.2010.2085952
https://doi.org/10.3389/fnins.2015.00481
https://doi.org/10.1109/TNNLS.2014.2362542
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Investigation of Event-Based Surfaces for High-Speed Detection, Unsupervised Feature Extraction, and Object Recognition
	Introduction
	Methodology
	Generating the Dataset
	Time-Surface vs. Index Surfaces
	Target Velocity vs. Surface Activation
	Event-Based Feature Extraction
	Spatial Pooling of Feature Surfaces
	Parameter Selection
	Classification
	Choosing Classifiers


	Results
	Results on the Full Dataset
	Frame Balanced Dataset
	Velocity Segregated Dataset
	The Decay Constants
	Feature Extractor Size and Number

	Discussion
	Conclusion
	Author Contributions
	References


