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Abstract

CD47CD25" immunoregulatory T cells play a pivotal role in preventing organ-specific au-
toimmune diseases and in tolerance induction to allogeneic organ transplants. We investigated
whether these cells could also control graft-versus-host disease (GVHD), the main complica-
tion after allogeneic hematopoietic stem cell transplantation (HSCT). Here, we show that the
few CD47CD25" T cells naturally present in the transplant regulate GVHD because their re-
moval from the graft dramatically accelerates this disease. Furthermore, the addition of freshly
isolated CD47CD25* T cells at time of grafting significantly delays or even prevents GVHD.
Ex vivo—expanded CD4*CD25" regulatory T cells obtained after stimulation by allogeneic re-
cipient-type antigen-presenting cells can also modulate GVHD. Thus, CD4*CD25* regulatory
T cells represent a new therapeutic tool for controlling GVHD in allogeneic HSCT. More

generally, these results outline the tremendous potential of regulatory T cells as therapeutics.
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Introduction

Allogeneic hematopoietic stem cell transplantation (HSCT)
is the treatment of choice for many hematological malig-
nancies and primary immunodeficiencies. GVHD, the life-
threatening and frequent complication of allogeneic HSCT
(1), is due to mature donor T cells present in the transplant.
However, removal of these T cells before grafting is rarely
envisaged because it leads to graft failure (2), prolonged
immunosuppression (3), and leukemia relapse (4). To date,
standard immunosuppressive treatments of GVHD, consist-
ing in the administration of cyclosporin and methotrexate,
are only partially effective (5, 6). This emphasizes the need
to develop innovative therapeutic strategies to limit the
pathological effects of donor-alloreactive T cells.
CD4*CD25* immunoregulatory T cells play a major
role in peripheral tolerance of autoreactive T cells. Mice
that are rendered deficient for these cells develop multiple
T cell-mediated organ-specific autoimmune diseases (7—
13). The mechanism of action of these regulatory T cells is
poorly understood and largely controversial. In vitro stud-
ies showed that these cells inhibit the activation of both
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CD4* and CD87 conventional CD25~ T cells by acting ei-
ther directly on target T cells or on APCs (13, 14). CTL
antigen 4 or TGF-P3 have been suggested to play a critical
role in their T cell suppressive functions (15, 16). These
observations were not confirmed in other studies (13). De-
pending on the model of autoimmune disease, in vivo pre-
vention of autoimmunity by regulatory CD47CD25* T
cells has been shown to involve, or not involve, IL-10, IL-4,
or TGF- (13, 17-19). It is thus likely that more than one
mechanism is involved in the immunosuppressive activity
of these cells.

Three studies recently suggested that the CD4TCD25"
regulatory T cells could also control alloreactive responses.
Taylor et al. (20) showed that these cells have a modest ca-
pacity to down-regulate the activation of alloreactive-spe-
cific CD4" T cells in vivo. In addition, the transfer of
CD47CD25" regulatory T cells from mice tolerant to
allografts can protect syngeneic recipients from rejection of
allogeneic islets and skin transplantation (21, 22). The ca-
pacity of these cells to control pathogenic effects of allore-
active T cells in vivo leads us to investigate whether these
regulatory T cells could also control GVHD after alloge-
neic HSCT.

In this study, we show that the few CD4*CD25" T cells
naturally present in the transplant during allogeneic
HSCT regulate GVHD. The addition of CD47CD25"
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T cells at the time of grafting delays or even prevents the
disease. These therapeutic effects were obtained with ei-
ther fresh cells or ex vivo—expanded cells specific to re-
cipient-type alloantigens. Thus, CD4*CD25" regulatory
T cells represent a new feasible, therapeutic tool for
controlling GVHD.

Materials and Methods

HSCT. C57Bl/6 (B6; H-2P), BALB/c (H-2%), (B6 X DBA/2
[D2])F1 (H-2"4), and C3H (H-2% mice were obtained from
Charles River Laboratories. Mice were manipulated according to
European Economic Community guidelines. Unless otherwise
stated, experiments were performed as previously described (23).
In brief, 24 h after lethal irradiation of (B6 X D2)F1 (11 Gy) and
B6 (10 Gy) or C3H (9.5 Gy) mice, recipients were transplanted
with cells from B6 or BALB/c donor mice, respectively. The
transplants were constituted of 5 X 10° T cell-depleted bone
marrow (BM) cells, 10 X 10°T cells collected from pooled spleen
and peripheral LN (referred to as total T cells in the text), and
when indicated, purified of CD4*CD25* T cells. In control
mice, the transplantation of only the T cell-depleted BM cells did
not induce GVHD.

Purification of CD4*CD25% T Cells. Cells from the spleen
and peripheral LN were sequentially incubated with saturating
amounts of biotin-labeled anti-CD25 antibody (7D4; BD Bio-
sciences) and streptavidin microbeads (Miltenyi Biotec) for 30
min on ice, followed by purification of magnetic cell separation
using LS columns (Miltenyi Biotec) according to the manufac-
turer’s instructions. To increase cell purification, the cells of the
positive fraction were separated on another LS column. All steps
were performed in PBS with 3% serum. The purity of the
CD4*CD25" T cells was of 80-85%. The CD25-depleted cells
that did not bind to the anti-CD25—coated beads were harvested
from the flow through and contained <0.3% CD4*CD25% T
cells. The fresh CD47CD25" T cells and the CD25-depleted
cells were washed twice with PBS before injection in HSCT. For
in vivo cell expansion, CD47CD25% T cells were additionally
enriched. Cells were stained for 30 min on ice with FITC-labeled
anti-CD4 (GK1.5), phycoerythrin-labeled anti-CD62L (MEL-14),
and streptavidin-CyChrome (all from BD Biosciences), which
bound to free biotin-labeled CD25 molecules uncoupled to
beads. The CD4+*CD25*CD62L"sh T cells were sorted on a
FACStar™™™ (Becton Dickinson), giving a purity of 99%.

Culture of CD47CD257CD62L"s" T Cells. Highly purified
CD4*CD257CD62LMe T cells from B6 or BALB/c mice were
stimulated with total splenocytes from (B6 X D2)F1 or C3H and
B6 mice, respectively. Cultures were performed in RPMI 1640
(GIBCO BRLIL) supplemented with 10% FCS (GIBCO BRL),
L-glutamine, antibiotics, 10 mM Hepes, 5 X 107> M 2-B-mer-
captoethanol, and 30 ng/ml mouse IL-2 (R&D Systems). At the
beginning, 10° CD4*CD25*CD62Lbe" T cells/ml were cocul-
tured with 2 X 10°irradiated (20 Gy) splenocytes/ml. After 5 d of
culture, cells were counted and cell density was adjusted to 10°/
ml with fresh medium if necessary. At day 8, cells were reseeded
at 0.1 X 10%/ml and restimulated with 2 X 10° irradiated spleno-
cytes/ml. After 4 d, cells were counted and cell density was ad-
justed to 0.2 X 10%/ml with fresh medium if necessary. Addi-
tional cycles of stimulation were similarly performed. Cells were
analyzed by flow cytometry after staining with FITC-labeled
anti-CD4 (GK1.5), phycoerythrin-labeled anti-CD62L (MEL-
14), and streptavidin-CyChrome (all from BD Biosciences) on a

FACSCalibur® (Becton Dickinson), or washed twice in PBS and
used for HSCT.

Proliferation Assays. CD4TCD25TCD62LYe cells purified from
BALB/c mice were stimulated for 15 d by irradiated C3H or B6
splenocytes as described above. 10> T cells of both cultures were
then restimulated by either 10° irradiated C3H or B6 splenocytes
in the presence of 30 ng/ml IL-2 in flat-bottom 96-well plates for
48-72 h, and then pulsed with methyl-[*H|thymidine for the last
15 h. CD4*CD25*CD62L"¢! cells purified from BALB/c mice
and stimulated by irradiated C3H splenocytes for 5 wk were also
tested for their in vitro suppressive activity. After two washes to
remove IL-2, different numbers of expanded regulatory T cells
were added to the culture of 4 X 10* fresh, CD25-depleted T
cells (purified from BALB/c spleen and LNs) stimulated by 10 ir-
radiated C3H splenocytes without IL-2. Cells cultured in round-
bottom 96-well plates for 72 h were pulsed with methyl-[*H]|thy-
midine for the last 6 h.

Statistical Analyses.  Statistical analyses were performed using
Statview software (SAS Inc.). Kaplan-Meier survival curves were
established for each group. P-values for the log-rank test are indi-
cated.

Results and Discussion

CD4*CD25" T cells represent 5-10% of the normal T
cell compartment in mice and humans (7, 24). During allo-
geneic HSCT, donor T cells are present in the transplant.
Consequently, when grafted, patients also receive CD4*
CD25" regulatory T cells. We first analyzed whether this
population plays a role in the control of GVHD. In our mu-
rine model, CD4*CD25* T cells represent 3—5% of the do-
nor cells collected from the spleen and LN. The incidence
of GVHD was compared after the allogeneic HSCT of le-
thally irradiated (B6 X D2)F1 mice receiving BM cells with
either total donor T cells or CD25-depleted donor T cells
from B6 mice. In this semiallogeneic combination between
donor and recipient, the infusion of 10 X 10° total T cells
induced lethal GVHD (Fig. 1). All mice had ongoing clinical
signs of GVHD and were dead by day 41. When the mice
were grafted with the same number of CD25-depleted T
cells, the onset of clinical signs of GVHD such as weight
loss, diarrhea, and hunching, appeared much sooner and all
mice were dead by day 21 after transplantation (Fig. 1).
This result revealed an unforeseen effect of CD4TCD25%
regulatory T cells present in the transplant, i.e., they play a
major role in the control of GVHD.

Figure 1. CD4"CD25" regula-
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The eftect of regulatory T cells on GVHD after HSCT
suggested their potential use for therapeutic intervention.
Therefore, we investigated whether GVHD would be de-
layed if additional numbers of CD4*CD25* T cells were
injected. First, we verified that CD4*CD25" T cells did
not induce GVHD. When lethally irradiated mice were
grafted with a BM transplant supplemented with 5 X 10°
CD4*CD25" purified T cells, no GVHD was observed
(unpublished data) in accordance with a previous report
(20). We then grafted irradiated (B6 X D2)F1 mice with
BM cells and 10 X 10° T cells supplemented with 5 X 10°
CD4*7CD25" purified T cells from B6 mice. These mice
remained healthy until about day 25, as opposed to the
control mice (BM cells plus total T cells), which rapidly
developed clinical signs of GVHD from days 8 to 10 (un-
published data). Significantly, two out of four mice receiv-
ing additional regulatory T cells survived without any addi-
tional treatment (Fig. 2 A). When these two mice were
killed at day 60, we did not observe any histopathological
signs of GVHD in the liver, a target organ of GVHD, and
one mouse displayed moderate signs of GVHD in the
spleen (unpublished data). We reproduced this experiment
with a different genetic combination. When C3H mice
were grafted with BALB/c donor cells, GVHD-related
mortality occurred very fast in the control group trans-
ferred with BM cells and 10 X 10° T cells (100% of the
mice died by day 10). The addition of 5 X 10° CD4"
CD25* purified T cells significantly delayed mortality
compared with the control group. Clinical signs of GVHD
were not observed before day 29 and no mice died until
day 35 (Fig. 2 B). At day 60, three out of five mice did not
display any clinical signs of GVHD. Altogether, these re-
sults demonstrate that the sole addition of fresh
CD4*CD25" regulatory T cells significantly delays or even
prevents GVHD after allogeneic HSCT.

A major limitation in the potential use of regulatory T
cells for preventing GVHD is the difficulty in obtaining a
sufficient number of these relatively rare cells. Therefore,
we tested whether they could be expanded while retaining
their functional properties. We chose to stimulate these
cells by allogeneic APCs in the presence of IL-2 with the
aim to increase their number (24—27) and specificity to re-
cipient-type alloantigens. We started with highly purified
populations of CD4*CD257CD62L"¢" T cells constituting
the major fraction of the CD4"CD25* regulatory T cells
(26) to limit the contamination with conventional activated
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CD4*CD25TCD62L"" T cells (28). The cells purified
from BALB/c or B6 mice were then cocultured with irra-
diated C3H or (B6 X D2)F1 splenocytes, respectively. In
both cultures, regulatory T cells rapidly expanded. From
5.5 X 10° BALB/c CD4tCD25"% T cells, we were able to
produce 100 X 10° regulatory T cells (20-fold expansion)
after 15 d of culture. In the same manner, the number of
B6 CD4*CD25* T cells was increased 10-fold during the
first 2 wk and 100-fold during the next 2 wk of culture
(Fig. 3 A). Similar expansion was observed in another ge-
netic combination, in which BALB/c CD4TCD25* T cells
were stimulated by B6 splenocytes (unpublished data). Im-
portantly, these cells kept the phenotype of regulatory T
cells because they expressed even higher levels of CD25
and most of them maintained high levels of CD62L expres-
sion (Fig. 3 B). Interestingly, the absence of down-regula-
tion of CD62L expression after repeated activation could
be an intrinsic characteristic of these regulatory T cells. Be-
cause regulatory T cells were stimulated by allogeneic sple-
nocytes, we tested whether this population was enriched in
cells responding preferentially to these alloantigens. After 2
wk of culture of BALB/c regulatory T cells stimulated by
irradiated C3H APCs, these cells did not respond to B6
APCs after short-term stimulation, although they contin-
ued to proliferate to C3H APCs. Similar findings were ob-
served when using B6 APCs instead of C3H APCs (Fig. 3
C). We then analyzed whether these ex vivo—expanded
regulatory T cells maintained their in vitro—suppressive
properties. When added to a culture of fresh CD257 T cells
stimulated by allogeneic APCs, regulatory T cells strongly
inhibited T cell proliferation (Fig. 3 D).

To test the capacity of the ex vivo—expanded CD4*
CD25*CD62L"sh T cells to regulate GVHD, we per-
formed experiments similar to those presented in Fig. 2
using cultured CD4TCD257CD62LYe T cells instead of
freshly isolated CD47CD25" T cells. In the B6—B6 X
D2)F1 combination, the addition of 7 X 10° CD4*CD25%
T cells cultured in the presence of recipient-type alloanti-
gens to BM cells and 10 X 10° T cells remarkably pro-
longed mouse survival compared with the control group
(Fig. 4 A). This observation was confirmed when BALB/c
regulatory T cells cultured in the presence of C3H alloanti-
gens were used to modulate GVHD in the BALB/c—C3H
combination. We then tested whether the regulation of
GVHD required the use of regulatory T cells specific to re-
cipient-type alloantigens. In the BALB/c—B6 combination,

Figure 2. Prevention of GVHD by the addition of fresh
CD4*CD25" regulatory T cells. Lethally irradiated mice
were grafted with allogeneic BM cells supplemented with
either 10 X 10°T cells (O; n = 5) or 10 X 10°T cells and
5 X 10° freshly isolated CD47CD25" T cells (A; n = 4).
(A) Survival of (B6 X D2)F1 recipients transplanted with
semiallogeneic B6 cells. (B) Survival of C3H recipients
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the addition of 7 X 10° BALB/c regulatory T cells cultured
in the presence of B6 alloantigens significantly delayed the
occurrence of GVHD, which confirmed the capacity of
specific regulatory T cells to regulate GVHD in a third ge-
netic combination. In comparison, the addition of 7 X 10°
BALB/c regulatory T cells cultured in the presence of
third-party C3H alloantigens had no effect on GVHD
mortality in the BALB/c-B6 combination. This control
culture also shows that the sole injection of ex vivo—
expanded CD4* T cells was not sufficient to regulate GVHD.
Remarkably, in the three genetic combinations, the mice
that had received CD4*CD25" regulatory T cells cultured
in the presence of recipient-type alloantigens appeared
completely healthy for several weeks. Their clinical status
then suddenly and rapidly deteriorated and they finally de-
veloped clinical signs of severe GVHD. Thus, although the
use of ex vivo—expanded CD4*CD25" T cells significantly
delayed GVHD, it did not preclude the occurrence of a de-
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Figure 3. Phenotypic characterization and in vitro properties of ex vivo—
expanded CD47CD25" T cells. (A) 0.2 X 10°B6 (O) or 5.5 X 10° BALB/c
(@) purified CD4TCD25*CD62L"¢" T cells were stimulated with IL-2 and
irradiated splenocytes from (B6 X D2)F1 or C3H mice, respectively. The
graph depicts the expansion of living cells. (B) Flow cytometry analyses for
the expression of CD4, CD25, and CD62L (inset) on total cells and
CD4"CD25"CD62L"e" T cells after cell sorting (fresh) and after 2 wk of
stimulation with allogeneic irradiated splenocytes and IL-2 (cultured). (C)
CD4*CD25*CD62LMeh T cells from BALB/c mice were stimulated with
C3H APC:s (left) or B6 APCs (right). After 2 wk of culture, T cells were re-
stimulated with either the same allogeneic APCs (@) or third-party allogeneic
APCs (O; B6 on the left and C3H on the right). Proliferation was assessed af-
ter 2, 2.5, or 3 d of stimulation. In both assays, T cell proliferation to third-
party allogeneic APCs in the presence of IL-2, and the one obtained in the
culture without APCs in the presence of IL-2, was comparable and below
10,000 cpm. (D) A constant number of BALB/c CD25-depleted cells (effec-
tor T cells) was stimulated by C3H APCs. Cells were cocultured with differ-
ent numbers of BALB/c-expanded CD47CD25% T cells to assess their
suppressive activity at different ratios between regulatory T cells and effector
cells. Inhibition of the proliferation of effector T cells as compared with the
culture without regulatory T cells (10,125 cpm) is shown.

layed severe GVHD. This suggests that ex vivo—expanded
regulatory T cells have a limited half-life after adoptive
transfer and sequential injection of these cells should be re-
quired to induce long-term protection from GVHD. Nev-
ertheless, we observed that the clinical status of mice re-
ceiving cultured regulatory T cells improved compared
with mice receiving fresh regulatory T cells injected in
comparable proportions (5 and 7 million for fresh and cul-
tured cells, respectively) during the first few weeks after
transfer (unpublished data). In sum, these results demon-
strate that a high number of CD4*CD25* T cells can be
generated ex vivo without altering their phenotype nor
their regulatory property toward GVHD.

So far, CD4*CD25* regulatory T cells have been shown
to regulate both autoimmune diseases (7, 8) and the rejec-
tion of allogeneic solid organ transplantation (21, 22). In
this study, we show that the few regulatory T cells naturally
present in the inoculum during allogeneic HSCT signifi-
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Regulation of GVHD by the addition of expanded CD47CD257 regulatory T cells. At the end of the culture (days 15 and 28 for regulatory

T cells from BALB/c and B6 mice, respectively), expanded regulatory T cells were tested for their capacity to control GVHD. (A) Lethally irradiated
mice were grafted with allogeneic BM cells supplemented with either 10 X 10 fresh T cells (O; n = 5 per group) or 10 X 10°fresh T cells and 7 X 10°
expanded CD4*CD25* T cells (A; n = 5 per group). For both genetic combinations, the addition of expanded CD4*CD25* T cells statistically in-
creased the survival of mice. (B) Lethally irradiated B6 mice were grafted with BALB/c BM cells and 10 X 10° fresh BABL/c T cells (O, GVHD control
group; n = 5) supplemented with 7 X 10° expanded regulatory T cells derived from cultured CD4*CD25* T cells stimulated by C3H splenocytes (Hl,
nonspecific regulatory T cells; n = 5), or B6 splenocytes (@, specific regulatory T cells; n = 5). The difference in survival between the GVHD control
group and mice receiving nonspecific CD4*CD25% T cells is statistically insignificant. When statistically significant, Kaplan-Meier survival curves were

established with the indicated P-values.

cantly delay the occurrence of GVHD and associated mor-
tality, and can be used in cell therapy. It should be noted
that even if these cells are regarded as having a major thera-
peutic potential in autoimmune diseases, such effect has
only been demonstrated to date in CD25-deficient animals
(7-9). CD47CD25" regulatory T cells have also been dem-
onstrated to efficiently prevent the rejection of allogeneic
solid organ transplants, but this effect was obtained with
cells purified from mice that had previously received an in
vivo treatment for tolerance induction (21, 22). Thus, our
work is the first report demonstrating that the addition of
freshly isolated regulatory T cells from unmanipulated ani-
mals can control an immunopathology in a model mimick-
ing a clinical setting.

In GVHD, we obtained a therapeutic effect after the ad-
dition of regulatory T cells in similar proportions to donor
T cells. Furthermore, our results suggest that repeated in-
jections of regulatory T cells could be required for long-
term protection from GVHD. Thus, the purification of
sufficient numbers of regulatory T cells could be a bottle-
neck for applying this strategy to humans. Indeed, 3 billion
T cells are usually present in the infused transplant,
whereas a maximum of 100 million cells of fresh regulatory
T cells could be collected from the blood of the same do-
nor. To date, the only realistic use of these cells in humans
would be to expand them ex vivo. This led us to test the
functionality of CD4*CD25" regulatory T cells in GVHD
after their ex vivo expansion. Previous reports demon-
strated that cultured regulatory T cells from both mice and
humans remain functional after expansion, but their sup-
pressor activity was only shown in in vitro assays (24-27).
Here, we show for the first time that extensively expanded
regulatory T cells can still be used to modulate an immu-
nopathological process in vivo and could consequently be
envisaged as a new therapeutic tool when a large number
of regulatory T cells is required. The ex vivo expansion of
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regulatory T cells stimulated by recipient-type alloantigens
presents three additional advantages. First, the repertoire of
regulatory T cells specific to recipient alloantigens can be
selected, whereas nonalloreactive cells die during the cul-
ture in the absence of TCR-mediated activation as sug-
gested in this study. In this case, the regulatory effects of
these expanded cells could be preferentially targeted to the
pathogenic donor T cells specific to the recipient alloanti-
gens. As a result, GVHD would be controlled without al-
tering the immune reconstitution after allogeneic HSCT.
Second, the extensive proliferation of regulatory T cells
during culture is compatible with retroviral gene transfer.
This offers the possibility to transduce these cells with sui-
cide genes, for example, to control or eliminate them in
case of significant side effects after their injection (29). Fi-
nally, the possibility to produce high numbers of regula-
tory T cells should provide versatility in designing thera-
peutic schemes adapted to different clinical setting of
allogeneic HSCT. Our results suggest that the therapeutic
use of CD47CD25% regulatory T cells could not only be
envisaged in putative pathologies linked to a deficiency of
these cells, but also for the treatment of multiple T cell-
dependent immunopathologies.
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