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Abstract

Motivation: It remains a challenge to detect associations between genotypes and phenotypes be-

cause of insufficient sample sizes and complex underlying mechanisms involved in associations.

Fortunately, it is becoming more feasible to obtain gene expression data in addition to genotypes

and phenotypes, giving us new opportunities to detect true genotype–phenotype associations

while unveiling their association mechanisms.

Results: In this article, we propose a novel method, NETAM, that accurately detects associations

between SNPs and phenotypes, as well as gene traits involved in such associations. We take a

network-driven approach: NETAM first constructs an association network, where nodes represent

SNPs, gene traits or phenotypes, and edges represent the strength of association between two

nodes. NETAM assigns a score to each path from an SNP to a phenotype, and then identifies sig-

nificant paths based on the scores. In our simulation study, we show that NETAM finds significantly

more phenotype-associated SNPs than traditional genotype–phenotype association analysis under

false positive control, taking advantage of gene expression data. Furthermore, we applied NETAM

on late-onset Alzheimer’s disease data and identified 477 significant path associations, among

which we analyzed paths related to beta-amyloid, estrogen, and nicotine pathways. We also pro-

vide hypothetical biological pathways to explain our findings.

Availability and implementation: Software is available at http://www.sailing.cs.cmu.edu/.

Contact: epxing@cs.cmu.edu

1 Introduction

One of the fundamental problems in genetics is to understand how

different genotypes affect phenotypic variations. To find genetic fac-

tors of complex diseases such as Alzheimer’s disease (AD) and

asthma, researchers have detected single-nucleotide polymorphisms

(SNPs) associated with phenotypes (e.g. disease status) (Corder

et al., 1993). However, most SNPs associated with complex diseases

remain elusive, and the molecular mechanisms of genotype–pheno-

type associations are largely unknown (Kim and Przytycka, 2012;

Manolio et al., 2009). To address the problem, efforts have been

made in the past decade to bridge the gap between genotypes and

phenotypes by replacing phenotypes with gene expression traits

(Gilad et al., 2008), and then conducting association mapping be-

tween genotypes and gene expression traits. For example, hypothesis

testing (e.g. t-test) or penalized regression methods have been em-

ployed to find genotype–gene trait associations (Kendziorski et al.,

2006; Lee and Xing, 2012).

Extending the two-way association (i.e. genotypes and gene

traits) analysis, three-way association analysis among genotypes,

gene traits and phenotypes also has been proposed. Schadt et al.

(2005) proposed an integrative genomics approach consisting of a

series of statistical tests to identify causal genes to complex pheno-

types. Recently, Curtis et al. (2012) developed a visualization-aided

approach to detect genome–transcriptome–phenome associations.

The previous works showed the great promise of three-way associ-

ation analysis; however, most of them aim to reveal association rela-

tionships for an SNP, a gene trait, and a phenotype. Thus, there is

an urgent need to develop an efficient method that can detect three-

way associations from a large dataset of genotypes, gene traits, and

phenotypes.

In this article, we present a novel method, NETAM (NETwork-

driven Association Mapping), to detect ‘path associations’ from

SNPs to phenotypes through gene expression traits. Let us first

introduce the concept of path associations. Consider a network

where nodes represent SNPs, gene traits, or phenotypes and edges

represent associations between a pair of nodes, weighted by their

strengths. We call it association network. In this network, we define

path association by any paths from an SNP to a phenotype. Figure 1

illustrates an example of association network, identified by NETAM

in AD dataset (Zhang et al., 2013). NETAM starts with constructing

an association network using sparse regression methods such as
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lasso (Tibshirani, 1996) and group lasso (Yuan and Lin, 2005)

under stability selection (Meinshausen and Bühlmann, 2010).

Arguably, these techniques perform better than single SNP analysis

because they allow us to find weighted edges, considering all SNPs

or all gene expression traits simultaneously. Based on the edge

weights, we define scores for all path associations, reflecting their

significance. Finally, using a K-shortest path algorithm, we identify

top K path associations (or all paths with scores greater than a

threshold) in the network. To boost the computational efficiency of

NETAM for large-scale analysis, we further employ screening tech-

niques (Lee and Xing, 2014; Wang et al., 2013) that can discard a

large number of irrelevant edges efficiently.

The proposed approach has advantages over traditional geno-

type–phenotype association analysis. First, it allows us to better

understand the underlying mechanisms of associations (e.g. SNPs af-

fect gene expression traits, and altered expressions influence pheno-

types). Furthermore, it can take advantage of gene expression traits

to detect phenotype-associated SNPs. When SNPs and phenotypes

are weakly associated, gene expression traits can bridge the gap be-

tween them, allowing us to find path associations. Finally, it can in-

tegrate rapidly growing heterogeneous datasets such as GEO (Gene

Expression Omnibus) database (Barrett et al., 2007) and dbGaP

(Database of Genotypes and Phenotypes) (Mailman et al., 2007).

NETAM requires the same samples only for a pair of datasets (e.g.

genotypes and gene expression traits) to create edges, and thus het-

erogeneous datasets can be integrated through a network.

In our experiments, we first conducted simulation study to verify

that NETAM can take advantage of gene expression data to signifi-

cantly improve the performance to detect phenotype-associated

SNPs under false positive control. We then applied NETAM on late-

onset AD dataset (Zhang et al., 2013), and identified 477 path asso-

ciations. Among them, we highlight one path association: rs675804

! ZNF720 ! AD status. It turns out that ZNF720 interacts with

only the APP gene (Ol�ah et al., 2011) encoding amyloid beta (A4)

precursor protein, a major factor of AD that generates neural waste,

called beta-amyloid, in the brain (Bush et al., 1994) (see Section 4

for detailed analysis). We also present biological hypotheses that

can explain the path associations identified by NETAM, related to

beta-amyloid, estrogen, and nicotine pathways.

Notation: We denote matrices by bold-faced uppercase, vectors by

bold-faced lowercase, and scalars by lowercase letters. Given a

genotype matrix X 2 R
N�J with N samples and J SNPs, we denote

the j-th column by xj, the i-th row by xi, and the (i, j) element by xi
j.

Similarly, we denote the gene expression matrix by Y 2 R
N�K, and

phenotype matrix by Z 2 R
N�M, where K and M are the number of

gene traits and phenotypes, respectively.

2 Methods

In this section, we describe NETAM for detecting path associations.

We show how to construct an association network, define path

scores in the network and introduce screening algorithms that can

discard a large number of irrelevant edges efficiently. Based on the

path scores, we finally detect top K path associations using a K-

shortest path algorithm.

2.1 Constructing an association network
2.1.1 Finding edges in an association network

Given the nodes consisting of SNPs, gene traits, and phenotypes, we

show how to make edges between two nodes using sparse regression

models (SRMs) such as lasso (Tibshirani, 1996) or group lasso

(Yuan and Lin, 2005) under stability selection (Meinshausen and

Bühlmann, 2010). SRMs allow us to identify associations between

SNPs and gene traits, between SNPs and phenotypes, and between

gene traits and phenotypes; stability selection is a technique to con-

trol false positives. Advantages of using SRMs over single SNP ana-

lysis are as follows: First, SRM is a multivariate regression

approach; thereby it can consider all SNPs/traits simultaneously. As

a result, when SNPs are weakly or moderately correlated, SRMs can

pinpoint true association SNPs (Zhao and Yu, 2006); when highly

correlated SNPs are associated with a trait, one of them is selected,

which greatly reduces the redundant signals stemming from linkage

disequilibrium. Furthermore, SRMs can take advantage of prior bio-

logical knowledge such as group structures of SNPs and traits (Lee

and Xing, 2012), and graph structures of traits (Kim and Xing,

2009). Finally, coupled with stability selection, SRMs control false

positives effectively.

To identify edges in an association network, we use SRMs as

follows:

min
B

1

2
kY�XBk2

F þ XðBÞ; (1)

min
D

X
m

X
i

�log pðzi
mjyi; dmÞ þ XðDÞ; (2)

where B 2 R
J�K and D 2 R

K�M are regression coefficient matrices

whose non-zeros encode associations. For example, dk
m 6¼ 0 implies

association between the k-th gene trait and the m-th phenotype.

Also, pðzi
m ¼ 1jyi; dmÞ ¼ 1

1þexpð�yidmÞ, and Xð�Þ is regularizer that in-

duces sparsity in the coefficient matrix. Using Equation (1), we find

edges between genotypes and gene expression traits, where the linear

loss is used because gene expression traits are continuous; using

Equation (2) we find edges between gene expression traits and

phenotypes, where logistic loss is used for binary phenotypes.

Fig. 1. An example of association network for AD identified by NETAM.

Nodes represent SNPs (smallest circles), gene traits (mid-sized circles), AD

case/control phenotype (the largest circle) and edges represent associations

between two nodes. Association strengths are represented by scores at-

tached to edges. We allow both SNP–gene trait–phenotype, and direct SNP–

phenotype associations
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Algorithm 1: Sparse Regression Under Stability Selection.

Input: P: Input matrix, O: Output matrix, where ðP;OÞ 2
fðX;YÞ; ðY;ZÞ; ðX;ZÞg, Sd: selected SNPs for the d-th

output by screening, pthr: threshold for stability selec-

tion ð0:5 � pthr � 1Þ, T: total number of random

samples

Output: fUdg: selected inputs for the d-th output with scores

ðd ¼ 1; . . . ;DÞ
1. Pd

l ¼ 0; l 2 Sd for d ¼ 1; . . . ;D

2. Randomly select bN=2c samples from N samples without

replacement

3. Given the bN=2c subsamples and a SRM (i.e. Equation (1)

or (2)), find fkdg using cross-validation, denoted by fk�dg
4. sd

l ¼ 0; 8l 2 Sd for d ¼ 1; . . . ;D

5. for t¼1 to T do

6. Randomly select bN=2c samples from N samples with-

out replacement

7. Given the bN=2c subsamples, solve a SRM with fk�dg
8. sd

l ¼ sd
l þ 1 for all selected terms l for the d-th output

9. Pd
l  

sd
l

T ;8l 2 Sd for d ¼ 1; . . . ;D

10. Ud ¼ fðl;Pd
l Þ : Pd

l � pthrg for d ¼ 1; . . . ;D

To deal with categorical values, one can easily replace it with

multi-class logistic loss. Let B� and D� be the solutions for

Equations (1) and (2). Then, if ðbj
kÞ
� 6¼ 0 (or ðdk

mÞ
� 6¼ 0), we interpret

that the edge between the j-th SNP and the k-th gene trait exists (or

edge between the k-th gene trait and the m-th phenotype exists).

Edges between genotypes and phenotypes can be found using

Equation (2) by replacing Y with X.

Popular instances of SRMs include lasso and group lasso: Lasso

uses ‘1 regularizer, i.e. XðPÞ ¼
P

k kk

P
j jpk

j j, where kk is the regular-

ization parameter determining the level of sparsity; group lasso uses

‘1=‘2 regularizer, i.e. XðPÞ ¼
P

k kk

P
g2G

ffiffiffiffiffi
ng
p kpgk2, where G is a set

of groups of SNPs or traits and ng is the size of group g. In practice,

we determine kk using cross-validation; however, with cross-

validation, we often obtain many false positives (i.e. true zero coeffi-

cients are non-zero in estimated coefficients). To address this prob-

lem, we use SRMs under stability selection, which shall be described

in the next section.

Note that different regularizers incorporate different types of

prior knowledge into the model. For example, group lasso takes a

set of SNP groups, and finds groups of SNPs associated with traits.

If we define groups of SNPs based on their genomic locations (e.g.

SNPs located within a gene form a group g), group lasso encourages

that all SNPs within a gene are selected or discarded jointly.

2.1.2 Stability selection for false positive control

We augment Equations (1) and (2) with stability selection

(Meinshausen and Bühlmann, 2010) to make edges in the graph.

Stability selection is a bootstrapping-type algorithm that effectively

controls false positives. Briefly, stability selection works as follows:

Equation (1) or (2) is run on randomly selected subsamples of size

bN=2c for T times, and then stability selection takes SNPs whose co-

efficients are non-zero for � Tpthr times, where pthr is a user-defined

parameter. We summarize sparse regression under stability selection

in Algorithm 1.

Let us discuss user-defined parameters T and pthr. We confirmed

that T � 100 is sufficient to achieve false positive control, as re-

ported in Meinshausen and Bühlmann (2010). In practice, pthr is

chosen between 0.5 and 1; the larger pthr, the better false positive

control at the cost of decreased true positive rate. In theory, under

certain conditions, the relationship between the number of false

positives and pthr has been established. When finding edges between

SNPs and the k-th trait,

EðVkÞ �
1

2pthr � 1

q2
k�k

J
; (3)

where EðVkÞ is the expected number of falsely detected SNPs for the

k-th trait, and qk�k
is the number of nonzero coefficients found by a

SRM with k�k. Equation (3) shows that the upper bound on the num-

ber of false positives is inversely proportional to pthr.

Stability selection provides edges and their weights (called edge

scores), reflecting their degrees of significance. For association be-

tween the j-th SNP and the k-th trait, edge score Pk
j is defined by the

proportion of the cases where the j-th SNP is selected to the total

number of random sampling, as shown in Algorithm 1 (no edge

exists if the score is zero). To rank path associations, we further as-

sign scores to paths based on edge scores as follows:

scoreðPathiÞ ¼
Y

Edge�Pathi

scoreðEdgeÞ; (4)

where scoreðEdgeÞ is the score associated with Edge. The scoring

scheme in Equation (4) is motivated by the fact that a path association

is significant when all edges involved in the path are significant.

2.1.3 Screening algorithms for efficient computations

Stability selection is computationally expensive because it requires

multiple runs of a SRM. This is particularly problematic when find-

ing edges (i.e. associations) between genotypes and gene expression

traits at whole-genome scale (e.g. for human genomes, we need to

solve J¼500 000 dimensional regression problem on K¼20 000

gene expression traits for T¼100 times); thus, in this section, we

focus on solving Equation (1) efficiently. To address the computa-

tional challenge, we adopt a screening approach. The key idea of

screening is to discard SNPs whose coefficients are zero using simple

rules, and then solve a sparse regression problem with the un-

screened SNPs. Screening provides a substantial speed-up because

we only need to solve Equation (1) with a small number of SNPs

that survived after screening.

We note that two types of screening algorithms exist: one is

exact, such as dual polytope projections (DPP) rules (Wang et al.,

2013), and the other is non-exact, such as sure-screening and strong

rules (Fan and Lv, 2008; Tibshirani et al., 2012). Exact screening

guarantees that non-zero coefficients in a global optimal solution

(i.e. solution obtained by solving Equation (1) without screening)

are not discarded. Thus, the solution for Equation (1) obtained with

exact screening is the same as the one without screening. In contrast,

non-exact screening may mistakenly discard non-zero coefficients in

a global optimal solution; at the cost of non-exactness, it can discard

more SNPs than exact ones.

Here we briefly introduce DPP rules for lasso and group lasso.

For lasso, DPP discards the j-th SNP for the k-th trait if

�����xT
j

yk

kmax

����� < 1� kxjk2kykk2

�����
1

k
� 1

kmax

�����; (5)

where kmax ¼ maxjjxT
j ykj. For group lasso, DPP discards the group g

for the k-th trait if
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�����xT
g

yk

kmax

�����
2

<
ffiffiffiffiffi
ng
p � kxgkFkykk2

�����
1

k
� 1

kmax

�����; (6)

where kmax ¼ maxgkxT
g ykk2=

ffiffiffiffiffi
ng
p

. These rules are applied to each

SNP or SNP group for each trait only once, and the screening com-

plexity is O(NJ) for lasso and OðN
X

g

ngÞ for group lasso. In practice,

for both lasso and group lasso, screening efficiency decreases as the

optimal solution gets denser. In our experiments, we achieved 	1.9�
speedup on the AD data using DPP rule for group lasso (Lee and

Xing, 2014).

2.2 Finding path associations from an association

network using a K-shortest path algorithm
To find significant paths in an association network, we use Yen’s K-

shortest path algorithm (Yen, 1971), using the path scores defined in

Equation (4) that give larger values for more significant paths. Note,

however, that naive use of the K-shortest path algorithm with such

scores will give us K-least significant paths. Thus, we transform our

edge scores by dscoreðEdgeÞ ¼ �logðscoreðEdgeÞÞ and path scores by

dscoreðPathiÞ ¼
P

Edge�Pathi
dscoreðEdgeÞ: After these transformations,

the smaller the path scores, the more significant the paths, and scores

are guaranteed to be positive because 0 < pthr � scoreðEdgeÞ � 1.

We use K-shortest path algorithm with dscoreðEdgeÞ and dscoreðPathiÞ,
resulting in K-significant path associations.

The original algorithm is designed with a single source and a single

target; thus, we augment a network with auxiliary source node A and

target node T. We also add the scores of 1 into the edges from A to all

genotype nodes and from phenotype nodes to T. Briefly, the Yen’s al-

gorithm starts with finding the shortest path in a network. Then it it-

erates through the steps of generating candidate paths and selecting

the best one among the candidates until K-shortest paths are found.

Suppose that we found the k-th shortest path (k 2 f1; . . . ;Kg).
To find the ðkþ 1Þ-th shortest path, the algorithm produces candi-

date paths as follows: It picks a spur node from the k-th shortest

path (spur node is the node from which the current shortest path is

perturbed). For each spur node ni, it removes the outgoing edge fni;

niþ1g from a network and runs a shortest path algorithm to find the

spur path, a shortest path from the spur node ni to the target node T

in the perturbed network. A candidate path is the result of concate-

nating root path and spur path, as depicted in the above figure.

Removed edges are restored after generating candidate paths. The

ðkþ 1Þ-th shortest path is found by selecting the shortest path

among the candidate paths. Figure 2 illustrates one iteration of

Yen’s algorithm with an example of association network.

For a network with N nodes and M edges, Yen’s algorithm has a

worst case time complexity OðKNðMþNlogNÞÞ when it employs

Dijkstra’s shortest path algorithm (Dijkstra, 1959) using Fibonacci

Fig. 2. Illustration of one iteration of the K-shortest algorithm with an example of association network
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heap. In our application, the length of any paths from an SNP to a

phenotype is either one or two. In such a case, the time complexity

of Yen’s algorithm is OðKðMþNlogNÞÞ.

3 Simulation study

To validate the efficacy of NETAM, we evaluate its performance in

detecting phenotype-related SNPs. We first explain how simulation

data are generated. Then, we compare NETAM with L1-regularized

logistic regression with SNPs associated with gene expression traits

(eSNPs) (Logistic w/ eSNP), and linear mixed model (LMM) (Zhou

and Stephens, 2012) that represents a two-way single SNP analysis.

Furthermore, we test NETAM without stability selection (NETAM

w/o stability sel.) to verify the benefits of stability selection, where

lasso and L1-regularized logistic regression are employed with 10-

fold cross-validation. For Logistic w/ eSNP, we choose SNPs only if

they are included in the set of eSNPs, assuming that eSNPs hint us

causal SNPs to phenotypes (Zhang et al., 2013).

For LMM, we used GEMMA software (Zhou and Stephens,

2012) with default setting and P-value cutoff 0.05 (after Bonferroni

correction LMM found no significant associations, and thus we

report the results with the lenient P-value cutoff); for Logistic w/

eSNP, we used lasso to detect eSNPs, and 10-fold cross-validation to

determine the regularization parameters; for NETAM, we used lasso

to create edges, changed pthr from 0.6 to 0.9, set T¼100, and se-

lected up to K¼1000 paths.

For N 2 f200;500; 800; 1100g samples, we generate simulation

data with 1000 SNPs, 40 gene expressions, and 1 case-control

phenotype as follows: We first generated 100 causal SNPs (ground

truth to be discovered) and the phenotype with average minor allele

frequency 0.2 under Hardy–Weinberg equilibrium, and balanced

case-control phenotype (equal number of 0s and 1s). Then, we gen-

erated 10 gene expression levels using a three layer neural network

(100 nodes SNP layer/10 nodes gene expression layer/1 node pheno-

type layer), where adjacent layers are fully connected. The neural

network was trained until more than 95% phenotypic traits are cor-

rectly predicted using a backpropagation algorithm, implemented

using TensorFlow (Abadi et al., 2016); after training, we use the val-

ues in the middle layer nodes as gene expression levels. To add non-

linear relationship between the SNPs and the phenotype, we also

applied a sigmoid function to the gene expression layer

(yi ¼ 1
1þexp�xiB

, where yi represents 10 gene expression levels, and xi

represents 100 SNPs for the i-th individual). Finally, for each sam-

ple, we added 900 SNPs with minor allele frequency drawn from

[0.05, 0.5] uniformly at random, and 30 gene expression levels

drawn from N(0, 1) to include SNPs and genes not associated with

the phenotype generation mechanism.

In Figure 3, we show receiver operating characteristic (ROC)

curves that show true positive and false positive rates of the results

produced by NETAM with four different parameter settings

pthr ¼ f0:6; 0:7; 0:8; 0:9g, NETAM without stability selection,

Logistic w/ eSNP, and LMM. We note that false positives in

NETAM’s results were controlled by stability selection. Each panel

shows the results on different sample sizes from N ¼ 200 to 1100.

Compared to LMM and Logistic w/ eSNP, NETAM showed signifi-

cantly better performance (larger area under the curve) for N > 200

regardless of the setting for pthr. The results suggest that when

phenotype mechanism is complex such that SNPs affect a phenotype

via multiple layers, direct SNP-phenotype association analysis can

be ineffective to capture causal SNPs. Furthermore, the performance

of NETAM w/o stability sel. was unstable; it showed the best

performance when N¼800; however, its ROC curve was not com-

parable to NETAM with stability selection for the other settings,

suggesting that stability selection is useful to control false positive

edges and produce stable results. It should be noted that even though

this simulation scenario is more complex than direct genotype–

phenotype association scenarios, real-world biological mechanisms

are much more complex because they involve many factors such as

gene–gene or protein–protein interactions, pathways, microRNAs,

and environmental factors. NETAM opens the opportunities to

model such complex association mechanisms between genotypes

and phenotypes, and modeling such factors remains as future work.

4 Association analysis of AD data

We applied NETAM on late-onset AD data provided by Harvard

Brain Tissue Resource Center and Merck Research Laboratories

(Zhang et al., 2013). This dataset includes 270 AD cases and 270

controls (non-demented subjects) with 511 997 SNPs (SNPs with

minor allele frequency<0.01 were filtered), and the expression lev-

els of 40 638 DNA probes from the same samples including known

and predicted genes, miRNAs, and non-coding RNAs in the cerebel-

lum in the brain. For phenotype, we used binary AD case/control

status. To account for different variances/scales in the SNPs and the

expression traits, we standardized them. Because of the large num-

bers of SNPs and traits, it is particularly expensive to find edges be-

tween genotypes and expression traits. Therefore, we adopted DPP

group lasso screening (Wang et al., 2013), which can also be safely

applied to the case where groups overlap (Lee and Xing, 2014). In

the screening with group lasso, each SNP group was defined by the

SNPs within the transcribed region of a gene. With the survived

SNPs, we ran Algorithm 1 with lasso, 10-fold cross-validation,

(a) (b)

(c) (d)

Fig. 3. ROC curves to compare the performance of NETAM with association

mapping methods such as linear mixed model (LMM) and L1-regularized

logistic regression with eSNPs (Logistic w/ eSNP) with different sample sizes:

(a) N¼200, (b) N¼500, (c) N¼800, and (d) N¼1100. For NETAM, we show

the results with four different settings of pthr from 0.6 to 0.9 under stability

selection and without stability selection (lasso is used to create edges be-

tween SNPs and gene traits in the association network)
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pthr ¼ 0:5, and T¼100. For pthr, we chose the lowest valid value to

include all potentially interesting paths.

In total, we found 477 path associations in the AD data. Of

these, two paths directly connect an SNP to the AD status pheno-

type, and 475 paths involve an SNP, an expression trait, and the

phenotype. To the best of our knowledge, AD-related path associ-

ations have not been reported in previous literature. Among all the

path associations, SNPs in only three paths (out of 477 paths) were

also identified by single SNP analysis, with false discovery rate con-

trol at significance level 0.05. Compared to the results by Zhang

et al. (2013) (with Bonferroni corrected P-value cutoff 0.05), we

found one overlap: rs2532501 ! VAMP1 ! AD. Small number of

overlaps was expected because NETAM detected six gene traits

associated with AD.

Here, we focus on analyzing top 36 paths involving ZNF720,

RHOBTB3 or VAMP1 because these genes are related to beta-

amyloid, estrogen, and nicotine pathways, crucially involved in AD

(Bush et al., 1994; Paganini-Hill and Henderson, 1994; Van Duijn

and Hofman, 1991). The 36 path associations are summarized in

Table 1. Below, we investigate the biological underpinnings of path

associations based on path directions and our extensive literature

survey. Note that we present hypotheses for path associations, and

further biological studies are required to confirm them.

In the other 441 paths not discussed in the article, three other

gene traits were involved including KIAA1279, RPS15A, and

PRDM1. We found no reported associations between these genes

and AD. However, these genes are related to brain-related disorders

(Courts et al., 2008; Hamosh et al., 2005; Uechi et al., 2006), and

investigation of their relationship with AD is left for future work.

4.1 Direction of path associations
In a path association, the edge between a gene trait and the pheno-

type can be interpreted in two ways: the gene trait affects the pheno-

type, or the phenotype affects the gene trait. In the 36 path

associations involving ZNF720, RHOBTB3, and VAMP1, our ana-

lysis supports the former case.

To investigate the directions of the 36 path associations, we com-

puted P-values for associations between the SNPs and the phenotype

in those paths, using single SNP analysis by PLINK software (Purcell

et al., 2007). Note that, if the gene traits affect the phenotype, it is

likely that there are some degrees of associations (even though they

are not statistically significant) between the SNPs and the phenotype

because the SNPs may affect the phenotype through the gene traits.

In contrast, if the phenotype affects the gene traits and not vice

versa, we expect no associations between the SNPs and the pheno-

type. Figure 4 shows Q–Q plot of observed negative log P-values,

versus the expected negative log P-values under the null hypothesis

of no associations; the plot significantly deviates from the 95% con-

fidence interval, showing that the observed P-value distribution does

not follow the expected null distribution (see the last column of

Table 1 for the SNP-phenotype P-values). Therefore, it supports the

hypothesis that the gene expression traits may influence the pheno-

type in the path associations.

4.2 Beta-amyloid-related path associations
We identified 23 (out of 36) path associations that involve ZNF720

(zinc finger protein 720). According to the human protein–protein

interaction database (Ol�ah et al., 2011; Orii and Ganapathiraju,

2012), ZNF720 interacts with only APP (amyloid beta (A4) precur-

sor protein). Notably, APP protein generates beta-amyloid, i.e. a

major component of amyloid plaques that deteriorate nerve cells in

the brains of AD patients (Bush et al., 1994). Next, we attempt to in-

vestigate biological mechanisms underlying associations between the

SNPs and APP in 4 out of 23 path associations with ZNF720.

4.2.1 Path: rs675804 (IYD) fi ZNF720 (APP) fi AD

In this path association, rs675804 is located 35 637 bp downstream

of iodotyrosine deiodinase (IYD), a gene encoding an enzyme that

catalyzes the deiodination of monoiodotyrosine (MIT) and diiodo-

tyrosine (DIT); MIT and DIT are precursors of thyroid hormones

such as triiodothyronine (T3) and tetraiodothyronine (T4). It has

been reported that defects in IYD resulted in high levels of MIT and

DIT and low levels of T3 and T4 (Rokita et al., 2010). Another link

between IYD and T3 and T4 is that IYD is associated with hypothy-

roidism (Moreno et al., 2008), caused by insufficient production of

thyroid hormones, suggesting that IYD affects the synthesis of T3

and T4. Furthermore, it is known that T3 negatively regulates APP

(Van Osch et al., 2004).

Combining the evidence mentioned above, we hypothesize the

mechanism of the path association as follows: The SNP rs675804

(or possibly nearby ungenotyped SNPs in linkage disequilibrium

(LD)) causes defects in IYD, which drives high levels of MIT and

DIT, and low levels of T4 and T3; then low levels of T3 result in

high levels of APP. Finally, high APP levels positively regulate the

Fig. 5. Hypothetical pathway for the path association involving rs675804

(close to IYD), ZNF720, and AD. Nodes involved in the path association found

by NETAM are shaded in gray

Fig. 4. Q–Q plot of �logðP�valueÞ for associations between SNPs and the AD

status phenotype in the paths that involve ZNF720, RHOBTB3 or VAMP1 iden-

tified by NETAM (see Table 1 for the list of the paths) versus a uniform distri-

bution, where the 95% confidence interval is shaded in gray
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beta-amyloid synthesis, which increases the risk of AD. Figure 5 il-

lustrates our hypothesis for the path association.

We observed that P-value for association between rs675804 and

the AD status is 0.0049 computed by single SNP analysis. This small

P-value also suggests that rs675804 is associated with AD through

IYD.

4.2.2 Path: rs2833249 (GRIK1) fi ZNF720 (APP) fi AD

This is an interesting path association with cis-effect. Notably, the

SNP rs2833249 (chr21:31358680), GRIK1 (chr21:30909253-

31312282), and APP (chr21:27252860-27342862) are located

nearby in the genome. GRIK1 (glutamate receptor, ionotropic, kai-

nate 1) is a gene encoding a member of glutamate receptors, i.e. pre-

dominant excitatory neurotransmitter receptors (Maglott et al.,

2005), and GRIK1’s association with AD was reported in Tan et al.

(2010). Furthermore, we observed a small P-value 0.0046 for associ-

ation between rs2833249 and the AD status phenotype, supporting

the direction of this path from the SNP to the phenotype.

Combining these presents two possible scenarios. One is that

rs2833249 affects GRIK1 levels, which then change APP levels; the

other is that rs2833249 affects the expression levels of the nearby

genes including GRIK1 and APP independently.

4.2.3 Path: rs4833235 (TRPC3) fi ZNF720 (APP) fi AD

TRPC3 (transient receptor potential cation channel, subfamily C,

member 3) is a gene located 90369bp upstream of rs4833235. It has

been reported that TRPC3 protects neurons by deregulating tau pro-

tein (Yamamoto et al., 2007), another major factor associated with

AD. We also found that misfolded beta-amyloid induces misfolded

tau protein (Nussbaum et al., 2013). Based on these, we consider

two hypotheses. First, rs4833235 changes TRPC3 levels, and the

perturbed TRPC3 levels affect beta-amyloid levels, which in turn af-

fect tau protein levels. Second, rs4833235 affects TRPC3, which

then affects both APP and tau protein independently, leading to the

change of AD risk.

4.2.4 Path: rs722861 (EFCAB6) fi ZNF720 (APP) fi AD

EFCAB6 (EF-hand calcium binding domain 6) is located 121762bp

upstream of rs722861, and it interacts with androgen receptor and

PARK7 (Parkinson protein 7) (Niki et al., 2003; Szklarczyk et al.,

2011), a gene related to Parkinson’s disease. It has been shown that

reduced androgen levels increase the levels of beta-amyloid and

hyperphosphorylated tau protein (Drummond et al., 2009).

Therefore, we hypothesize that EFCAB6 regulates beta-amyloid lev-

els through androgen receptors, and EFCAB6 may be involved in

multiple neurological diseases such as Parkinson’s disease and AD.

4.3 Estrogen-related path associations
We identified six path associations that involve RHOBTB3 (rho-

related BTB domain containing 3), which is a putative anti-estrogen

resistance gene for breast cancer patients (Van Agthoven et al.,

2009). In the early stage of breast cancer, the growth of tumors re-

quires estrogens, which can be inhibited by anti-estrogens.

However, as the tumor progresses, it becomes anti-estrogens resist-

ant, and genes involved in such a process are called anti-estrogen re-

sistance genes. In our literature survey, we also found that estrogen

protects neurons against beta-amyloid (Yao et al., 2007), and estro-

gen has been extensively studied for AD therapy (Henderson, 2014;

Kawas et al., 1997;). Combining these, we suggest that RHOBTB3

is related to AD though an estrogen receptor. As examples, we inves-

tigate possible association mechanisms for the following two paths.

4.3.1 Path: rs2974135 (CTNNA2) fi RHOBTB3 fi AD

In this path, rs2974135 is located within a gene encoding CTNNA2

(catenin, alpha 2), which is neuronal-specific catenin. CTNNA2 is

reportedly associated with late-onset AD in the Amish populations

(Cummings et al., 2012). We also found a small p-value in our data

for the SNP-phenotype association (p-value¼0.033). Previous stud-

ies and our results support that associations exist between CTNNA2

and the AD status, and between RHOBTB3 and the AD status.

It would be interesting to conduct biological experiments to investi-

gate if CTNNA2 interacts with RHOBTB3 to confirm this path

association.

4.3.2 Path: rs11057512 (CCDC62) fi RHOBTB3 fi AD

The SNP rs11057512 is located 4732 bp upstream of CCDC62

(coiled-coil domain containing 62), a nuclear receptor co-activator

that can enhance transactivation of ESR1 (estrogen receptor 1) and

ESR2 (estrogen receptor 2) (Chen et al., 2009). It seems that

CCDC62 is associated with RHOBTB3 through estrogen pathways.

Furthermore, it has been reported that CCDC62 is associated with

Parkinson’s disease risk in a Han Chinese population (Liu et al.,

2013). It would be interesting to exam CCDC62’s pleiotropic effects

on neurological disorders including Parkinson’s disease and AD.

4.4 Nicotine-related path associations
We also found seven path associations that involve vesicle-associ-

ated membrane protein 1 (VAMP1). VAMP1 is a gene encoding

SNARE complex that controls neurotransmitter release via vesicle-

mediated synaptic transmission (Fernandez-Castillo et al., 2012);

further, it is involved in nicotine pathway through SNARE complex.

Interestingly, nicotine’s involvement in AD has been extensively

studied, and nicotinic receptors have been suggested as drug targets

for AD (Maelicke et al., 2001; Newhouse et al., 1997).

Furthermore, Zou et al. (2010) reported that eSNPs within VAMP1

are associated with late-onset AD. Below, we explore two path asso-

ciations with VAMP1.

4.4.1 Path: rs10514262 (HAPLN1) fi VAMP1 fi AD

The SNP rs10514262 is located 93 475 bp downstream of

hyaluronan and proteoglycan link protein 1 (HAPLN1). It has been

reported that HAPLN1 is one of the major components forming a

‘perineuronal net’ that protects AD cortical and subcortical neurons

against iron-induced oxidative stress (Suttkus et al., 2014). This has

been experimentally validated via knockout experiments, where

mice lacking HAPLN1 failed to develop a normally shaped peri-

neuronal net. This suggests that HAPLN1 is potentially associated

with AD. To confirm this path association, it would be interesting

to examine the status of VAMP1 when HAPLN1 is knocked out,

and the effects of VAMP1 levels on the formation of perineuronal

net.

4.4.2 Path: rs4656888 (CD1E) fi VAMP1 fi AD

The SNP rs4656888 is located 68804bp downstream of CD1E

(cluster of differentiation 1E), a member of the CD1 family. CD1

is structurally related to major histocompatibility complex (MHC)

proteins (Wilson and Bjorkman, 1998); further, the relationships

between MHC proteins and nicotinic attenuation of central ner-

vous system has been reported (Shi et al., 2009). Therefore, it

seems that CD1E is associated with VAMP1 through its involve-

ments in the nicotine pathway; for future work, it would be inter-

esting to study the interactions between CD1E and VAMP1 in the

nicotine pathway.
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5 Conclusions

We proposed a new paradigm of path associations to detect associ-

ations among genotypes, gene expression traits, and phenotypes.

Furthermore, we developed a network-driven method, NETAM,

using state-of-the-art machine learning techniques. Specifically, we

employed SRMs to find edges in an association network considering

all SNPs or all expression traits simultaneously, and stability selec-

tion and screening for false positive control and large-scale analysis.

In the analysis of the late-onset AD data, NETAM found 477 signifi-

cant path associations, among which, we investigated the paths that

include ZNF720, RHOBTB3, and VAMP1 genes. These findings

suggest various association mechanisms through beta-amyloid, es-

trogen, and nicotine pathways, which seemed to be crucially related

to AD.

One promising future research direction would be to extend as-

sociation networks to capture complex association mechanisms by

introducing additional edges between different SNPs, between dif-

ferent gene traits or between different phenotypes. Further, when

adding edges in the networks, we can take advantage of the struc-

tures in the genome (e.g. linkage disequilibrium) or gene–gene inter-

action networks. It would also be interesting to develop a theory to

estimate false discovery rate for path associations in NETAM, and

to conduct biological experiments to validate our proposed hypothe-

ses for AD-related path associations.
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