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Abstract

Developments in observing system technologies and ocean data assimilation (DA) are symbiotic. 

New observation types lead to new DA methods and new DA methods, such as coupled DA, can 

change the value of existing observations or indicate where new observations can have greater 

utility for monitoring and prediction. Practitioners of DA are encouraged to make better use of 

observations that are already available, for example, taking advantage of strongly coupled DA so 

that ocean observations can be used to improve atmospheric analyses and vice versa. Ocean 

reanalyses are useful for the analysis of climate as well as the initialization of operational long-

range prediction models. There are many remaining challenges for ocean reanalyses due to biases 

and abrupt changes in the ocean-observing system throughout its history, the presence of biases 

and drifts in models, and the simplifying assumptions made in DA solution methods. From a 

governance point of view, more support is needed to bring the ocean-observing and DA 

communities together. For prediction applications, there is wide agreement that protocols are 

needed for rapid communication of ocean-observing data on numerical weather prediction (NWP) 

timescales. There is potential for new observation types to enhance the observing system by 

supporting prediction on multiple timescales, ranging from the typical timescale of NWP, covering 

hours to weeks, out to multiple decades. Better communication between DA and observation 

communities is encouraged in order to allow operational prediction centers the ability to provide 

guidance for the design of a sustained and adaptive observing network.
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data assimilation; reanalysis; coupled data assimilation; S2S prediction; decadal prediction; ocean 
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INTRODUCTION

Sustained high-quality observations are essential for improving our understanding of the 

ocean and its interactions with the atmosphere and the overall Earth system. An important 

tool to study the Earth system is the production of historically accurate four-dimensional 

reconstructions of quantities that characterize the ocean state (such as temperature, salinity, 

and currents). Mathematical methods from the field of Data Assimilation (DA) allow 

information provided from observations to be propagated in time and space to unobserved 

areas using the dynamical and physical constraints imposed by numerical models. When 

these methods are applied to form the aforementioned historical reconstructions, this 

procedure is called a retrospective analysis, or “reanalysis” (Kalnay et al., 1996; Dee et al., 
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2014). In addition to aiding in the study of the ocean itself, such reanalyses can also be used 

to initialize the ocean component of coupled Earth system models in order to produce long-

term forecasts that may provide guidance from a few weeks out to a decade or longer (Meehl 

et al., 2014; Balmaseda, 2017). Here, we review the current state-of-the-art of DA applied to 

the ocean and collectively look forward over the next decade to make our own predictions 

about what kind of complementary in situ and satellite observations will be required to 

advance reanalysis and prediction, address end-user engagement, identify opportunities for 

integration, and connect to many of the themes of OceanObs’19.

METHODOLOGICAL DEVELOPMENTS IN OCEAN DATA ASSIMILATION

Data assimilation is essentially an automation of the scientific method. A hypothesis is made 

and encoded in a numerical model. This model is then used to make predictions that can be 

tested against new observations. Prediction accuracy is then examined and provided as 

feedback to modify the model and methods, and the process repeats. The development and 

application of DA serves fundamental Earth science goals such as to: (1) fill gaps between 

sparse measurements to form a complete picture of the Earth system, (2) utilize the 

observing network to initialize forecast models, (3) characterize errors in the modeling and 

observing systems, and (4) identify areas of high uncertainty where observations can 

illuminate poorly understood phenomena, help target observing campaigns, and improve 

numerical models and forecasts. Here, we address the current state-of-the-art and limitations 

of ocean and coupled DA and propose paths forward.

CONNECTING OCEAN DATA ASSIMILATION WITH OCEAN OBSERVING 

EFFORTS

Although the growing constellation of satellite observing platforms continues to provide a 

much more coherent view of the ocean surface, there are limitations that remain in the 

integrated ocean-observing system that prevent the accurate estimation of the full state of the 

ocean based on observations alone. In situ measurements are quite sparse, while small-scale 

processes important to air-sea interaction and the deep ocean remain largely unobserved. In 

order to acquire a complete picture of the ocean state while appropriately characterizing our 

uncertainty of this picture, the gaps in coverage must be bridged in space and time using 

rigorous mathematical methods. This is a primary activity of the DA community and 

requires close collaborations between theorists in academia and practitioners at operational 

centers.

Ocean DA has become routine practice at many operational prediction centers, both for 

ocean forecasting and for initializing coupled Earth system models (Edwards et al., 2015; 

Martin et al., 2015). The regular application of ocean DA either through operational 

forecasts or using retrospective analyses (reanalyses) is valuable for assessing the 

completeness and accuracy of the ocean-observing system. A variety of tools are available to 

assess the value of specific observing platforms, some that follow the methodologies of 

Observing System Experiments (OSEs) and Observing System Simulation Experiments 

(OSSEs), or Optimal Experimental Design (OED), while others are linked to the DA cycle 
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itself, such as Forecast Sensitivity to Observation Impacts (FSOI) and estimating the 

effective degrees of freedom of the observing system (e.g., Oke et al., 2015a,b).

Advances in DA methods have been and will continue to be driven by new observing 

technologies. We mention two notable features of upcoming observing technologies that 

deserve attention. First, amongst recent and planned satellite missions are increasingly high-

resolution datasets covering the ocean surface. The development of instrumentation such as 

VIIRS, SLSTR on board Sentinel-3 (A and B), and platforms such as the Surface Water and 

Ocean Topography (SWOT) mission indicate there will be large volumes of data available 

for assimilation.

At present, the fidelity of these data products is far higher than many operational ocean 

models are capable of resolving. Ocean DA faces a challenge due to computational 

limitations: there is a need to either increase the resolution of ocean models in order to take 

full advantage of new data sources using conventional DA approaches or design new 

methods to extract more information from these observations without resorting to high-

resolution modeling (e.g., by using machine learning methods applied to high-resolution 

observations to produce dynamic parameterizations at the subgrid-scale – see for example 

Bolton and Zanna, 2019). The accurate specification of observation error correlations 

becomes more important as higher resolutions are used (e.g., Mazloff et al., 2018), making it 

more difficult to accurately assimilate new higher resolution observations.

Amongst in situ observing systems, there is a trend toward mobile and adaptive platforms 

and new DA methods will be needed to use the full breadth of information provided by these 

platforms. As technology improves, there is also an opportunity to explore potential 

feedback between operational ocean DA systems and observing system guidance in near 

real-time that redirects the observing system to increase sampling in areas where the 

forecasts have greatest sensitivity. Ocean-observing technologies in the form of gliders, 

autonomous underwater vehicles, high-frequency radars, profiling floats, drifters, tagged 

marine mammals (and other pelagic apex predators), and acoustic instruments continue to 

undergo rapid development, and data volumes from these platforms are growing rapidly, 

particularly in coastal regions. Quality assurance and quality control (QA/QC) protocols are 

necessary, especially for new types of observations. Operational centers should improve 

their capability to provide feedback in near real-time regarding the QC classifications of 

individual observations based on forecasts made using those observations.

From a fundamental standpoint, most of the approaches used for characterizing uncertainty 

in Ocean DA methods are predicated on the principles of Bayes’ theorem (Hoteit et al., 

2018). A common assumption is that errors are Gaussian-distributed and that the time 

evolution of the errors is linear. As such, there are common limitations to all currently used 

DA methods and a primary goal for improving the accuracy and applicability of DA in the 

coming decade will be to relax these limiting constraints (see Martin et al., 2019; Moore et 

al., 2019, this issue). This has relevance to future ocean-observing system design, as it may 

change requirements on the observing system either to test and design new methods or to 

take advantage of new capabilities afforded by the methods.
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In recent years, the Global Ocean Data Assimilation Experiment (GODAE) and its offshoot, 

GODAE OceanView (GOV) have been active in galvanizing ocean DA activities by 

providing a platform for promoting ocean DA and forging international collaborations (Bell 

et al., 2015). These activities will continue under the new guise of OceanPredict. Going 

forward, we recommend that this activity expand to further interface with the academic and 

operational ocean-observing, ocean modeling, and ocean DA communities.

THE ADVENT OF COUPLED DATA ASSIMILATION

The components of the Earth system have traditionally been analyzed independently. 

However, modeling improvements and increases in computing power are now enabling the 

analysis of the Earth system as a whole (Saha et al., 2010, 2014; Lea et al., 2015). 

Observation-model synthesis activities that incorporate observational data into coupled Earth 

system models have led to the emergence of a new research area called Coupled Data 

Assimilation (CDA; Penny et al., 2017). While traditional methods have generally focused 

on a single scale of motion within any given DA system, an essential characteristic of CDA 

is the need to account for the multiple spatiotemporal scales present in the error dynamics of 

the coupled system. The most basic application of DA to coupled models has been the 

application of legacy DA systems to each component separately, which is called weakly 

coupled data assimilation (WCDA). In order to allow any observation to directly affect the 

analysis of multiple model components across their interface, the DA itself must also be 

coupled; this is called strongly coupled data assimilation (SCDA). For most modern DA 

methods, SCDA requires that the forecast error covariance matrix be produced for the 

coupled state. Efforts are underway to develop effective approaches for SCDA, though 

additional work is still needed to understand the complexities of this problem (Penny et al., 

2019).

By isolating systematic errors in prediction systems, CDA may help identify new 

transformative directions in ocean-observing strategies targeted at eliminating these errors. 

Because CDA allows ocean observations to directly inform atmospheric state estimates and 

vice versa (Sluka et al., 2016; Sluka, 2018), the relevance of existing observations for state 

estimation and prediction must be clarified as the ocean-observing network evolves. CDA 

developments involve a necessary reevaluation of requirements for ocean-observing 

capabilities, either by reducing the presence of redundant information or by using such 

redundant information to calibrate multiple observing platforms. CDA can effectively 

leverage multidisciplinary, sustained, collocated observations, and may require more 

information in new geographic locations, or of new previously unmeasured quantities, to 

better understand the structure of the cross-domain error covariance. Over the next decade, 

those designing components of the Earth-observing system should pay close attention to 

developments in CDA.

Operational centers are now developing CDA methods for NWP and reanalysis applications 

that include components such as the ocean, sea ice, land, and atmosphere (Brassington et al., 

2015). One of the original motivations for improving CDA methods was to ensure 

consistency between the different components of the Earth system. The use of coupled Earth 

system models for operational prediction provides the potential to produce forecasts that 
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target multiple prediction timescales. At NWP timescales, the diurnal cycle has a large 

influence on coupled processes in the boundary layers of the atmosphere and ocean. 

Mesoscale interactions between sea surface temperature (SST) fronts and near-surface winds 

(Chelton and Xie, 2010) may have significance to winds throughout the troposphere. 

Potential sources of predictability for Subseasonal-to-Seasonal (S2S) timescales include 

establishing teleconnections associated with the Madden–Julian oscillation (MJO), the 

evolution of the El-Niño Southern Oscillation (ENSO), soil moisture, snow cover and sea 

ice, stratosphere–troposphere interactions, upper ocean conditions, and tropical-extratropical 

teleconnections (Vitart et al., 2015). At decadal prediction timescales, accounting for 

coupled oscillations such as the Atlantic Multidecadal Oscillation (AMO) and the Pacific 

Decadal Oscillation (PDO) (d’Orgeville and Peltier, 2007) may be of greater importance for 

CDA.

Beyond coupled atmosphere-ocean interactions, the application of CDA is also important to 

better understand other coupled processes in more detail. For example, DA in coupled 

ocean-sea ice models (Fenty and Heimbach, 2013; Bertino and Holland, 2017; Kimmritz et 

al., 2018) and coupled physical-biogeochemical models (Brasseur et al., 2009; Song et al., 

2016; Verdy and Mazloff, 2017) at both regional and global scales are currently active areas 

of research, driven by improvements in remote-sensing observing platforms (e.g., sea ice 

concentration and thickness and ocean color) or new capabilities (e.g., biogeochemical Argo 

floats and airborne hyperspectral imagers). There have been few studies to date exploring 

DA applied to coupled land-ocean processes.

Focus on biological activity highlights the importance of physical variables often ignored in 

conventional ocean DA, such as upper-ocean vertical fluxes (Brasseur et al., 2009). Large-

scale assimilation of marine biogeochemistry is limited by the lack of regular observations. 

The only routine observations with global coverage are satellite ocean color (Ford and 

Barciela, 2017). Existing DA efforts typically focus on generating products based purely on 

biogeochemical measurements independently of physical oceanographic measurements 

(e.g., Ciavatta et al., 2016; Gregg et al., 2017). As CDA begins to mature, it would be highly 

beneficial for the physical oceanographic reanalysis and ocean biogeochemical reanalysis 

efforts to start integrating with one another (Rosso et al., 2017). Early interest in moving in 

this direction has been indicated, for example, by Perruche et al. (2017) as part of the ERA-

CLIM2 project. Regional ocean analyses are being used to predict Harmful Algal Blooms 

(HABs; Anderson et al., 2016), to understand economically important marine ecosystems 

(e.g., Schroeder et al., 2014, 2017) with a view to management, and to understand the 

migration habits of endangered marine species (e.g., Becker et al., 2016), and it is expected 

that these applications will be enhanced with CDA.

To date, ECMWF has one of the more mature efforts developing a CDA system. An implicit 

coupling approach has been implemented in their CERA system, where the atmospheric 4D-

Var and oceanic 3D-Var DA systems are synchronized using multiple outer iterations in the 

incremental variational formulation. This outer-loop coupling system is an approximation of 

a fully coupled 4D-Var system that tries to find an approximation to the same optimal 

solution by setting the coupled adjoint model and the cross-domain error covariance at the 

initial time of the assimilation window to zero (Laloyaux et al., 2018b). It takes between 6 
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and 12 h for the outer loop coupling to synchronize the coupled increments (Laloyaux et al., 

2018a). This finding suggests that a long assimilation window (at least 12 h) is necessary for 

CERA to be an effective strategy for CDA. The outer-loop coupling employed by the CERA 

system could in principle be augmented by both the specification of the initial time coupled 

covariances and coupled adjoint. Such an approach could mitigate problems in cases where 

the coupled model is not able to synchronize the unbalanced increments that arise because 

the assimilation window is too short, the observations are inconsistent due to biases present 

in the observing platforms, or systematic modeling errors prevent agreement across the 

interface.

AN EXAMPLE APPLICATION OF CDA: THE DIRECT ASSIMILATION OF 

SATELLITE RADIANCES FOR ESTIMATING SST

The air-sea interface is one of the prime focus areas for early explorations of CDA. In 

addition to requiring a rethinking of DA algorithms and solution approaches, CDA affords 

the opportunity to improve the methods used to map the modeled state to a simulated 

“model equivalent” for each observation that can then be compared directly with 

observations. One of the most obvious places to start is improving the inputs provided to 

radiative transfer models. CDA provides a new capability to assimilate observed brightness 

temperature (BT) instead of relying on retrieval products such as proxy measurements for 

SST.

Current state-of-the-art coupled forecasting systems do not analyze interface states such as 

SST, sea surface salinity (SSS), or sea ice in a self-consistent manner. For example, many 

atmospheric and oceanic DA systems typically nudge toward SST retrieval products. 

However, this approach typically ignores caveats in the empirical methods used to convert 

satellite-measured radiances into SST retrieval data products (Donlon et al., 2007). Among 

the most serious are errors in model calibration at high latitudes as well as challenges in 

using skin SST estimates to constrain bulk temperature (Donlon et al., 2002). Diurnal 

variations of SST and near-surface cooling in the microlayer are processes that are well 

observed and studied (Kawai and Wada, 2007) but not very well represented in coupled 

atmosphere-ocean general circulation models (Brunke et al., 2008), in which reproducing 

SST variability remains a challenge (Lea et al., 2015).

There are numerous definitions for SST; for example, see Figure 1 of Donlon et al. (2007) or 

definitions established by the Group for High Resolution Sea Surface Temperature 

(GHRSST). Some of these definitions are conceptual (e.g., the interface SST) while others 

are derived from the method of measurement (e.g., infrared vs. microwave). Satellites have 

provided continuous infrared observations that sample in the upper 10–20 µm (the skin 

temperature) since the early 1980s and microwave observations (spatially less accurate than 

infrared, but insensitive to cloud cover and aerosols) that observe the upper few millimeters 

(the subskin temperature) since the late-1990s (Reynolds et al., 2007). In situ measurements 

of SST are sparser and typically comprised of top-level (1–2 m) moored buoys, drifting 

buoys (about 20–30 cm), and ship intake measurements (Castro et al., 2012; Legler et al., 

2015) that are known to have large errors (Folland and Parker, 1995; Kennedy, 2014).
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Satellite-based measurements of SST are inherently coupled due to influences from not only 

the sea surface but also the full atmospheric column above it. The measured SST is highly 

influenced by both atmosphere and ocean boundary layers as well as the strength of upward 

longwave radiation and turbulent heat flux exchanges. To avoid dealing with the complex 

calibration issues associated with satellite radiances, current prototype CDA systems 

typically rely on SST data products produced by specialists and assimilate either along-track 

(L2) SST estimates or gridded (L3 or L4) SST products such as Pathfinder (Casey et al., 

2010), OSTIA (Stark et al., 2007), or ACSPO (Ignatov et al., 2016). See Martin et al. (2012) 

for a review of available L3 and L4 SST products. One of the main recommendations of a 

recent ECMWF workshop (Balmaseda et al., 2018) was to directly assimilate satellite 

radiances to constrain SST and sea ice, just as is done in NWP for atmospheric quantities. 

CDA offers an opportunity to treat the interfaces within the coupled model in a self-

consistent manner, particularly when the forward model that is used to evaluate the “model 

equivalent” to the observation, H(x), depends on state information from multiple domains.

Both the NASA Global Modeling and Assimilation Office (GMAO) (Akella et al., 2017) and 

the National Oceanographic and Atmospheric Administration (NOAA) National Centers for 

Environmental Prediction (NCEP) Environmental Modeling Center (EMC) (Derber and Li, 

2018) have already implemented methods to directly assimilate radiances in order to 

compute SST analyses. The NASA GMAO procedure followed Takaya et al. (2010) allows 

the SST diurnal cycle to be resolved in the model, which provides a near-surface 

temperature profile as a function of depth. Using the forecasted SST along with the 

forecasted atmospheric state as inputs to the radiative transfer model, the resulting forecast 

BT can be compared with observed BT. The difference between observed and forecasted BT 

is used by the DA method to form a consistent analysis of the combined atmospheric state 

and SST. In order to effectively constrain SST, observations that are sensitive to SST, such as 

infrared satellite radiance measurements onboard operational polar orbiting satellites, were 

added to the observing system (see Akella et al., 2017 for details and Gentemann and 

Akella, 2018 for a comparison/evaluation of their results with other diurnal-SST retrievals). 

The capability to assimilate satellite radiances in coupled forecasting systems has improved 

the predictability of the GMAO system, most notably near the surface. The BTs are 

atmospheric column-weighted measurements. Because infrared satellite measurements are 

sensitive to water vapor, improved resolution and assimilation of SST-sensitive BTs 

translated into improved observational innovation statistics for many satellite channels that 

contain information about tropospheric temperature and water vapor.

The advantages of combining infrared and microwave radiometric measurements of SST are 

already well established (Chelton and Wentz, 2005). A microwave satellite radiometer 

beyond the currently operational Global Precipitation Measurement – GPM Microwave 

Imager (Skofronick-Jackson et al., 2018) and Advanced Microwave Scanning Radiometer-2 

(Kazumori et al., 2016) missions would provide the ability to maintain and further improve 

CDA at the air-sea interface. There is an immediate need to plan for a satellite salinity 

measurement mission beyond the 2020–2025 time frame (Durack et al., 2016; Vinogradova 

et al., 2017 this issue). Bearing in mind the collaborative nature of satellite missions, further 
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coordination is needed for planning the next generation of NOAA satellites that follow the 

GOES-R, JPSS, DSCOVR, Jason-3, and COSMIC-2 missions (Volz et al., 2016).

Field campaigns and in situ measurements aid in the improvement of modeled near-surface 

temperature and salinity variations, and mixing processes. The existing network of drifting 

buoys [Figure 3 of Legler et al. (2015)] routinely reports near-surface (about 20 cm) 

measurements of SST, sea level pressure (SLP). The measured SLP is routinely assimilated 

into the NWP forecast models, and SST are used for calibration/validation of SST retrieval 

products. However, one cannot measure vertical SST variability and mixing with a single 

sensor (e.g., at 20 cm). Dedicated cruise campaigns such as those reported by Dong et al. 

(2017) suggest that adding one more temperature sensor and salinity sensor to the drifting 

buoy network can provide valuable measurements of SST/SSS near-surface variations. Such 

measurements would help with calibration and evaluation of observations as well as improve 

the representation of the diurnal cycle, the feedbacks between SST and surface salinity 

variations (Bellenger et al., 2017), and buoyancy-driven density variations in general.

OCEAN AND COUPLED EARTH SYSTEM REANALYSIS

An important application for DA is to develop historical reconstructions of the Earth system 

based on the observational record. Numerical models fulfill the basic large-scale equations 

of motion and satisfy conservation laws, but may have systematic errors. While this type of 

numerical modeling can provide insights into the mechanisms driving long-term variability 

(Haid et al., 2017), the systematic errors that arise can cause long-term drift in the modeled 

climate compared to the real Earth system. In contrast, statistical observational analyses 

(e.g., Abraham et al., 2013) can be applied to observed data to produce a full field 

reconstruction that closely agrees with the observational record. However, this approach 

does not typically ensure conservation laws are enforced, meaning there are known errors 

that are unaccounted for, and is not able to recover unobserved quantities. Retrospective 

analyses, or reanalyses, combine the advantages of both numerical modeling and statistical 

observation analyses to fulfill the conservation laws over discrete periods while also 

incorporating observed data and subsequently estimating unobserved quantities. Reanalyses 

can be used to study the evolution of the Earth’s climate during any time period for which 

we have an observational record. They are also useful for initializing “reforecasts” that can 

be used to calibrate bias-correction schemes for seasonal forecasts. Next, we document 

recent advances from the ocean reanalysis community and discuss unresolved challenges 

that require sustained activities for maximizing the utility of information content from 

observations, supporting data rescue, and advancing specific research and development 

requirements for reanalyses.

ADVANCES AND UNSOLVED CHALLENGES IN PRODUCING OCEAN 

REANALYSES

The original interest in developing ocean reanalyses arose largely from a desire to examine 

long-range climate-scale signals. Ocean reanalyses can be studied to enhance understanding 

of processes driving observed changes. They are also useful for studying recent changes in 

the climate for quantities that are difficult to observe continuously, such as transports 
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(Mignac et al., 2018), or those that require consistent spatial data coverage at depth, such as 

ocean heat content (Balmaseda et al., 2013; Wunsch and Heimbach, 2014). To be able to 

draw robust conclusions, one must be confident that inhomogeneous time series or abrupt 

regime changes are caused by physically consistent processes – not artifacts associated with 

changes in the historical observing network. During much of the early history of ocean 

reanalysis development, there have been significant disagreements between estimates 

produced by different reanalysis approaches. This was due in large part to the scarcity of 

observational data, differences in model configurations, and discrepancies in DA methods.

However, due to advances in the ocean observing system, improvements in modeling, and 

advances in DA methods, ocean reanalysis products have been slowly converging.

To date, ocean reanalyses have been produced by many operational centers and research 

institutes (Carton and Giese, 2008; Sugiura et al., 2008; Xue et al., 2011; Chang et al., 2013; 

Wunsch and Heimbach, 2013; Blockley et al., 2014; Valdivieso et al., 2014; Köhl, 2015; 

Forget et al., 2015; Penny et al., 2015; Toyoda et al., 2016; Storto and Masina, 2016; Palmer 

et al., 2017; Zuo et al., 2017b). Balmaseda et al. (2015) provide a recent intercomparison 

study of about 20 reanalysis products. The extent to which reanalyses provide robust 

answers to questions about climate change and variability relies on many factors, including 

the fidelity of the numerical models, the accuracy of forcing fields, biases in observing 

platforms, uncertainties attributed to the observations and the background state (priors), and 

the sophistication of the DA schemes. Many of these considerations are highlighted in a 

recent study by Carton et al. (2019) comparing leading ocean reanalysis products (SODA3, 

ECCO4r3, and ORAS5).

Given the availability of ocean reanalysis products from multiple groups worldwide, we 

recommend that climate studies include the evaluation of as many products as possible to 

sample the range of uncertainty in the historical ocean state and disentangle possible 

inconsistencies that arise due to choices made in their construction. Uncertainties in ocean 

reanalysis state estimates result from accumulated errors from all system components (ocean 

model, boundary condition forcing, observations, and DA method). Uncertainty in ocean 

reanalyses as a whole can be studied using a multi-reanalysis ensemble approach 

(Balmaseda et al., 2015; Masina et al., 2017; Xue et al., 2017), which provides a way to not 

only investigate the accuracy of ocean reanalyses but also disentangle sources of uncertainty. 

A rough estimate can be achieved by comparing the consistency of the reanalyses (ensemble 

spread), interpreted as noise, with the natural variability (variance in time), interpreted as the 

signal.

Uncertainties in an individual system can also be assessed by accounting for errors explicitly 

in different system components, for example by using ensemble forecasts, by introducing 

stochastic perturbations in the model (Brankart et al., 2015), by estimating 

representativeness errors associated with observations in relation to the model resolution, 

and by estimating analysis/structure errors in forcing fields (Penny et al., 2015; Zuo et al., 

2017a).
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Surface forcing derived from atmospheric reanalyses induces systematic errors. Multi-

forcing reanalyses may be performed to better estimate the impacts of these errors 

(Chaudhuri et al., 2013, 2016; Storto et al., 2016b; Carton et al., 2018; Yang et al., 2018). 

Recently, Zuo et al. (2017a) introduced a stochastic perturbation for the atmospheric forcing 

by taking into account both uncertainty from different atmospheric analysis data sets and 

uncertainty from the same analysis method with multiple ensemble members. Another 

method for adjusting uncertain atmospheric fields is by employing control methods, where 

adjustments to atmospheric surface forcing data are part of a formal inversion, assuming 

relatively accurate oceanic observations (e.g., Stammer et al., 2004; Liang and Yu, 2016). 

Uncertainty in initial conditions can also be evaluated using an ensemble approach, by 

performing several spin-up integrations with different DA system configurations (Zuo et al., 

2018). Chevallier et al. (2017) showed that for coupled ocean-sea ice models driven by 

prescribed atmospheric forcing, part of the variability across ocean reanalyses is the result of 

differences in the atmospheric reanalyses used to force these systems, which is large in the 

polar regions (Lindsay et al., 2014). Part of the discrepancy in the atmospheric reanalyses is 

due to the treatment of the prescribed boundary conditions (e.g., sea ice), giving an example 

of a weaknesses in the “uncoupled” approach. Generally, both coupled climate models and 

ocean-ice models, driven by prescribed atmospheric forcing, cannot adequately represent the 

observed polar trends, whereas ocean reanalyses have proven quite adequate to capture these 

trends when observations are available to constrain the system (Chevallier et al., 2017; 

Uotila et al., 2018).

With the exception of smoother-based reanalyses generated by the Consortium for 

Estimating the Circulation and climate of the Ocean (ECCO; Wunsch and Heimbach, 2013; 

Köhl, 2015; Forget et al., 2015; Heimbach et al., 2019), most of the DA systems developed 

under GODAE and GODAE OceanView use some form of sequential DA (Martin et al., 

2015). Some of the systems based on simplified assumptions about the forecast error 

characteristics suffer from problems with initialization, where the updates applied to the 

model at each assimilation step are not dynamically consistent. To date, many developers 

have attempted to minimize the negative impacts of these dynamical imbalances by ad hoc 
techniques such as nudging with incremental updates (Bloom et al., 1996). Some problems 

have been identified in the Equatorial region within a number of ocean reanalyses, in which 

the assimilation can induce spurious variability that has been damped by following several 

bias correction strategies (Waters et al., 2017).

An application of the 4D variational method in ocean DA has been developed with an 

emphasis on reconstructing the ocean on climate time scales (Stammer et al., 2016). 

Motivating these approaches were the goals of (i) using information contained in 

observations backward in time, (ii) enlarging the control space to include uncertain boundary 

conditions and model parameters, and (iii) deriving estimates with closed property budgets 

enforced by the equations of motion (e.g., Buckley et al., 2015; Piecuch et al., 2017). 

However, this approach also has potential limitations. For instance, increasing the control 

space also increases the dimension of the problem, which in turns makes the method very 

expensive for high-resolution global applications. There may also be challenges with relying 

on the accuracy of a linearization over long time windows.
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Other difficulties are connected with the irregular observing network. This often causes 

spurious variability in reanalysis products, especially in multi-decadal reanalyses covering 

historical periods with highly varying observing systems ranging from the sparse pre-

satellite era to present. This has been the subject of many investigations aiming to include 

bias-correction schemes within the reanalysis (Balmaseda et al., 2007; Lea et al., 2008; 

Storto et al., 2016a). However, this creates the additional challenge of estimating these 

biases while having only a limited number of “anchoring” (i.e., unbiased) observations. 

Before the deployment of the Argo network, the sampling of observations used by ocean 

reanalyses is generally sparse, which has implications for the reliability of quantities such as 

global ocean heat content before the 2000s. However, several studies showed that beginning 

in the early 1980s, the observing system is able to reasonably constrain the global ocean heat 

content (Storto et al., 2016b). There is growing interest amongst the ocean reanalysis 

community in the deep Argo program (Zilberman, 2017), with the hope that this will 

gradually fill the gap in knowledge of the ocean state below 2000 m and allow the deep 

ocean warming contribution to be assessed with greater precision. Care is also being taken in 

ocean reanalyses to synergistically exploit a large number of data sources (altimetry, 

gravimetry, Argo, tide-gauges, etc.) to create a reliable representation of freshwater and 

mass balances. Data used for evaluation, not necessarily assimilated (e.g., buoys, drifters, 

tide-gauges, RAPID and OSNAP arrays, SAMOC and SOCCOM programs, ADCP data, 

etc.) are also crucial for assessing uncertainty in reanalyses and improving process 

representation in models.

Within historical data records, the accuracy of the observations assimilated is often unknown 

or underestimated due to lack of metadata. This also prevents effective bias-correction 

procedures from being implemented and may lead to the erroneous specification of 

instrumental errors. For the historical ocean subsurface temperature record, the situation is 

improving through an internationally coordinated community effort (Domingues and Palmer, 

2015)1, focusing on recovery of data and metadata, development of intelligent metadata, 

coordinated quality control (automated and expert), and assignment of uncertainties. Their 

overall goal is to produce a long-term climate quality global ocean subsurface database that 

can be used with greater confidence by the ocean reanalysis community and other users. The 

first interim IQuOD database product is available from The IQuOD Team (2018).

Reanalyses will continue to extend further backward in time to cover longer historical 

periods, following the trend set by Compo et al. (2011) and ECMWF’s ERA-20C, and later 

followed by comparable century-long ocean reanalyses (Giese et al., 2016; Yang et al., 

2017) and the coupled reanalysis CERA-20C (Laloyaux et al., 2018a). This will require 

improved methods to handle sparse observations, discontinuities in the observation network, 

and correction of large-scale biases, as well as continuous efforts on data rescue. With the 

recent emergence of coupled Earth system reanalyses, non-oceanic data will also play an 

important role, particularly in time periods where ocean observations are extremely sparse or 

non-existent. Ocean background errors are expected to evolve significantly during the 

reanalysis period due to the ever-changing observing network. The development of time 

1www.iquod.org
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dependent background error covariance estimates has proved beneficial (Penny et al., 2015; 

Penny, 2017; Yang et al., 2017). The full introduction of flow-dependent background errors 

involves estimating the ocean background error covariances from the ensemble and 

developing methods to deal with sampling limitations. Such ensemble-based error 

covariance information can account for anisotropic and inhomogeneous correlations that are 

difficult to estimate with traditional methods. An Ensemble of Data Assimilation systems 

(EDA) showed some benefits in the atmosphere by dynamically changing the weight given 

to the background depending on the observation density (Poli et al., 2013) and such methods 

may be useful for the ocean as well.

In addition to climate investigations, ocean reanalyses using higher resolution eddy-

permitting models have a long history among the members of the Global Ocean Data 

Assimilation Experiment (GODAE) and the follow-on GODAE OceanView. The production 

of high-resolution ocean reanalyses started naturally as a historical extension of operational 

analysis experiments, with a series of products disseminated by Mercator Ocean (Ferry et 

al., 2007, 2010; Garric et al., 2018), by CSIRO and the Bureau of Meteorology (Bluelink) 

(Oke et al., 2005, 2008, 2013), by NERSC (Sakov et al., 2012), and by JMA and JAMSTEC 

(Usui et al., 2017). These products have proved instructive for global and regional 

investigations of ocean variability (Schiller and Oke, 2015; Feng et al., 2016), ocean 

processes (Oke and Griffin, 2011), and for studies of the ocean-observing system (Lea et al., 

2013; Fujii et al., 2015). Going forward, it is expected that the resolution of ocean reanalyses 

will increase to allow representation of eddy dynamics and to fully include mesoscale and 

coastal ocean dynamics. This requires the improvement of small-scale ocean dynamics in 

models and the development of DA methods that are capable of assimilating rapidly 

changing, strongly non-linear, and non-Gaussian observational constraints.

ADVANCES AND UNSOLVED CHALLENGES IN PRODUCING COUPLED 

REANALYSES

Coupled model integrations with prescribed radiative forcing have been the backbone of the 

coordinated experiments for the World Climate Research Programme (WCRP) Coupled 

Model Intercomparison Project (CMIP) that were designed for contributing to the 

Intergovernmental Panel on Climate Change (IPCC). Century-long coupled reanalyses go a 

step further by assimilating information about the actual observed state of the Earth system, 

without deteriorating the model representation of low-frequency variability and change. 

While this is a tremendous challenge, it is essential in order to advance our understanding of 

climate variability and change and to identify the broader impacts on global communities.

Key benefits expected from a coupled reanalysis are: a more consistent treatment of the 

interfaces between different model components, better use of observations near these 

interfaces, and improved representation of global budgets of conserved quantities. In 

principle, the use of a coupled model as the forecast component within a DA system makes 

it possible to fully account for ocean-atmosphere, ocean-ice-atmosphere, and land-

atmosphere feedbacks. This can only be achieved, however, if the assimilation of near-
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surface observations respects the consistency at the boundaries as imposed by the model and 

if the modeled dynamics at the boundary are consistent with observations.

In the 20th-century coupled reanalysis (CERA-20C) produced at ECMWF, the ocean and the 

atmosphere communicate hourly through air-sea coupling at the outer-loop level of the 

variational method. In this system, changes in the state of the atmosphere indirectly impact 

the ocean properties, and vice-versa, and both systems adjust to each other during each 

analysis cycle. There is a more consistent energy balance in CERA-20C, with the net heat 

fluxes at the air-sea interface (0.15 ± 1.1 W/m2) and ocean temperature increments (−0.11 

± 1.9 W/m2) averaging close to zero over the century, compared to the forced ocean 

reanalysis ORA-20C (−1.62 ± 1.89 W/m2 and 1.66 ± 2.32 W/m2). However, given that the 

SST in the ocean component of CERA-20C was nudged toward an external data product, 

this suggests that there is further room for improvement. While midlatitude storms, heat 

waves, or cold-air outbreaks are often well-represented in regions with dense observational 

coverage, this is not always the case for tropical cyclones, which are difficult to model and 

not well-constrained by observations. CERA-20C struggles to correctly represent several 

tropical cyclones at the beginning of the 20th century (Laloyaux et al., 2018a). More work is 

needed to quality control observations from the International Best Track Archive for Climate 

Stewardship (IBTrACS). This is expected to improve the ability of historical reanalyses to 

facilitate the study of weather extremes. Based on the development of CERA at ECMWF, 

which implements the Copernicus Climate Change Service2 on behalf of the European 

Union, there are ambitions to produce a moderate-resolution global coupled centennial 

reanalysis by 2022, allowing a better representation of long-term trends in the climate 

system.

Beyond CERA-20C, ECMWF’s reanalysis portfolio has recently been extended to include 

CERA-SAT (Schepers et al., 2018), a pilot reanalysis for coupled DA using the full modern 

atmospheric and ocean-observing systems. CERA-SAT was produced using ECMWF’s 

CERA coupled assimilation system and constitutes a 10-member EDA available for a 9-year 

period from January 1, 2008 to December 31, 2016. CERA-SAT serves as a proof-of-

concept for CDA in the context of modern NWP-observing systems. Preliminary 

assessments have shown ocean-atmosphere coupling to be beneficial in tropical regions, 

while degradation is evident in the extra tropics, when comparing the coupled CERA-SAT 

system using SST nudged to OSTIA to an atmosphere-only reanalysis of the same setup but 

forced with OSTIA SST.

Centers that routinely produce reanalyses are often also engaged in other activities (for 

instance, operational prediction, mission support, and ocean monitoring). In order to carry 

out all of these missions, and to successfully transition the currently in-production 

uncoupled reanalyses to future coupled reanalyses requires careful planning for appropriate 

computational and storage resources. We highly recommend that funding agencies plan for 

such upcoming future needs in order to dedicate sufficient resources to support, within the 

next decade, not only coupled ocean-atmosphere reanalyses but also the inclusion of 

additional components, such as atmospheric constituents, chemistry, and ocean 

2climate.copernicus.eu
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biogeochemistry. Such efforts are underway in the United States as detailed in NOAA’s 

strategic implementation plan (SIPv4, 2017), which is a partnership among NASA, NOAA, 

the Department of Defense (DoD), and the Joint Center for Satellite Data Assimilation 

(JCSDA) and contributing external and international agencies.

USING OCEAN OBSERVATIONS TO IMPROVE PREDICTION

We next describe the existing observing system and gaps in observational coverage and 

recommend designs of observational and modeling experiments to evaluate the impact of 

ocean observations on forecast skill. The advances and enhanced spatial and temporal 

resolution obtained over the last 10 years in both satellite and in situ observations have 

enabled the use of DA to constrain coupled Earth system models for the first time to a 

realistic representation of the large-scale upper ocean thermal structure (upper 1000 m). 

However, there are still components of the coupled system that remain unconstrained. For 

example, the lack of air-sea flux measurements with global coverage poses a challenge to 

constraining the atmosphere-ocean exchanges without adequate observational sampling. 

This type of observing network should be enhanced in the future as they are not only crucial 

in the context of CDA and its applications to S2S and decadal prediction but also for the 

evaluation of climate simulations. In particular, we recommend the development of air-sea-

flux-observing satellite missions.

We emphasize the need for continuous long observational records to enhance prediction 

capabilities. Ocean reanalysis systems naturally extend to the initialization of seasonal, 

interannual, and decadal prediction systems, where the role of subsurface ocean initialization 

has been recognized as crucial (Balmaseda et al., 2009). S2S and decadal forecasting 

typically rely on the existence of reforecasts covering several decades in order to calibrate 

the model output and for skill assessment. These reforecasts are initialized by ocean or 

coupled reanalyses (Balmaseda, 2017). The length of the reforecast record adds value to the 

forecast. For this purpose, sustained data rescue activities are recommended as well as 

maintaining stability of the existing observing system. Recently, ocean reanalyses used to 

initialize seasonal prediction systems (reforecasts and near real-time reanalyses) have 

become publicly available via the EU-funded Copernicus Programme and are being used to 

evaluate subsequent forecasts (Juricke et al., 2018).

Measurements from observing platforms such as satellites, moored surface and subsurface 

buoys, drifters, floats, dedicated manned and unmanned vehicles, research ships, and vessels 

of opportunity are collected and distributed with various time lags. Operational predictions 

rely on observational platforms equipped with the capability for distribution in real-time or 

near real-time. Some observation types are used primarily as independent measurements for 

evaluation because they cannot be assimilated due to time delays or other technical 

complications. These include ocean current profilers, satellite-derived ocean surface 

currents, and a suite of biogeochemical observations such as carbon, oxygen, nutrients, 

ocean color, and phytoplankton.

Overall, a lack of uniformity in data management infrastructures imposes problems for the 

effective and efficient use of the global observing system in prediction efforts. These issues 
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include, but are not limited to, delayed and duplicate data receipts, versioning issues, 

missing data and metadata, and non-documented data processing procedures. In order to 

advance the deployment of effective ocean-observing systems, modern data management 

infrastructures are needed such that all activities along the data flow pipeline, from data 

collection through assembly and preservation, are more automated and fault-tolerant and 

progressively advance the systems toward interoperability. Building strong collaboration 

amongst the observing networks, data managers, and decadal forecasting centers will lead to 

improved access and uptake of data and to efficiencies that will eventually lead to 

improvements both in the observing networks and the decadal prediction system.

The future ocean observational requirements for the decadal prediction system include 

sustained and reliable data streams that have global sampling and are continuous in time, 

subject to regular quality control and calibration procedures, and encompass several spatial 

and temporal scales (e.g., National Academies of Sciences, Engineering, and Medicine 

[NASEM], 2017). To this end, there is great value to centralized data centers that collate 

observations from individual observing platforms in order to provide timely access to data 

and a consistent data format for ease of integration into DA systems.

PREDICTION AT SUBSEASONAL TO SEASONAL TIMESCALES

Many operational prediction centers are currently undertaking a transition from atmospheric 

NWP on a time range of 0–2 weeks to seamless forecasts that bridge the gap between 

medium-range weather and seasonal forecasts. This transition is driven by a growing 

consensus that coupled Earth system modeling benefits forecasts on a wide range of 

timescales (Hoskins, 2013; Vitart et al., 2017). The new focus on prediction with coupled 

models is highlighted in efforts such as forecasting the onset of monsoons, characterizing 

teleconnections of the MJO, and providing advance warning for extreme weather events 

(Vitart and Robertson, 2018).

Subseasonal prediction, focusing on the period transitioning from NWP to seasonal 

timescales, stands to gain considerably from combining the higher model resolutions of 

NWP with the coupled modeling approach of seasonal prediction. The MJO is the dominant 

mode of intraseasonal variability in the tropics and is considered a major source of 

predictability on the subseasonal time scale (Waliser, 2011). With respect to the ocean, 

anomalies in SST affect air-sea heat fluxes and affect atmospheric circulation (Woolnough et 

al., 2007).

Vitart et al. (2014) indicated significant gains in prediction skill after a decade of producing 

operational forecasts at ECMWF, pointing to an average gain of about 1 day of MJO 

prediction skill per year and improved ability to predict the North Atlantic Oscillation 

(NAO) and sudden stratospheric warmings (SSW). Skill scores improve with increased 

horizontal resolution and the addition of new modeling components such as a dynamic sea 

ice model. The introduction of new modeling components also presents the opportunity to 

assimilate new observational data not previously utilized for sub-seasonal prediction. 

Zampieri et al. (2018) indicate high potential for sea ice prediction in the sub-seasonal 

timescales, especially for late summer forecasts, and advocate the need to reduce systematic 
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seasonally dependent model biases and develop advanced DA capabilities to constrain sea 

ice extent and sea ice thickness.

Zhu et al. (2018) showed that MJO forecast skill can be improved in the NCEP Global 

Ensemble Forecast System (GEFS) from an average of 12.5 days (control) to nearly 22 days 

by (1) adding stochastic physical perturbations, (2) considering ocean impacts by using a 

two-tiered sea surface temperature approach (combing an analysis product with a forecast of 

SST from a coupled model), and (3) applying a new scale-aware convection scheme to 

improve the model physics for tropical convection. They also showed improved ensemble 

mean anomaly correlation of 500-hPa geopotential height in the extratropics over weeks 3 

and 4.

El-Niño Southern Oscillation is an inherently coupled phenomenon and one of the most 

studied sources of interannual variability in the climate system (Wu et al., 2009). Though 

mostly associated with the tropical Pacific, ENSO variability impacts the global climate 

(Timmermann et al., 2018). Changes in SST are an indicator of changes in ocean heat 

storage and transport and these oceanic processes further interact with changing atmospheric 

momentum and heat fluxes. Prediction skill for the SSTs associated with ENSO have 

improved over time. At ECMWF, for example, the skill in predicting SST anomalies in the 

NINO3.4 region has consistently improved as the DA system evolved starting from the S1 

system in 1997. If subsurface ocean and satellite altimeter observations are withheld from 

the analysis, there is a severe degradation in skill comparable to 15 years of progress in 

seasonal forecasting (Figure 1).

The original motivation for the Tropical Atmosphere-Ocean (TAO) array and Triangle 

Trans-Ocean Buoy Network (TRITON) was the 1982–1983 ENSO event (McPhaden, 1995; 

Ando and Kuroda, 2002). These moorings have provided surface meteorological 

observations, ocean temperatures in the upper 500 m, salinity and current measurements at 

selected moorings, and have played a key role in better understanding the ENSO 

phenomenon and advancing seasonal forecast systems in the decades since their 

implementation (McPhaden et al., 2010). To support S2S prediction, new observing systems 

must account for processes occurring over a much broader range of timescales.

Innovative observing technology in the sub-surface layer and at the air-sea interface can help 

to improve understanding of coupled interactions critical for S2S prediction. Self-sailing 

boats currently exist that can autonomously gather ocean and atmospheric observations over 

large areas of the ocean surface. Such technologies have the potential to precipitously drop 

costs of collecting observations of quantities such as wind, temperature, humidity, salinity, 

dissolved oxygen, and fluorescence near the ocean surface. These technologies are 

promising for constraining surface flux estimates in CDA, leading to improved modeling of 

air-sea interaction and improved initialization of coupled model forecasts. S2S forecasts for 

high latitudes and midlatitudes can be improved with more numerous and accurate ocean 

and sea-ice observations in data-sparse regions.

A redesign of the TAO/TRITON array is currently underway by the Tropical Pacific 

Observing System (TPOS-2020) working group3 that is largely influenced by the volume of 
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new complementary data provided by a number of new observing platforms. TPOS-2020 

currently plans a “backbone” design that will support and supplement the broader observing 

network, including satellite measurements. The TPOS-2020 design is likely to include 

measurements of the air-sea interface with a vertical and temporal resolution not possible 

from remote-sensing platforms. Complementary observations include satellite measurements 

of quantities such as sea level, SST, SSS, wind stress, and precipitation (Mason et al., 2010; 

National Academies of Sciences, Engineering„ and Medicine [NASEM], 2018, Chp. 2) as 

well as the in situ Argo profiling float program (see Legler et al., 2015 for a comprehensive 

review of operational observing systems).

The tropical Atlantic and Indian Oceans are also locations of strong air-sea interaction, 

exhibiting their own local dominant modes of interannual variability, such as the Indian 

Ocean Dipole (Saji et al., 1999; Webster et al., 1999) and the Atlantic Niño (Wang, 2005), 

both of which can modify the timing and expression of ENSO. To track the evolving state of 

these oceans the TAO mooring design has gradually been extended to the Prediction and 

Research Moored Array in the Tropical Atlantic (PIRATA) and more recently the Research 

Moored Array for African-Asian-Australian Monsoon Analysis and Prediction (RAMA) in 

the tropical Indian Ocean.

The requirements of an observing system change in the Arctic, where the Argo float network 

is limited due to seasonal ice cover and strong stratification and where satellite remote 

sensing is limited by heavy cloud cover. These environmental challenges, along with 

increasing recognition of the importance of seasonal changes in Arctic and their impact on 

weather systems, has led to rapid development of new instrument types. As regular data 

from these new instruments become available, evaluation of their impact on S2S forecasts 

will be needed.

Prediction centers have been slow to incorporate SSS data in ocean DA systems (Maes et al., 

2014), though there have been some indications of potential benefits for upper ocean 

processes that could impact S2S and decadal prediction. Hackert et al. (2011, 2014), Zhu et 

al. (2014), Tranchant et al. (2018), and Martin et al. (2019) indicated that improved salinity 

estimates have the potential to improve ENSO forecasts. Though, to date, the impacts shown 

have been somewhat minor. A number of other studies showed positive impacts due to the 

assimilation of SSS in controlled experiments, including improved upper ocean salinity 

(Vernieres et al., 2014), improved surface currents, mixed-layer depth, and barrier layer 

thickness (Chakraborty et al. (2014, 2015), and improved temporal variability of the vertical 

distribution of salinity in areas with large freshwater input (Seelanki et al., 2018). Still, the 

low temporal frequency of the data, large uncertainty estimates attributed to instantaneous 

observations, and large platform-specific biases (Bao et al., 2019), make the assimilation of 

SSS a continuing challenge. A next-generation technology that could produce SSS 

observations with the frequency, accuracy, and coverage of SST observations would be a 

high-impact capability.

3http://tpos2020.org/
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Observing system experiments conducted with real-time forecasting systems have found 

utility in assimilating sea level observations from multiple altimeters (Lea et al., 2014; Oke 

et al., 2015a,b). For example, Lea et al. (2014) showed that withholding Jason-2 data 

resulted in a 4% increase in the global RMS SSH innovations, while withholding all 

altimeter data resulted in a 16% increase of the global RMS SSH innovations. Verrier et al. 

(2017) conducted observing system simulation experiments with an eddy-permitting model 

(1/4-degree horizontal resolution) and found that forecasts of sea level and ocean currents 

are continually improved when incrementally increasing the number of satellite altimeters 

from one to two (~30% error reduction) and from two to three (~10% additional error 

reduction). They also note that when assimilating several altimeters, the analysis can resolve 

western boundary current scales closer to 100 km, versus the native model’s capability to 

resolve scales around 100–200 km.

Further evaluating observing system impacts on ocean analyses and S2S forecasts will 

contribute to an ongoing discussion in the design of new oceanic observing systems, such as 

TPOS-2020 and AtlantOS4. Additionally, new and upcoming satellite missions such as the 

Surface Water and Ocean Topography (SWOT) will provide higher-fidelity SSH 

observations than ever before. Coordination between international groups such as CLIVAR 

and GODAE OceanView is needed for significant progress to be made with international 

observing efforts (Fuiji, 2019). These international efforts, together with Global Ocean 

Observing System (GOOS) and its expert panels focusing on physics and biogeochemistry 

need to work together to build an observing system that recognizes user priorities.

PREDICTION AT DECADAL CLIMATE TIMESCALES

Interest in the viability of decadal forecasts is driven by a recognition that these timescales 

are of increasing importance to decision makers both for governmental policy and private 

industry (Meehl et al., 2009; Kirtman et al., 2013). Decadal prediction can encompass 

timescales between several years to a few tens of years, with relevant processes interwoven 

with those relevant to both S2S forecasts and long-term climate projections. In the 

extratropics, for example, distinct climate variability has been associated with annual 

changes in the storm tracks and associated meteorological conditions over the North Pacific 

and North Atlantic, such as the Pacific Decadal Oscillation (PDO) and the North Atlantic 

Oscillation (NAO) (Scaife et al., 2014). Decadal prediction is dependent on our ability to 

forecast not only internal variability of the Earth’s climate system, such as the large-scale 

climate modes (ENSO, NAO, and PDO), but also how these modes will change under the 

influence of changes in external forcing, such as arising from human activity. The World 

Climate Research Program (WCRP) has recognized near-term climate prediction as one of 

its grand challenges. Despite this recognition, the extent to which decadal climate 

predictions are able to provide reliable and useful information to users remains uncertain 

(Meehl et al., 2014).

A sufficiently well observed ocean is crucial for the development of useful decadal 

predictions (Smith et al., 2012). In order to predict the evolution of natural climate 

4https://www.atlantos-h2020.eu
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variability, coupled models must be initialized with observations informing the current state 

of the climate system.

Predictability over these timescales will rely principally on accurately forecasting the slower 

modes of the coupled climate system, which are highly dependent on long-timescale ocean 

dynamics. Thus, decadal prediction systems will rely ever more heavily on a sustained 

ocean-observing system to initialize and verify predictions, similarly to what happened for 

NWP systems. Sparseness, non-uniformity, and secular changes in the ocean observing 

system represent a challenge for the initialization and evaluation of a decadal prediction 

system. Therefore, key factors enabling improved climate prediction skill are the availability 

of consistent surface and subsurface ocean observations over sufficiently long time spans, 

improved understanding of processes involved with ocean-atmosphere coupling, and the 

ability to track the climate modes of variability that determine predictability on a given 

spatiotemporal scale.

During the last decade, satellites and autonomous in situ platforms have driven a step change 

in our ability to observe the ocean in near real-time. The use of remotely sensed and 

autonomous in situ platforms has revolutionized the ocean observing system, and the fast, 

technological advance on platforms and sensors will continue to improve the system (Figure 

2). The next decade will expand upon these advances with new sensors and platforms, 

coupled with advances in telecommunications.

Decadal prediction systems generally assimilate or relax to SST analysis products. However, 

an increasing number of systems are also including interior ocean observations, such as 

temperature and salinity profiles, and sea ice (Doblas-Reyes et al., 2011; O’Kane et al., 

2018). Decadal prediction systems, as they focus on seasonal to longer timescales, rely on 

both real-time data and delayed-mode quality assurance and quality control data (QA/QC) 

for model initialization and evaluation. Coupled decadal prediction systems often use 

atmospheric states sampled either from reanalyses or operational products to initialize the 

atmosphere. However, this practice may need to be revisited and potentially replaced with 

more sophisticated methods such as CDA. For example, comparison of these products with 

the sparsely available ocean surface meteorological flux buoys consistently show significant 

differences both globally and regionally, indicating imbalances in the surface energy and 

freshwater fluxes at the air-sea interface (Yu, 2019). Maintaining and extending surface flux 

buoys is vital to understanding the source of these inconsistencies, to improving coupled 

models, and to evaluating decadal prediction systems.

The heterogeneous nature of the in situ ocean-observing system requires comprehensive 

metadata, sophisticated data integration, and organized interpretation activity in order to 

realize the maximum benefit of the observations. Effective data management requires a 

strong collaborative effort across activities including observation collection, metadata and 

data assembly using community accepted standards, QA/QC, data publication that enables 

local and interoperable access, and secure archiving that guarantees long-term preservation 

of collected data.
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Statistics of the innovations generated within the DA procedure can be evaluated to identify 

broad biases in the differences between model and observations. For example, one can 

identify regions where there are large innovations due to the assimilation of daily, satellite 

SSH and SST anomalies.

Significant impacts are often found in the dynamically active regions such as the high-

latitude oceans, boundary currents, and along the Equator. Further, with appropriate DA 

methods, regions of large model biases can be accurately estimated and reduced via direct 

assimilation of observations (Evensen, 2003). On longer timescales, the sparser in situ 
observing network can provide similar guidance for correcting long-timescale model biases.

There remain many unanswered questions on the fundamental nature and drivers of ocean 

variability. Decadal prediction depends on the presence of “oscillations” that have the 

potential to remain coherent on multi-year to multi-decadal time scales. To the extent that 

such slowly evolving dynamical regimes exist (e.g., along which climate anomalies 

propagate), it is important that the DA system is capable of maintaining these lower 

frequency signals. It is also critical to understand how these anomalous ocean signals are 

influenced by the ocean-atmosphere boundary. Improved dynamical understanding of the 

ocean, sea ice, and atmosphere, and their coupled interfaces and teleconnections, will lead to 

more reliable and skillful multi-year to decadal climate forecasts.

There is a need for full-depth observations that provide measurements able to resolve the 

dominant temporal and spatial scales of variability of the ocean. We encourage continuing to 

leverage the sustained ocean-observing infrastructure for short-term intensive process study 

campaigns that target key knowledge gaps such as air-sea-land and ice coupling. When such 

process studies are conducted, greater interaction with the DA community before, during, 

and after the campaigns could help to identify observations that may be good candidates for 

transitioning into the sustained observing system. To this end, we encourage stronger 

collaboration between the communities developing near-term forecasting and ocean 

observing platforms to aid model development and observational design.

CONCLUSION

The ocean-observing system plays an important role in developing historical reconstructions 

of the ocean and initializing forecasts of the coupled Earth system at all timescales. The 

ideal observational sampling strategy will continue to evolve as we improve our 

understanding of the spatial and temporal scales of ocean variability and as technological 

observing capabilities improve. An ongoing challenge for the reanalysis and prediction 

communities will be to maintain close collaboration with the ocean-observing community 

that is developing the next-generation ocean-observing systems. This collaboration should 

occur at all stages, including the design, implementation, and decision making that 

determines sustained observations. The ocean DA community should provide programmatic 

guidance to the ocean-observing community regarding what types of observations would be 

most useful when established in a sustained observing network to best support ocean 

monitoring and prediction at various timescales. This problem requires the solution of a 

complicated optimization problem that is defined by a stated goal (e.g., to maximize the skill 
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of a forecast), while taking into account the limitations of the forecast model, of each 

observing platform, and of the DA method itself. So far, this is not a mainstream activity and 

further coordination is needed in the coming decade to make observing system design a key 

application of ocean DA and CDA.

We anticipate a continuing race between the physical scales resolved by modeling and 

observing systems. DA systems must be able to constrain increasingly high-resolution 

numerical models at physical scales supported by the observation network. This poses dual 

challenges to make better use of a sparse observing system that will become increasingly 

coarse, in a relative sense, as model resolutions increase, as well as the need to incorporate 

as much information as possible from high-resolution satellite observing systems. With 

upcoming satellite missions, the satellite-based ocean-observing system may at times evolve 

to support much higher resolutions of observed data products than a state-of-the-art 

operational forecast model can support. While a precise DA strategy should be developed for 

such scenarios, we also encourage coordination to take place between the modeling and 

prediction centers and the teams developing plans for future satellite observing missions in 

order to ensure prioritization of those missions that have maximum impact on prediction 

skill.

To support CDA developments for operational applications, we recommend that a high 

priority be placed on ensuring consistency between atmosphere and ocean data governance 

bodies (e.g., WMO and Copernicus Climate Change Service and Copernicus Marine 

Environment Monitoring Service). At present, many ocean observations risk missing the cut-

off times associated with the timelines of operational NWP. Improved infrastructure is 

needed to support research and operations, including real-time transmission of observed data 

and real-time feedback from users regarding the quality control of those data relative to 

other observing sources. For operational coupled Earth system approaches, used for 

reanalyses and prediction, it is crucial to enhance the consistency between the atmospheric 

and the ocean-observing systems, not only in terms of timeliness and infrastructure but also 

in terms of funding support and sustainability. The European Environment Agency State of 

Play Report (The European Environment Agency [EEA], 2017) pointed out that the ocean-

observing system lacks prospects for long term funding. About 70% of data in the GOOS is 

funded by time-limited research projects (in contrast to 25% for atmospheric observations). 

In situ ocean observations are based on infrastructures mainly supported by national 

agencies, and in recent years the number of observation sites and platforms have gone 

through periods of decline. They also emphasized that more coordination is needed between 

funding agencies, operators, and users of ocean observations internationally. In addition, the 

EEA State of Play report emphasized the lack of biogeochemical and deep (2000 m and 

deeper) ocean observations.

Finally, the combination of increases in computing power and availability of observations 

has enabled the development of ensemble coupled DA systems. Ensemble-based approaches 

have the ability to identify and track the largest growing disturbances within the system. 

These growing disturbances represent regions of high variance where potential predictability 

of the system resides. The identification of these growing disturbances provides information 

about regions of the ocean where observations are likely to have the largest impact on the 
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evolving coupled system and likely lead to useful predictions at all scales. Emerging CDA 

methods, enabled by coupled Earth system modeling, provide a great opportunity for 

increased collaboration across communities and rapid advances in scientific understanding 

over the next decade.
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FIGURE 1 |. 
Lead time in months at which NINO3.4 SST anomaly correlation drops below 0.9 over the 

period 1987–2002. Results are given for five generations of seasonal forecasting systems at 

ECMWF (S1–S5). A version of SEAS5 without ocean data assimilation (SEAS5-NoOobs) 

is given for reference from Stockdale et al. (2018).

Penny et al. Page 33

Front Mar Sci. Author manuscript; available in PMC 2020 July 01.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



FIGURE 2 |. 
Global availability of in situ temperature profiles by vertical depth from 1978 to 2013.
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