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Abstract: Vitellogenin (Vtg), the major egg yolk precursor protein, is traditionally thought to
provide protein- and lipid-rich nutrients for developing embryos and larvae. However, the roles
of Vtg as well as its derived yolk proteins lipovitellin (Lv) and phosvitin (Pv) extend beyond
nutritional functions. Accumulating data have demonstrated that Vtg, Lv and Pv participate in
host innate immune defense with multifaceted functions. They can all act as multivalent pattern
recognition receptors capable of identifying invading microbes. Vtg and Pv can also act as immune
effectors capable of killing bacteria and virus. Moreover, Vtg and Lv are shown to possess
phagocytosis-promoting activity as opsonins. In addition to these immune-relevant functions, Vtg
and Pv are found to have antioxidant activity, which is able to protect the host from oxidant stress.
These non-nutritional functions clearly deepen our understanding of the physiological roles of the
molecules, and at the same time, provide a sound basis for potential application of the molecules in
human health.
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1. Introduction

Most fishes are oviparous, with their eggs being fertilized externally [1]. Eggs or haploid
reproductive cells, which develop into viable embryos after fertilization, are the final product of
oocyte growth and differentiation [2]. Generally, several steps are involved in oocyte development:
formation of primordial germ-cells (PGCs), and transformation of PGCs into oogonia and then
to oocytes. Subsequently, massive maternal information and molecules needed for early embryo
development are deposited in growing oocytes during vitellogenesis, including RNAs, proteins,
lipids, vitamins, and hormones [2,3]. One of the most important proteins deposited in oocytes is
vitellogenin (Vtg), a member of the large lipid transfer protein (LLTP) superfamily [3–5]. Vtg is a high
molecular mass glycolipophosphoprotein, usually circulating in the blood (vertebrates)/hemolymph
(invertebrates) as a homodimer [4,6–8]. There are usually several isoforms of Vtg in a given species,
which are encoded by a multigene family [9,10]. For instance, three vtg genes have been identified
in chicken Gallus gallus [11,12], four in Africa frog Xenopus laevis [13,14], and six in nematode
Caenorhabditis elegans [15]. Multiple vtg genes are also common in teleosts. It has been documented
that there are seven vtg genes in zebrafish Danio rerio [16,17], two vtg genes in carp Cyprinus carpio [18],
four vtg genes in medaka Oryzias latipes [10], three vtg genes in striped bass Morone saxatilis [19],
and three vtg genes in white perch Morone americana [20]. All vitellogenins (Vtgs) encoded by
multiple genes display a similar structure in vertebrates, such as fish, and invertebrates, particularly
insects [21,22]. In most cases, Vtg contains three conserved domains, the LPD_N (also known as
vitellogenin_N or LLT domain), which is identified at the N-terminus, the domain of unknown
function (DUF) 1943, and the von Willebrand factor type D domain (vWD), which is located at the
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C-terminus and distributed over a wide range of proteins [21]. Occasionally, a domain of unknown
function called DUF1944 is found to be present in between DUF1943 and vWD in some Vtg proteins
from vertebrates such as chicken and fish [22]. Beginning at the N-terminus, a complete fish Vtg
consists of a signal peptide, a lipovitellin heavy chain (LvH), a phosphorylated serine-rich phosvitin
(Pv), a lipovitellin light chain (LvL), and a β-component (β-C) plus a C-terminal coding region (CT)
comprising the vWD (Figure 1) [4,19,20,23]. Notably, some teleostean Vtgs lack Pv and much of
the carboxyl-terminus (β-component and C-terminal peptide), consisting of only LvH and LvL [23].
Pv are also absent in most invertebrate Vtg [8,16].
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Figure 1. Schematic summary of structure of a complete teleost vitellogenin (Vtg). A short 
signal peptide (SP) is shown at the N-terminus, flowing by a lipovitellin heave chain (LvH), 
a phosphorylated serine-rich phosvitin (Pv), a lipovitellin light chain (LvL), and a  
β-component (β-C) plus a C-terminal coding region (CT). 

Vtgs, the precursors of egg yolk proteins, are present in the females of nearly all oviparous species 
including fish, amphibians, reptiles, birds, most invertebrates and the platypus. Vtgs are usually 
synthesized in an extra-ovarian tissue (in the liver of vertebrates, the hepatopancreas of crustaceans and 
the fat body of insects) and transported by the circulation system to the ovary, where it is internalized 
into growing oocytes via receptor-mediated endocytosis during vitellogenesis with diverse proportional 
composition [2,7,19,24–31]. Interestingly, the rates of different Vtgs internalized by growing oocytes 
are not always equal to the rates of circulating Vtgs in the blood, which may be due to the regulation of 
the system of multiple ovarian receptors engaged in endocytosis of different Vtgs [32–35]. Once 
internalized into the oocytes, Vtgs are proteolytically cleaved by the aspartic protease cathepsin D to 
generate yolk proteins, such as Lv subunits, Pv and β-C [36–43]. Lv subunits and Pv are stored in yolk 
globules or platelets, while β-C remains in cytoplasm as a soluble fraction [44–46]. Lv, the largest yolk 
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signal peptide (SP) is shown at the N-terminus, flowing by a lipovitellin heave chain (LvH), a
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Vtgs, the precursors of egg yolk proteins, are present in the females of nearly all oviparous
species including fish, amphibians, reptiles, birds, most invertebrates and the platypus. Vtgs are
usually synthesized in an extra-ovarian tissue (in the liver of vertebrates, the hepatopancreas of
crustaceans and the fat body of insects) and transported by the circulation system to the ovary, where
it is internalized into growing oocytes via receptor-mediated endocytosis during vitellogenesis with
diverse proportional composition [2,7,19,24–31]. Interestingly, the rates of different Vtgs internalized
by growing oocytes are not always equal to the rates of circulating Vtgs in the blood, which may
be due to the regulation of the system of multiple ovarian receptors engaged in endocytosis of
different Vtgs [32–35]. Once internalized into the oocytes, Vtgs are proteolytically cleaved by the
aspartic protease cathepsin D to generate yolk proteins, such as Lv subunits, Pv and β-C [36–43].
Lv subunits and Pv are stored in yolk globules or platelets, while β-C remains in cytoplasm as a
soluble fraction [44–46]. Lv, the largest yolk protein derived from the proteolytic processing of Vtgs, is
an apoprotein delivering mainly phospholipids into developing oocytes [36,47]. Pv, the smallest yolk
protein, largely consists of phosphorylated serine residues thought to stabilize nascent Vtg structure
during lipid loading and to enhance solubility of Vtg in the blood [4,47]. β-C and CT, the small
cleavage products of vWD that contains a highly conserved motif of repeated cysteine residues, are
postulated to stabilize the Vtg dimer for cellular recognition and receptor binding, and to protect
Vtg or its product yolk proteins from premature or inappropriate proteolysis [4,19,20]. All these yolk
proteins are later used as the nutrients by developing embryos to nourish their cells [48,49].

Vtgs were once regarded as a female-specific protein [50,51]; however, synthesis, albeit in smaller
quantities, has been shown to occur in male and even sexually immature animals [52–54], suggesting
that Vtgs presumably fulfill a more general role independent of gender. Recently, both Vtgs and yolk
proteins have been shown to be connected with the immune defense and antioxidant activity in fish,
challenging the traditional view that Vtgs and yolk proteins were simple source of nutrients for the
developing embryos. Below we will discuss the immune-relevant and antioxidant activities of Vtgs
and yolk proteins in fish.

2. Immune-Relevant Activities of Vtgs and Yolk Proteins

2.1. Immune Roles of Vtgs

Accumulating data demonstrated several non-nutritional roles for Vtg. For instance, Vtgs were
shown to be associated with the social organization, temporal division of labor and foraging
specialization, regulation of hormonal dynamics and change in gustatory responsiveness in the
honeybee Apis mellifera, an advanced eusocial insect (Figure 2) [55–58]. Recent studies show that
Vtgs also play immune-relevant roles (Figure 2). The first solid evidence showing that Vtg preforms
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an immune-relevant role was the observation by Zhang et al., that Vtg purified from the ovaries of
the protochordate amphioxus (Branchiostoma japonicum) exhibited hemagglutinating activity against
chick, toad and grass carp erythrocytes as well as antibacterial activity against the Gram-negative
bacterium E. coli [59]. Soon after that, Vtg purified from the rosy barb Puntius conchonius was found to
be capable of inhibiting the growth of the Gram-negative bacteria E. coli, E. aerogenes and Pseudomonas
putida as well as the Gram-positive bacteria Staphylococcus aureus, Bacillus subtilis and Streptococcus
pyogenes [60], and Vtg from the carp capable of suppressing the growth of E. coli and S. aureus in a
dose dependent-manner [61]. Interestingly, Vtgs from protostomes also appear to have antibacterial
activity. Vtg from the scallop (Patinopecten yessoensis) was recently shown to have antibacterial
activity against Gram-positive and Gram-negative bacteria [62]. In addition, Vtg in the nematode
C. elegans seems also involved in its antibacterial defense. A reduced survival was observed in the
vtg-knockdown C. elegans after pathogen infection [63]. Another evidence for a role of invertebrate
Vtg associated with resistance against bacteria was provided by the enhancement of resistance of
nematode against the pathogen Photorhabdus luminescens, when the production of Vtg was stimulated
by estrogen 17β-estradiol and phytoestrogen daidzein. However, reduction of Vtg caused by soy
isoflavone genistein diminished the host resistance to P. luminescens [64]. Taken together, it appears
that the antibacterial activity is a universal property of Vtgs from both vertebrates and invertebrates.Nutrients 2015, 7 4 
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role as an antioxidant. 
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in male P. conchonius [60]. This has recently been confirmed by Lu et al., who showed that expression 
of vtg genes in the skin of zebrafish was induced following the challenge with Gram-negative bacterium 
Citrobacter freundii [65,66]. Moreover, an increased expression of vtg was also detectable in the insect 
Bactericera cockerelli after infected by “Candidatus Liberibacter solanacearum” via transcriptome 
analyses [67]. These data together suggest that Vtg may play an active role in the anti-infection of the 
host in vivo. Actually, Tong et al. showed that Vtg produced in male zebrafish as a consequence of 

 

Figure 2. Multiple roles of vitellogenin (Vtg). Vtg is traditionally thought to provide protein- and
lipid-rich nutrients for developing embryos and larvae. However, accumulating data demonstrate
that its roles extend beyond the nutritional function. In the advanced eusocial insect honeybee,
Vtgs were shown to be associated with the social organization, temporal division of labor and
foraging specialization, regulation of hormonal dynamics and change in gustatory responsiveness.
Recent studies show that Vtgs also play immune-relevant roles. Vtg is able to recognize the invading
microbes as a multivalent pattern recognition receptor, kill bacteria or neutralize virus as an effector
molecule as well as enhance phagocytosis as an opsonin. Besides, Vtg also exhibits activities to
hemagglutinate erythrocytes and aggregate pathogens. In addition to immune roles, Vtg plays
another novel role as an antioxidant.
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Shi et al. showed that intraperitoneal injection of E. coli was able to enhance the level of serum Vtg
in male P. conchonius [60]. This has recently been confirmed by Lu et al., who showed that expression of
vtg genes in the skin of zebrafish was induced following the challenge with Gram-negative bacterium
Citrobacter freundii [65,66]. Moreover, an increased expression of vtg was also detectable in the
insect Bactericera cockerelli after infected by “Candidatus Liberibacter solanacearum” via transcriptome
analyses [67]. These data together suggest that Vtg may play an active role in the anti-infection of
the host in vivo. Actually, Tong et al. showed that Vtg produced in male zebrafish as a consequence
of induction by lipopolysaccharide (LPS) and lipoteichoic acid (LTA) is an acute phase reactant, with
antibacterial activity against E. coli and S. aureus [68].

Vtg appears to play a multifaceted immune-relevant functions. Li et al. demonstrated that
Vtg of the marine fish Hexagrammos otakii was able to bind to Gram-negative bacterium E. coli and
Gram-positive bacterium S. aureus as well as fungus Pichia pastoris [69]. The binding to E. coli and
S. aureus was also detected for carp and zebrafish Vtgs [61,68]. The binding of Vtgs to bacteria
provides them ability to aggregate pathogens as well as to recognize the invading microbes [61].
Further examination via ELISA assay showed that Vtgs exhibited specific affinities to the components
conserved within a class of microbes, called pathogen-associated molecular patterns (PAMPs),
including LPS of Gram-negative bacteria, LTA of Gram-positive bacteria, peptidoglycan (PGN) of
Gram-negative and positive bacteria, and glucan of fungi [61,69]. These observations indicate that
Vtg first functions as a multivalent pattern recognition receptor capable of identifying invading
Gram-negative and Gram-positive bacteria as well as fungi, and is involved in host immune defense
as a detector. In a recent study attempting to search PGN recognition proteins in giant tiger shrimp
(Penaeus monodon), an 83 kDa protein was isolated by in vitro PGN pull-down binding assay and
identified as a Vtg-like protein via mass spectrometry as well as Western blots with monoclonal
antibodies specific of Vtgs reported from P. monodon [70], implicating that invertebrate Vtg may
also play a pattern recognition receptor role. Scanning electron microscopy as well as bacterial cell
and protoplast lysis assays showed that H. otakii Vtg was able to kill pathogenic bacteria by lysing
the whole cells (with cell walls) instead of protoplast (without cell walls) via interaction with LPS
and LTA [71]. These show that Vtg functions as an effector molecule, capable of directly killing
bacteria. Interestingly, Vtg was also shown to be able to enhance the phagocytosis of microbes by
macrophages. Li et al. first reported that H. otakii Vtg could facilitate engulfing of the microbes
E. coli, S. aureus and P. pastoris by head-kidney-derived macrophages in vitro [69]. Later, Vtg of
carp was shown to possess similar phagocytosis-promoting activity [61]. In an in-situ study of
impacts of urban wastewater on freshwater mussel Elliptio complanata, it was observed that the
production of Vtg-like proteins was strongly associated with phagocytosis [72], suggesting a relation
between Vtg and phagocytosis in invertebrates. Besides, H. otakii Vtg was found to be capable
of binding to the cell surface of macrophages but not that of red blood cells [61,69]. Collectively,
these observations indicate that Vtg is an opsonin functioning as a bridging molecule between host
macrophages and invading pathogens, thereby leading to enhanced phagocytosis. Notably, Liu et al.,
established that the H. otakii Vtg was able to opsonize the fungus P. pastoris for phagocytosis by
macrophages isolated from sea bass Lateolabrax japonicas, implying that the opsonization of Vtg was
not species-specific [73]. Further study revealed that Vtg-opsonized phagocytosis showed properties
typical of type I phagocytosis, including pseudopod extension, tyrosine kinase dependence, and
up-regulation of pro-inflammatory cytokine genes tnf-α and il-1β [73]. Therefore, Vtg is a pattern
recognition receptor capable of identifying pathogens, a bactericidal molecule capable of damaging
bacterial cell walls, and an opsonin capable of enhancing phagocytosis of pathogens by macrophages.
The multifaceted immune-relevant activities of Vtg are in part endowed with its different domains.
It was reported by Sun et al. that both DUF1943 and DUF1944 as well as vWD contribute to the
function of Vtg as a pattern recognition receptor, and DUF1943 and DUF1944 (but not vWD) also
contribute to the function of Vtg as an opsonin [21].
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Recently, Garcia et al. showed that Atlantic salmon Vtg possessed neutralizing ability for
infectious pancreatic necrosis virus [74], suggesting that Vtg is also involved in host antiviral
immunity. This seems further supported by the observation that the mosquito (Anopheles gambiae) Vtg
was able to interfere with anti-plasmodium response [75]. These denote that in addition to antibacterial
activity, Vtg also has antiviral activity, which demands detailed study in the future.

2.2. Immune Roles of Yolk Proteins

Lv and Pv are the principal yolk proteins generated by the proteolytic cleavage of Vtg. As Vtg is
an immune-competent molecule, it is thus reasonable to hypothesize that Lv and Pv also have similar
immune activities. This hypothesis was first tested by Zhang and Zhang [76]. They demonstrated
that the native Lv purified from ovulated eggs of the rosy barb P. conchonius was able to interact
with LPS, LTA and PGN, as well as E. coli and S. aureus, but not with self-molecules such as the
egg extracts prepared, indicating that Lv is a molecule capable of recognizing non-self components.
Moreover, the bacterial binding activity of Lv enabled it to enhance the phagocytosis of bacteria by
macrophages, suggesting that Lv is also an opsonin functional in developing embryos/larvae [76].
Similarly, Pv was also shown to play a critical role in the immunity of zebrafish embryos via acting
as a pattern recognition receptor and an antimicrobial effector molecule [77]. In line with this, hen
egg yolk Pv was also shown to be able to inhibit the growth of the Gram-negative bacterium E. coli
and the Gram-positive bacterium S. aureus under thermal stress [78,79]. Of note, the affinity of
Pv to LPS enabled the protein a capacity to neutralize endotoxin, promoting the survival rate of
endotoxemia mice [79]. It was recently shown that a truncated Pv (Pt5) consisting of the C-terminal
55 residues of zebrafish Pv also displayed similar immune activities with Pv, including antimicrobial
activity against E. coli, Aeromonas hydrophila and S. aureus, and specific affinity to LPS, LTA, and
PGN [77]. Intraperitoneal injection of this Pv-derived peptide was able to increase the survival
rate of zebrafish challenged with pathogenic A. hydrophila and to markedly decrease the number
of the pathogen in multiple tissues, suggesting that Pt5 could inhibit multiplication/dissemination
of pathogen in host as an antimicrobial agent. In addition to direct antimicrobial activity, Pt5
was also shown to be able to regulate the host immune responses via suppressing the expression
of pro-inflammatory cytokine genes (il-1β, il-6, tnf-α and ifn-γ) and simultaneously enhancing
the expression of anti-inflammatory cytokine genes (il-10 and il-4), suggesting a dual role of Pt5
as both immune effector and modulator [80]. Recently, a mutant peptide of Pt5 (designated as
Pt5e), generated by site-directed mutagenesis, was shown to have stronger bactericidal activity
and LPS-neutralizing activity [81]. Besides, Sun et al. demonstrated that recombinant zebrafish
Pv was capable of inhibiting the formation of the cytopathic effect in lymphocystis disease virus
(LCDV)-infected cells and reducing the virus quantities in the infected cells as well as in the infected
zebrafish, suggesting that Pv possesses an antiviral activity and participates in immune defense of
host against the infection by viruses like LCDV [82]. Taken together, these data show that like Vtg,
Lv and Pv are both immune-competent molecules involved in immune response of the host against
invading pathogenic microbes.

3. Antioxidant Activities of Vtgs and Yolk Proteins

In addition to immune roles, another novel role of Vtg is antioxidant activity (Figure 2).
It was first shown by Ando and Yanagida that Vtg from the eel Anguilla japonica was able to resist
the copper-induced oxidation, and could protect the very low density lipoprotein (VLDL) against
copper-induced oxidation [83]. This was the first observation reporting that Vtg has antioxidant
activity, and serves to suppress the free-radical reactions in fish oocytes. Similar antioxidant activity
was also suggested for the nematode (C. elegans) Vtg [84]. In the honeybee, Vtg was demonstrated
to be able to reduce oxidative stress by scavenging free radicals, thereby increasing the lifespan in
the facultatively sterile worker castes and reproductive queen castes [85,86]. The honeybee Vtg was
also demonstrated in a recent study to be capable of recognizing cell damage through its binding to
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membrane and shielding living cells from damage by reactive oxygen species (ROS) [87]. It is clear
that Vtg protects cells from ROS damage in both invertebrates and vertebrates.

It is well known that hen egg yolk Pv, as Vtg-derived major protein, show strong antioxidant
activity owing to its high serine and phosphorus content, which makes this protein one of the
strongest iron-chelating agents [88–90]. Very recently, we showed that zebrafish recombinant
phosvitin (rPv) was an antioxidant agent capable of inhibiting the oxidation of the linoleic acid, and
scavenging the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical. We also showed that zebrafish rPv
is a cellular antioxidant capable of protecting radical-mediated oxidation of cellular biomolecules.
Importantly, zebrafish rPv is non-cytotoxic to murine macrophages RAW264.7 [91]. These results
show that Pv in fish is also a strong antioxidant agent. If Lv, another major Vtg-derived protein, has
any antioxidant activity remains open, which is worthwhile exploring.

4. Potential Applications in Human Health

Antibiotics are globally utilized to control microbial infections in clinical practice up to date,
however cases of resistance to the majority of antibiotic classes have been reported, which has become
a serious threat to human health in many parts of the world [92,93]. It is thus essential to develop new
antibiotic agents to combat these resistant pathogens. Antimicrobial proteins/peptides (AMPs) are
potential candidates to solve this problem. As a protein/peptide with antimicrobial activity widely
present in plants, animals and microbes, AMP commonly is a cationic and amphipathic molecule
with a net positive charge and a high percentage of hydrophobic residues [94]. These structure
characteristics provide AMP the ability to interact with the anionic cell wall and phospholipid
membranes of microorganisms, which makes it more difficult for pathogens to evolve resistance [95].
Vtg and its derived protein Pv from oviparous species, especially teleost fishes, both display
antibacterial activities with a broad antibacterial spectrum [59–62,68,71,77–79], and hence can be used
as pro-drug to develop novel antibiotic agents. For example, based on the residual sequence of Pt5,
the C-terminal peptide of zebrafish Pv, a total of six mutant peptides were generated by a single
or double mutagenesis; among them, a mutant called Pt5e showed stronger antibacterial activities
against E. coli and S. aureus [81], and was able to kill five strains of multiple drug resistance bacteria
isolated from clinical cases via disturbing their cell membrane integrity (Data not shown).

Sepsis is a serious disease characterized by a systemic inflammatory response syndrome caused
by infection. Severe sepsis is complicated by tissue damage and organ dysfunction, which can lead
to sequential multi-organ failure followed by death [96]. The primary trigger of sepsis is thought
to be LPS, or endotoxin, a major component of the cell wall of Gram-negative bacteria, which is
released when bacteria grow or are abolished by antibiotics or host immunity. LPS, as a conserved
molecular signature of Gram-negative bacteria, can specifically interact with Vtg, Lv, Pv and their
derived peptides [21,61,62,69,71,76,77,79,81], making it possible to utilize these proteins/peptides to
develop LPS-neutralizing agents for sepsis treatment. In line with this, both Pv and Pt5e exhibiting
LPS-neutralizing ability had been shown to be able to promote the survival rate of endotoxemia mice.
Moreover, both Pv and Pt5e displayed neither cytotoxicity to murine RAW264.7 macrophages nor
hemolytic activity towards human red blood cells [79,81], suggesting that they can be a safe potential
candidate for therapeutics of sepsis.

Antioxidant agents have attracted a great deal of attention in recent years because of their roles in
prevention of chronic diseases and utilization as preservatives in food and cosmetics [97–99]. Vtg and
its derived Pv both have antioxidant activities against ROS. As these proteins are components of our
food source, they are thus natural antioxidant agents. These suggest that they can be can be an
important antioxidant with a potential in preservation of food and cosmetics as well as in mediation
of chronic disease states.
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5. Conclusions

Vtg, the precursor of major egg yolk proteins, is traditionally thought to provide protein- and
lipid-rich nutrients for developing embryos and larvae. However, accumulating data indicate that
Vtg as well as its derived yolk proteins Lv and Pv also play non-nutritional functions: they are
not only involved in immune defense but also antioxidant reaction. These non-nutritional functions
clearly better and deepen our understanding of the physiological roles of the molecules, and at the
same time, provide a sound basis for potential application of the molecules in human health.
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