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Abstract
Immunotherapies targeting cancer neoantigens are safe, effective, and precise. Neoantigens can be identified mainly by genomic
techniques such as next-generation sequencing and high-throughput single-cell sequencing; proteomic techniques such as mass
spectrometry; and bioinformatics tools based on high-throughput sequencing data, mass spectrometry data, and biological
databases. Neoantigen-related therapies are widely used in clinical practice and include neoantigen vaccines, neoantigen-specific
CD8+ and CD4+ T cells, and neoantigen-pulsed dendritic cells. In addition, neoantigens can be used as biomarkers to assess
immunotherapy response, resistance, and prognosis. Therapies based on neoantigens are an important and promising branch of
cancer immunotherapy. Unremitting efforts are needed to unravel the comprehensive role of neoantigens in anti-tumor immunity
and to extend their clinical application. This review aimed to summarize the progress in neoantigen research and to discuss its
opportunities and challenges in precision cancer immunotherapy.
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Introduction
Antitumor treatment has entered a new era since the
successful application of immunotherapies, of which a
growing number have emerged. Immune checkpoint
inhibitors (ICIs), adoptive transfer of T/natural killer
(NK) cells, tumor-associated antigen (TAA) vaccines,
oncolytic viruses, and immunomodulators have been
proven to be effective in clinical practice.[1-4] However,
even ICIs, the most popular immunotherapeutic agents,
are only permitted to treat a few specific types of cancer.
Results from a large number of clinical trials show that the
objective response rates (ORRs) of most cancer immu-
notherapies are far from satisfying, let alone their
association with frequent immune-related adverse events
(irAEs).[5,6] Therefore, cancer immunotherapy must be
more precise to achieve higher ORRs and fewer irAEs.
Facing this challenge, pioneers have made considerable
efforts to discover appropriate targets. Among the targets
discovered, neoantigens are ideal for precision cancer
immunotherapy.[7]
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Neoantigens are abnormal peptides specifically expressed
by malignant cells that are present on their surfaces. Most
neoantigens are products of accumulating mutations in
somatic cells. In virus-associated cancers, such as cervical
cancer, neoantigens may be the products of the open
reading frames of viral genomes.[8] In contrast to TAAs,
neoantigens can activate CD4+ and CD8+ T cells exempt
from central tolerance because they are totally non-self for
the immune system.[9] Identification of neoantigens by
researchers can be traced back to the 1980s.[10] Initially,
complementary DNA library screening was used to
identify neoantigens.[11] With the application of next-
generation sequencing (NGS) technology and bioinfor-
matic algorithms, the prediction of neoantigens became
cheaper, easier, and faster.[12] However, prediction results
are sometimes unsatisfactory because of the false-positive
rate. By combining NGS with mass spectrometry and
bioinformatics tools, the identification of neoantigens
becomes more accurate. Thus, precision cancer immuno-
therapy targeting neoantigens has become more feasible.
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Immunotherapies targeting neoantigens are safe, precise,
and have demonstrated their potential in numerous
clinical trials. Personalized neoantigen vaccines have
proven to be feasible, safe, and effective.[9] Adoptive cell
therapy targeting neoantigens has also achieved encour-
aging results.[13] Neoantigens are also important bio-
markers for immunotherapy. Taking all these points into
consideration, we think it is quite significant to make a
comprehensive review of neoantigens and to discuss their
future roles in immunotherapy.
Immune Responses Induced by Neoantigens

Immunogenicity of neoantigens

In 1988, researchers discovered that neoantigens could
promote the proliferation of cytotoxic T cells in a mouse
tumor model.[11] Eight years later, another group of
researchersdiscovered thatneoantigenscouldberecognized
by tumor-infiltrating lymphocytes (TILs) in a patient with
melanoma.[14]Anincreasingnumberofstudieshaveverified
the immunogenicity of neoantigens. Briefly, immunogenic-
ity is the ability of neoantigens to activate adaptive immune
responses. Neoantigens are treated as non-self by the
immune system because they are abnormal peptides
expressed by mutated genes in cancer cells. Without the
limitation of central tolerance, neoantigens can induce
immune responses, as has been proven [Table 1].

However, because of the genomic instability of cancer
cells, the heterogeneity of neoantigens is so significant that
their immunogenicity varies. The structure of the neo-
antigen is not the only factor that affects its immunoge-
nicity. The way it is processed and presented is also an
important factor. After release from cancer cells, neo-
antigens are captured by antigen-presenting cells (APCs),
such as dendritic cells (DCs) and macrophages. Neo-
antigens are degraded into small peptides by the
proteasome and then loaded intomajor histocompatibility
complex (MHC) molecules and presented on the surface
of APCs.[15] Then, neoantigen-loaded APCs migrate into
tumor-draining lymph nodes. When the relative location
of APCs and T cells is convenient for interaction, specific T
cells recognize neoantigen-MHC complexes by T cell
receptors (TCRs). Hence, the spatial location of APCs is
another critical factor.
T cell responses

The successful presentation of highly immunogenic neo-
antigens does not necessarily induce an effective T cell
response. Multiple negative co-stimulatory molecules and
mechanisms impair T cell activation. For example,
immune checkpoints are negative mechanisms that inhibit
T cell activity. Many clinical trials focusing on ICIs have
proved that immune checkpoint blockade (ICB) is an
effective strategy to restore the activity of T cells. ICB has
been shown to enhance the durable neoantigen-specific T-
cell responses.[16] Perumal et al[17] found that the
activation and expansion of neoantigen-specific T-cells
are improved after treatment with ICIs. Their work
showed that therapy based on neoantigens can induce
stronger T cell responses in combination with ICB.
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In addition, there are many positive co-stimulators of T
cell activity. Both interleukin (IL)-2 and IL-15 stimulate
the activation and proliferation of CD8+ T cells and NK
cells. Although numerous clinical studies have proven that
neoantigen vaccines or adoptive neoantigen-specific T
cells can achieve satisfactory anti-tumor immunity alone
[Figure 1], combination with positive co-stimulators can
improve anti-tumor immunity.[18,19] In addition, the IL-2/
CD25 fusion protein has been shown to amplify neo-
antigen-specific CD4+ and CD8+ T cell responses.[20] In
contrast to IL-2 alone, the IL-2/CD25 fusion protein is
more selective, effective, and less toxic. The implication of
this study is that the traditional positive co-stimulators,
which may have severe side effects, can be engineered into
safer ones. This will accelerate their application in
immunotherapy, especially therapies based on neoanti-
gens.
Memory T cells

Neoantigens can induce effector T cells and memory T
cells. After exposure to neoantigens, specific T cells mature
from naïve cells to effector cells and then eventually to
exhausted cells or memory cells. This is the foundation of
long-term remission in patients with cancer after immu-
notherapy based on neoantigens. The number of memory
cells among TILs correlates with the outcomes of patients
receiving immunotherapy.[21] Although CD8+ T cells are
considered the most common subtype of memory T
cells,[22,23] Hu et al[24] showed that neoantigen vaccines
can induce CD4+ memory T cells that persist for years in
patients with melanoma. Further analysis of long-term
TCR sequencing data and flow cytometry data showed
that the clonal memory T cells were CD4+ abT cells. A
recent study showed that memory T cells can recognize
specific antigens as well as shared ones.[25] This finding
suggests that personalized neoantigen vaccines can be
applied to multiple patients with the same somatic
mutation.
Neoantigen Identification

During the past several years, a number of analytical
pipelines for neoantigen discovery have been proposed to
predict peptides that have the potential to induce tumor
immune responses related to T-cell activation.[26-28]

Binding affinity between the peptides and MHC is
successfully used to select neoantigens against colorectal
tumor[29], melanoma[9] and glioblastoma.[30,31] Fitness
model integrating binding affinity between MHC and
peptide with sequence similarity of peptide and virus
sequence is used to identify neoantigens in melanoma,
lung and pancreatic cancer.[32,33] Differential agretopicity
indexmodel evaluating the binding affinity difference with
MHC between wild-type peptide and mutant peptide is
applied upon melanoma and lung cancer.[34] High quality
neoantigen model is successfully developed to determine
neoantigens for primary isocitrate dehydrogenase wild-
type glioblastoma.[35] NeoScreen, a recently developed in
vitro TIL expansion and screening methodology, is
reported to enable the selective expansion of neoanti-
gen-targeting TILs against melanoma, colon, lung and
ovarian cancers.[36] NeoScreen first applies computational
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methods to identify neoantigen candidates, which are then
pulsed into the engineered B cells for antigen presentation.
The B cells are cultured with tumor cells and TILs, which
are isolated for identifying the neoantigens and TCRs.[36]

DLpTCR, a multimodal ensemble deep learning frame-
work, is able to predict the likelihood of interaction
between single/paired chains of TCR and peptide
presented by MHC.[37] DeepImmuno is a deep learning
based method able to predict immunogenic peptides for T-
cell immunity.[38] However, no consensus approaches
have been established by mathematical and statistical
models, and there are great variations among neoantigen
identification methods. The general workflows are quite
similar and mainly include pre-processing of raw data,
read alignment, somatic mutation calling, human leuko-
cyte antigen (HLA) allele typing, peptide inference,
peptide-MHC binding prediction, TCR-peptide-MHC
complexes (pMHC) interaction estimation, and in vitro
immune screening. The general approaches for neoantigen
identification and applications have been extensively
reviewed elsewhere.[39-41] In this review, we summarize
the state-of-the-art computational tools for neoantigen
analysis and provide an extensive discussion of critical
concepts and practical guidance for each analysis step
[Figure 2].
Somatic variant calling

The pre-requisite for inferring neoantigens is the selection
of appropriate tools for the identification of somatic
variants. A large variety of mutation types can produce
neoantigens in cancer, including single nucleotide variants
(SNVs), short insertions and deletions (INDELs), gene
fusions, exon-exon junctions, intron retentions, and
alternative splicing events. Numerous somatic variant
callers are applied to DNA sequencing data (whole
genome sequencing [WGS], whole exome sequencing
[WES], or targeted amplicon data) of tumor and matched
non-tumor samples to identify somatic mutations includ-
ing SNVs and INDELs. However, the sensitivity and false
positive rates of thesemethods are highly variable, and this
leads to substantial differences among called variants.[42]

Popular SNV calling methods include SAMtools, Var-
Scan2, MuTect, VarDict, SomaticSniper, and Strelka.[43]

MuTect2, Strelka, GATK, SAMtools, VarScan, and
VarDict are also able to call INDELs while Pindel is
specifically designed for large INDEL calling.[44] For high-
allelic-fraction somatic SNV calling, the impact of caller
selection is generally weak. MuTect and Strelka have high
sensitivity for detecting low-allelic-fraction SNVs. Var-
Scan2 and SomaticSniper provide less sensitivity for
calling somatic SNVs of the low-allelic-fraction.[45]

VarScan2 sensitivity can be improved by tuning the
minimum allele fraction threshold from the default value
of 0.2 to a lower value but at the cost of significantly
compromised specificity.[45] SAMtools with default set-
tings reports any possible changes in nucleotides with low
specificity and with a high false-positive rate. VarDict calls
a few more sites than expected in the benchmark data,
which suggests its low sensitivity in SNV calling. Multiple
callers and repeats significantly decreased false-positive
calls for SNVs and INDELs. A manual review of somatic
mutations from callers in the Integrative Genomics Viewer
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can further reduce false positives. Gene fusions can be
detected from RNA sequencing (RNA-seq) data using
various tools including FusionHunter, FusionMap,MapS-
plice, TopHat-Fusion, BreakFusion, SOAPfuse, Eric-
Script, and FusionCatcher.[46] The performance of gene
fusion detection tools largely depends on the quality, read
length, and number of reads of RNA-seq data.[47] Overall,
neoantigen identification requires a sensitive, accurate,
and comprehensive somatic variant calling pipeline that
Figure 1: T cell response induced by neoantigens. DC: Dendritic cell; NeoAg: Neoantigen;
T: T cell.

Figure 2: The workflow of neoantigen identification. The whole workflow can be divided into fiv
following steps are variants calling, HLA typing and interactions prediction (interactions amo
interactions in vitro. ELISA: Enzyme-linked immunosorbent assay; GLIPH: Grouping of lymph
insertions and deletions; RNA-seq: RNA sequencing; SNPs: Single nucleotide polymorphisms;
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can robustly detect all variant classes that are relevant to a
tumor type.
HLA allele typing

T cells recognize neoantigens presented by APCs onMHC
I or II molecules, which are encoded by the HLA gene
complex located in highly polymorphic regions of
chromosome 6p21.3 and have over 12,000 alleles.[48]

As HLA genes are unique to each individual, it is essential
to have accurate HLA haplotyping for neoantigen
prediction. Sequence-specific polymerase chain reaction
(PCR) amplification, which is laborious and expensive, is
the gold standard for clinical HLA typing. Computational
HLA typing is becoming a popular approach and uses
patients’ WGS, WES, or RNA-seq data from a peripheral
blood or skin sample. Multiple tools including seq2HLA,
PHLAT, HLAMatchmaker, HLAreporter, HLAforest,
HLAminer, and xHLA were developed to precisely type
class I HLA.[41]

However, class II HLA typing is still challenging and
unreliable, with a few benchmarking studies reporting
that PHLAT, HLA-VBSeq, seq2HLA, xHLA, and HLA-
HD show comparable accuracies with WES and RNA-seq
data.[49] Due to the varying capturing efficiency of DNA
fromHLA genes, it is critical to carefully examine the read
coverage from WES/RNA-seq for HLA genes or to
construct ensemble methods to produce optimal predic-
tion.[50,51]
e steps. The first step is sequencing of the cancer cells by WGS, WES or RNA-seq, etc. The
ng HLA-neoantigen-TCR) based on the sequencing data. The last step is screening the
ocyte interactions by paratope hotspots; HLA: Human leukocyte antigen; INDELs: Short
TCR: T cell receptor; WES: Whole exome sequencing; WGS: Whole genome sequencing.
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Neoantigen HLA-class I allele interactions

About 8–11 N- and C-terminal peptide residues are
involved in binding with MHC class I molecules, which
then present the peptides to cytotoxic CD8+ T lympho-
cytes to elicit T cell immunity.[52] It is necessary to predict
the binding affinity of mutant peptides to HLA-class I
alleles to prioritize mutant peptides. A few computational
methods have been developed to evaluate the binding
affinity between HLA-class I alleles and mutant peptides
and include scoring function-based methods, machine
learning-based tools, and consensus methods. The
performances of HLA-class I-peptide binding prediction
methods have reached a high level (area under the receiver
operating characteristic curves [auROC] > 0.95). Scoring
function-based methods prioritize mutant peptides by
calculating sequence features including sequence similari-
ty, amino acid frequencies, position-specific scoring
matrices (PSSMs), and BLOSUM matrices. SYFPEITHI,
RANKPEP, PickPocket1.1, SMMPMBEC, PSSMHCpan
1.0, and MixMHCpred 2.0.1 are scoring function-based
approaches.[53] Machine learning tools such as NetMHC
4.0,[54] NetMHCstabpan 1.0,[55] NetMHCpan 4.0,[56]

ConvMHC,[57] HLA-CNN[58] and MHCflurry 1.2.0[59]

assign a mutant peptide as a binder or non-binder by
constructing a training model using extracted representa-
tive features. Consensus-based tools such as NetMHC-
cons 1.1[60] integrate several peptide-MHC binding
prediction methods in a weighted manner. The most
widely used is NetMHC-pan 4.0, which uses artificial
neural networks trained on a combination of more than
85,0000 quantitative binding affinities and mass-spec-
trometry-eluted ligand peptides.
Neoantigen HLA-class II allele interactions

Neoantigens are presented by MHC class II molecules to
CD4+ T cells or “helper T cells”, whichmay then stimulate
humoral or cell-mediated immune response pathways.[61]

Precise prediction of peptide-MHC interactions is impor-
tant for identifying neoantigens. Unlike MHC class I
molecules, class II molecules, which include an a-chain
and a b-chain, have higher variability with an open
binding pocket on both ends that allows a larger range of
peptides to bind. The peptides that bind to MHC class II
molecules have a length range of 13 to 25 amino acids.
Computational models for MHC class II peptide binding
prediction are usually built on matrix-based approaches
and ensembles of artificial networks. Popular methods
include ARB, MHCPRED, PROPRED, RANKPEP,
SMM-align, SVMHC, SVRMHC, SYFPEITHI, Multi-
RTA, and NetMHCIIpan.[51] A very recent transformer
neural network model, BERTMHC, was reported to
outperform other models[62,63] Consensus methods that
combine multiple models may help improve performance,
but rigorous ongoing efforts are needed to further improve
the effectiveness of existing models.
TCR-pMHC interaction

Not all peptides presented by MHC molecules are
immunogenic. TCRs must contact both the peptide and
MHC molecules to elicit an immune response. There are
1292
remarkable similarities in the topology of TCR binding to
pMHC irrespective of MHC class I or class II restriction.
TCR-pMHC interactions can help further narrow down
true neoantigens out of MHC-presented peptides. Very
recently, a number of machine learning computational
methods constructed based on complementarity deter-
mining region 3 (CDR3) sequences or additional cellular
information such as SETE,[64] ERGO,[65] NetTCR-2.0,[66]

and TCRMatch[67] have been reported to predict TCR-
pMHC interactions. However, the prediction models of
TCR-pMHC interactions have poor performance owing
to the limited availability of training data. There is an
urgent need for the development of cost-effective and
accurate computational methods to assess TCR-pMHC
binding.
In vitro immune screening

In vitro screening of T cell responses triggered by
candidate neoantigens may provide direct evidence that
a given neoantigen is immunogenic. T cell responses
elicited by neoantigens may cause clonal expansion of T
cells, upregulation of activation markers on the cell
surface, effector cell differentiation, cytotoxicity induc-
tion, or cytokine secretion. A popular approach is to assess
the activation of T cells in peripheral blood mononuclear
cells by neoantigens in vitro (generally 2–4 days of
incubation). An alternative method for in vitro T cell
stimulation is to use Escherichia coli that expresses
predicted neoantigens in autologous APCs, which are then
incubated with T cells derived from the patient’s PBMCs.
T cells are then harvested and processed for various assays.
Production of cytokines such as tumor necrosis factor a
and interferon g can be measured through enzyme-linked
immunospot assay[68] or intra-cellular cytokine staining.
Additionally, the clonality and diversity of the TCR
repertoire suggest whether neoantigen-triggered T cell
responses have occurred,[69] and TCR clonotyping
(identification and characterization of CDR3 sequences
of T cell clones) has been used to identify clonal T cell
responses to neoantigens. CDR3 sequences can be
identified using output data from focused assays such as
Adaptive, ClonTech, or CapTCR bulk tissue RNA-seq[70]

and single-cell RNA-seq.[71] It is essential to characterize
the diversity of the repertoire, determine the pairing of
TCR a (TRA) and TCR b (TRB) clonotypes, and pair T
cell clones with their target neoantigens. MiXCR (http://
mixcr.milaboratory.com/https://github.com/milabora
tory/mixcr/) was developed to extract TCR sequences
from raw data of both bulk and single-cell sequencing and
then group them into identical clonotypes.[72] MIGEC[73]

was designed for methods using unique molecular
identifiers, and TraCeR,[71] which is specific for single-
cell methods, is able to identify paired a–b sequences
derived from the same clonally expanded cells. Oligoclo-
nal T cell populations with consistent CDR3 motif
sequences are reported to be able to recognize the same
neoantigen,[74] therefore, it is possible that there is one-to-
one mapping between T cell clones and neoantigens.
Grouping of lymphocyte interactions by paratope hot-
spots can identify CDR3motifs across T cells in bulk TCR
sequencing.[75] Collectively, in vitro immune screening can
further filter out immunogenic neoantigens, which have

http://mixcr.milaboratory.com/
http://mixcr.milaboratory.com/
https://github.com/milaboratory/mixcr/
https://github.com/milaboratory/mixcr/
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the potential to improve the survival of patients with
cancer.
Clinical Applications of Neoantigens

Biomarkers for immunotherapy

To optimize the efficiency of immunotherapy, researchers
have investigated numerous prognostic biomarkers such
as tumor mutation burden, microsatellite instability,
mismatch repair deficiency, TILs, and programmed death
ligand 1 (PD-L1) expression. Recently, more attention has
been paid to a new biomarker, the neoantigen. Lauss
et al[76] showed that a higher neoantigen load is associated
with better progression-free survival and overall survival
(OS) of patients with melanoma treated with adoptive T-
cell therapy. Another study revealed that specific neo-
antigens contribute to the long-term survival of patients
with pancreatic cancer.[33] Furthermore, the investigators
observed the selective loss of neoantigens with metastatic
progression, which implied that neoantigens could be used
as biomarkers for disease progression and patient survival.
Similarly, Ren et al[77] reported that neoantigens can be
used to predict OS independent of TILs and other
biomarkers in breast cancer. They showed that higher
HLA-I- or HLA-II-restricted neoantigen load correlated
with better OS. For patients with adenoid cystic carcino-
ma (ACC), researchers found that a low neoantigen load
was correlated with a poor response to anti-PD1 therapy
and a high cancer recurrence rate. The investigators
suggested that successful immunotherapy for ACC
requires a “hot” immune microenvironment, namely,
more TILs and neoantigens. Therefore, neoantigens can be
utilized as positive prognostic biomarkers similar to TILs.
However, Quintana et al[78] showed that tumors with
more TILs have lower neoantigen loads. Contrary to
previous studies, their results hint at a negative correlation
between TILs and neoantigens. Their hypothesis is that
failure of lymphocytes to migrate into the tumor leads to
the survival of tumor cells and neoantigens. Thus, the
negative correlation between TILs and neoantigens
suggests that neoantigens can be used as negative
prognostic biomarkers, contrary to TILs. The reason
why they reach a conclusion different from others may be
that their data are not comprehensive because they
exclude patients with TILs percentage between 5% and
50%, who may be the major group who need to be
considered. Furthermore, Balachandran et al[33] revealed
that it is the quality rather than the quantity of
neoantigens that correlate significantly with prognosis.
Similarly, Rosenthal et al[79] proved that high clonal
neoantigen burden was associated with better prognosis
while the sub-clonal or total neoantigen burdens were not.
Therefore, we can evaluate the prognosis before and
during immunotherapy by tracking high-quality neo-
antigens. Our previous work showed that high-quality
neoantigens, tracked by circulating tumor DNA (ctDNA)
sequencing, can be used to predict the prognosis of
patients with non-small cell lung cancer (NSCLC).[80]

Specifically speaking, because of the high heterogeneity of
somatic mutations among patients, it is infeasible to track
neoantigens by ctDNA sequencing using common gene
panels, which would be far too complicated and costly.
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Thus, we proposed the method of using the individually
customized panels to track neoantigen evolution during
ICB treatment [Figure 3]. Our method is proved to be
more sensitive, economical and feasible in clinical
practice, making sequencing-based personalized manage-
ment in immunotherapy possible.
Therapies based on neoantigens

Therapies based on neoantigens can be divided into two
types: neoantigen vaccines and neoantigen-specific T-cells.
Neoantigen vaccines include four main categories: peptide
vaccines, mRNA vaccines, DNA vaccines, and DC
vaccines. Each category has its own technical route and
clinical characteristics [Figure 4].

Peptide vaccines based on neoantigens are widely used in
clinical practice. Ott et al[9] synthesized 20 peptides that
target personal tumor neoantigens. Vaccinated with these
peptides, 80% (4/6) of melanoma patients survived
without recurrence for 25 months. The other 2 patients
who experienced recurrence achieved complete recession
after subsequent anti-PD-1 therapy. The investigators
discovered that peptide vaccines can activate pre-existing
neoantigen-specific T cells and induce a wide range of
new specific T cells. In a glioblastoma trial, researchers
have shown that neoantigens can ignite specific circulat-
ing CD4+ and CD8+ T cell responses and increase TILs.
This trial also proved that circulating neoantigen-specific
T-cells can be recruited to intra-cranial tumors.[30]

Mueller et al[81] revealed that a H3.3K27M-specific
vaccine could induce neoantigen-specific T cell responses
in 39% (7/29) of participants. Patients with a positive
response had a significantly longer OS than the others.
Recently, another study showed that it is feasible and safe
to combine peptide vaccines with anti-PD-1 therapy in
melanoma, NSCLC, and bladder cancer. The 1-year OS
rates were 96%, 83%, and 67% for patients with
melanoma, NSCLC, and bladder cancer, respectively,
which were better than the historical data from anti-PD-1
monotherapy studies.[82]

Kreiter et al[83] showed that neoantigen mRNA vaccines
can induce cytotoxic T lymphocyte responses and reshape
the tumor microenvironment associated with tumor
control in mice. Furthermore, Cafri et al[84] designed an
mRNA vaccine encoding up to 20 neoantigens for patients
with gastrointestinal cancer. The mRNA vaccine has been
shown to safely elicit neoantigen-specific T cell responses.
Unfortunately, the investigators observed no objective
responses among the four patients in the trial. As
mentioned by other researchers, instability may be a
critical obstacle for mRNA vaccines.

DNA has also been used to produce neoantigen vaccines.
Researchers have shown that synthetic DNA vaccines –
recombinant plasmids that can produce neoantigens – can
generate robust T cell responses in mice.[85-87] Another
study indicated that combiningDNAvaccinationwith anti-
PD-1 therapy can achieve a synergistic effect in controlling
tumor growth.[88] Their data suggest that a combination
strategy of immunotherapies may bring about unexpected
benefits. In a pre-clinical model, Li et al[89] revealed that

http://www.cmj.org


Figure 3: Dynamic neoantigen tracking is used to evaluate the prognosis of cancer patients. This evaluation strategy can be more sensitive and reliable than imaging examination.
Individualized gene panels are the key point to make this strategy sensitive and economical. ctDNA: Circulating tumor DNA.
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optimized neoantigen DNA vaccines are capable of
inducing specificT cell responses inpatientswith pancreatic
cancer. More clinical trials are needed to verify the
effectiveness and safety of neoantigen DNA vaccines.

Neoantigen-pulsed DCs have been shown to promote the
presentation of HLA class I-restricted neoantigens and
amplify neoantigen-specific T-cells.[69] Furthermore, Dill-
man et al[90] utilized DCs that were pulsed by autologous
Figure 4: Therapies based on neoantigens. CAR: Chimeric antigen receptor; DC: Dendritic c

1294
tumor antigens to vaccinate 54 patients with metastatic
melanoma. These patients achieved a longer median
survival and lower risk of death. The investigators chose
to use whole tumor antigens instead of well-selected
neoantigens to pulse the DCs but still obtained satisfying
results. However, as is widely accepted, most tumor
antigens are not immunogenic. Therefore, we suppose that
the real effectiveantigensmixed in thewhole tumorantigens
may be neoantigens. In a phase Ib study, researchers
ell.

http://www.cmj.org
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produced a DC vaccine pulsed with a personalized peptide.
This neoantigen-pulsed DC vaccine has been shown to
amplify the clinical effect of ICB therapy in patients with
pancreatic adenocarcinoma, especially in those lacking
TILs.[91] Neoantigen-pulsed DC vaccines can directly
present neoantigens to T cells. However, their manufacture
is time- and resource-consuming.

Adoptive cell therapy (ACT) is also a mainstream immuno-
therapy that shows surprising therapeutic effects for B cell
malignancies.Moreover, it isapromisingstrategyto integrate
ACTwith neoantigens. To date, ACT can be roughly divided
into three approaches: TILs, chimeric antigen receptorT cells
(CAR-T), andTCRengineeredT cells. TILs are isolated from
the patient’s tumor and expanded ex vivo. By selecting
neoantigen-specific TILs to expand, large amounts of T cells
with high competence can be harvested, and this contributes
to better anti-tumor immunity.[92] CAR-T therapy is famous
for its successful application in acute lymphoblastic leukemia
and diffuse large B-cell lymphoma. Bajgain et al[93] showed
that CAR-T cells targeting amucin 1 neoantigen can expand
selectively at the tumor site and achieve durable anti-tumor
immunity. Neoantigen-specific TCR gene-engineered T-cells
have been shown to be effective in multiple pre-clinical
studies.[94-96] Many clinical trials have also shown that these
TCR gene-engineered T cells mediate clinically meaningful
anti-tumor immunity.[97,98]

Clinical trials of various vaccines targeting at cancer
neoantigens are emerging [Table 1]. Though the outcomes
are far from satisfying at present, such attemps are highly
encouraging. Breakthrough in this aspect will certainly
benefit a large number of patients with cancer.
Role in drug resistance

Drug resistance is an inevitable conundrum in anti-tumor
therapy. One of the main causes is the emergence of
resistant mutations in tumor cells. Such resistant muta-
tions may reactivate targeted pathways, activate collateral
pathways, activate drug efflux pumps, or inhibit the
apoptosis of cancer cells.[99] However, every coin has two
sides. These mutations are perfect candidates for neo-
antigen screening. By investigating drug-resistant tumors,
neoantigens can be discovered more efficiently and
economically.[100] Cancer cells expressing such neoanti-
gens are susceptible to the immunotherapies mentioned
previously. Therefore, immunotherapies targeting neo-
antigens can be used to overcome drug resistance. Drug-
resistant cancer cells continue to evolve during the course
of treatment, similar to neoantigens. Thus, by depicting
the evolving neoantigen landscape, we were able to predict
the acquired resistance of cancer cells.
Conclusions and Perspectives

Significant progress has been made by researchers world-
wide in the past few decades. Our understanding of the
immune response induced by neoantigens is becoming
deeper and deeper. Workflows for identifying neoantigens
are also emerging and rapidly improving. Therapies
targeting neoantigens are widely practiced in clinical trials
and show satisfactory safety, specificity, and tolerability.
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However, there is still a long way to go before neoantigen
therapies become the first-line choice for doctors. Several
criticaldeficiencieshamper its extensiveclinicalapplication.
Firstly, workflows of neoantigen identification are often
complicated. High throughput DNA sequencing and mass
spectrometry are usually needed. In-silico algorithm is also
indispensible. Invitroand invivoproceduresare complexas
well. Secondly, the course of neoantigen-based therapy is
time-consuming.Most patients do not have thatmuch time
waiting for its preparation. Thirdly, the expenditure of this
therapy is strickingly high. Except for participating in
clinical trials, few patients can afford it.

Admittedly, workflows of neoantigen identification and
designs of neoantigen-based therapies are far from satisfy-
ing. However, finished clinical trials brought us the signs of
the dawn. By simplifying these processes, reducing the cost
and elevating accuracy and efficacy, more patients will
benefit fromprecision therapies basedonneoantigens in the
near future. In addition, combining neoantigen-based
precision therapies with other immunotherapies may be
an effective strategy to gain unexpected benefit. Therapies
activating the antigen presenting cells such as DCs and
macrophagesareworthtrying.Besides,keepingthe immune
response induced by neoantigen-based therapy lasting
longer is also calling for our efforts.
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