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1  | INTRODUC TION

Deductive reasoning is fundamental to science, human culture, 
and for deriving solutions to problems in daily life (Fangmeier 

et al., 2006). The process of deductive reasoning starts with prem-
ises and attempts to reach a logically secure conclusion or a series 
of conclusions from prior beliefs, observations, and/or suppositions 
that are not explicit in the initial premises. As a higher cognitive 
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Abstract
Objective: Deductive reasoning is a complex and poorly understood concept in the 
field of psychology. Many cognitive neuroscience studies have been published on 
deductive reasoning but have yielded inconsistent findings.
Methods: In this study, we analyzed collected data from 38 articles using a recently 
proposed activation likelihood estimation (ALE) approach and used conjunction anal-
ysis to better determine the intersection of the results of meta-analyses.
Results: First, the left hemispheres in the inferior parietal lobule (Brodmann area 40 
[BA40]), middle frontal gyrus (BA6), medial frontal gyrus (BA8), inferior frontal gyrus 
(BA45/46), caudate, and insula (BA47) were revealed to be significant brain regions 
via simple-effect analysis (deductive reasoning versus baseline). Furthermore, IFG, 
insula, and cingulate (the key neural hubs of the cingulo-opercular network) were 
highlighted in overlapped functional connectivity maps.
Conclusion: The findings of the current study are consistent with the view that de-
ductive reasoning requires a succession of stages, which included decoding of linguis-
tic information, conversion and correction of rules, and transformation of inferential 
results into conclusive outputs, all of which are putatively processed via a distributed 
network of brain regions encompassing frontal/parietal cortices, as well as the cau-
date and other subcortical structures, which suggested that in the process of deduc-
tive reasoning, the coding and integration of premise information is indispensable, 
and it is also crucial to the execution and monitoring of the cognitive processing of 
reasoning.
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activity of human beings, the mental processes underlying reasoning 
have been the focus of vigorous investigation within psychology and 
philosophy (Frank et al., 2008; Gordon, 2004).

The advent of neuroimaging techniques has increased the num-
ber of studies related to the neural basis of deductive reasoning. 
Cognitive studies on deductive reasoning have debated whether this 
process relies primarily on visuospatial mechanisms (Mental Model 
Theory, MMT) (Johnson-Laird, 1983) or linguistic models (Mental 
Logic Theory, MLT) (Rips, 1994), and the experimental results have 
been inconclusive and inconsistent due to interference from various 
experimental	factors.	Some	categories	of	such	experimental	caveats	
are as follows:

1. Mode of the deductive-reasoning task. A review by Prado (2011) 
reported that the engagement of brain regions involved in de-
ductive reasoning depends on the structure of the argument. 
Relational arguments are associated with activations in bilateral 
posterior parietal cortex (PPC) and right middle frontal gyrus 
(MFG), whereas categorical arguments are associated with the 
left inferior frontal gyrus (IFG) and left basal ganglion (BG). 
In contrast, propositional arguments are associated with the 
left PPC, left precentral gyrus (PG), and medial frontal gyrus 
(MeFG) (Prado et al., 2011).

2. Complexity of the reasoning task.	Studies	have	shown	that	in	con-
trast with simple deductive trials, complex deductive trials result 
in a pattern of activation across many brain regions, including left 
dorsolateral prefrontal (Luca et al., 2013), frontopolar, fronto-
medial, left frontal, and parietal cortices (Coetzee & Monti, 2018; 
Monti et al., 2007).

3. Stimulus presentation. Visual experiments have found activity in 
visual and temporal cortices during the premise processing phase, 
which suggests that the content for premises elicit visual mental 
images during this early stage (Fangmeier et al., 2006). However, 
this pattern of activity is not found in the absence of any corre-
lated visual input; under this circumstance, deductive reasoning 
activates an occipitoparietal–frontal network, and occipital acti-
vation is found in visual association cortex (middle occipital gyrus) 
but not in primary visual cortex (Fangmeier & Knauff, 2009; 
Knauff et al., 2002; Markus et al., 2003).

4. Baseline task. Knauff et al. (2002) used rest intervals as a base-
line for analyzing reasoning of a three-term series and revealed 
baseline activation in the left posterior-temporal cortex. An ex-
periment using an unrelated task (only superficial processing of 
stimuli) as a baseline task evoked activation of the left IFG, left 
MFG, temporal gyrus, and cingulate gyrus (Goel et al., 1997, 
1998). Moreover, other studies have applied a memory task as a 
baseline, but the results of these studies have been inconsistent 
and have been unable to uncover any significant linguistic acti-
vations despite these experiments using verbal content (Monti 
et al., 2007; Monti et al., 2009; Parsons & Osherson, 2001).

A previous qualitative review of the neuroimaging literature on 
deductive reasoning identified a bilateral but rather left-centered 

frontoparietal network for general deductive reasoning across all 
experiments by multilevel kernel density analysis (MKDA), and sub-
divided articles into those investigating relational arguments, cate-
gorical arguments, and propositional arguments (Prado et al., 2011), 
which provided a preliminary explanation regarding the differences 
in results caused by different reasoning arguments. In addition, a re-
cent study incorporated recent research on conditional and syllogis-
tic reasoning based on Prado's research, and further subdivided the 
article by their structure, content, and requirement for world knowl-
edge, which found a widespread activation network encompassing 
the frontal, parietal, sublobar, limbic, posterior lobes and exhibit 
clear distinctions between the task's type and content (Wertheim 
et al., 2020). However, effective reasoning depends more on the in-
tegration of logical relations (i.e., premises) and the application of 
logical rules in deductive reasoning. Hence, it may be most useful to 
elucidate brain activation patterns that are independent of the exter-
nal representational form of deductive reasoning, which would likely 
delineate the core brain regions underlying the fundamentals of de-
ductive reasoning. In this study, we analyzed collected data using a 
recently proposed activation likelihood estimation (ALE) approach. 
The ALE results were assessed against a null distribution of random 
spatial association between experiments (Eickhoff et al., 2012), 
and this coordinate-based meta-analysis increases the population 
sample for better generalization by integrating data across several 
studies. Compared with a previous review (Prado et al., 2011), we 
innovatively used MACM analyses (meta-analytic connectivity map-
ping), which delineates patterns of coactivation across thousands 
of studies using neuroimaging databases and produces data-driven 
functional connectivity maps based on predefined ROIs (Langner 
et al., 2014). Moreover, MACM allows probing coactivation patterns, 
that is, task-based functional connectivity, across a wide range of 
experimental settings (Bellucci et al., 2018), which may provide a 
better summary of the deductive reasoning research published over 
the past few decades from a new perspective.

Despite an increased number of studies on deductive reasoning, 
results have been inconsistent due to differing experimental condi-
tions across studies. Neuroimaging meta-analysis combines results 
of independent experiments to achieve a quantitative summary of 
the state of research in a specific domain (Turkeltaub et al., 2002). 
Here, we used ALE meta-analysis to summarize patterns of activity 
related	to	deductive	reasoning.	Specifically,	first,	the	meta-analysis	
results of Prado (2010) have suggested that deductive reasoning 
does not rely on a unitary brain system but relies on fractionated 
neural systems located in both cortical (frontal and parietal cortices) 
and subcortical (BG) structures (Prado et al., 2011). Hence, we col-
lectively analyzed 39 fMRI articles (published over the past 8 years) 
to further elucidate spatiotemporal brain activation patterns during 
the	 processing	 of	 deductive	 reasoning.	 Second,	we	 used	 conjunc-
tion analysis to better determine the intersection of the results of 
meta-analyses, which can further clarify relationships among key 
brain regions implicated in deductive-reasoning processing. Third, 
the interaction between language and thought has become a pivotal 
phenomenon in the study of human cognition (Frank et al., 2008; Li 
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& Gleitman, 2002), and there has been little agreement regarding 
this topic. Taken together, this study may further elucidate the rela-
tionship between deductive reasoning and language by determining 
language-activated brain regions during deductive reasoning, which 
may serve as indicators of this fundamental cognitive process.

2  | METHODS

2.1 | Study selection

There were two qualitative reviews of the neuroimaging literature 
on deductive reasoning available prior to our meta-analysis. One of 
these reviews (Goel et al., 2007), included studies published through 
April 2007, while the other review (Prado, 2010) included studies 
published	through	September	2010	(on	the	basis	of	the	previous	Goel	
review). Here, we searched for additional neuroimaging studies of 
deductive	reasoning	published	from	September	2010	to	2019.	More	
specifically,	we	searched	 the	PubMed,	PNAS,	SAGE,	Oxford	Press	
Wiley,	Elsevier	Science,	and	Baidu	Scholar	databases	for	studies	on	
several related topics, including the following: reasoning, inference, 
deduction, deductive reasoning, deductive inference, conditional 
reasoning, relational reasoning; propositional reasoning, categori-
cal reasoning, thinking, thought, theory of mind, functional mag-
netic resonance imaging, MRI, fMRI, and PET. Inclusion criteria for 
the articles were as follows: (a) the paper was written in English; (b) 
the task in the study involved deductive reasoning; (c) we here used 
MRI, fMRI, and PET to collect data; (d) all the subjects in the study 
were healthy without any psychiatric disorders; (e) the coordinates 
in each of the studies were in the standard Montreal Neurological 
Institute (MNI) or Talairach space; and (f) all the reported activation 

coordinates were based on the entire brain. Following these criteria, 
we ultimately included 38 published, peer-reviewed fMRI articles on 
the neural substrates of deductive reasoning in the present meta-
analysis. The specific selection process is shown in Figure 1. From 
each study, we selected experiments corresponding most closely to 
a comparison between a reasoning condition and a baseline condi-
tion. A summary of the included details of each study in the meta-
analysis is provided in Table 1.

2.2 | Meta-analysis algorithm

Meta-analysis	was	carried	out	using	 the	 revised	version	 (Simon	B.	
Eickhoff et al., 2009) of the ALE approach using Ginger ALE 3.0.2 
software (http://brain map.org/) for coordinate-based meta-analysis 
of neuroimaging results (Laird et al., 2005; Turkeltaub et al., 2002). 
The key principle behind ALE is to treat the reported foci not as sin-
gle points, but as centers of three-dimensional Gaussian probability 
distributions for capturing the spatial uncertainty associated with 
each focus (Caspers et al., 2010). The probabilities of all activation 
foci in a given experiment were combined for each voxel, result-
ing in a modeled activation map (MA map). Taking the union across 
these MA maps yields voxel-wise ALE scores describing the con-
vergence of results at each particular location (Evans et al., 1994). 
The likelihood of activation for each standard-space voxel was cal-
culated under a null distribution of spatial independence (Fitzgerald 
et	al.,	2010;	Sabatinelli	et	al.,	2011).	In	brief,	the	ALE	algorithm	aims	
at identifying areas showing a convergence of activations across dif-
ferent experiments, and to determine if the clustering is higher than 
expected under the null distribution of a random spatial association 
between the results obtained in the experiments.

F I G U R E  1   Flowchart of the study selection process for the meta-analysis

http://brainmap.org/
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TA B L E  1  Studies	Included	in	the	meta-analysis

No. Studies
Scanning 
methods Stimuli modality N Foci Conditions

1 Goel et al. (1997) PET Visual, linguistic 10 3 Deduction > Baseline

2 Goel et al. (1998) PET Visual, linguistic 12 4 Syllogism	> Baseline

5 Spatial	relational	> Baseline

5 Syllogism	>	Spatial	relational

3 Osherson et al. (1998) PET Visual, linguistic 10 3 Probability > Logic

8 Logic > Probability

4 Goel et al. (2000) fMRI Visual, linguistic 11 13 Syllogism	> Baseline

5 Houdé et al. (2000) PET Visual, nonlinguistic 8 19 Posttest of conditional 
reasoning > Pretest

6 Parsons and 
Osherson (2001)

PET Visual, linguistic 10 24 Deduction > Probabilistic reasoning

19 Probabilistic reasoning > Deduction

7 Goel and Dolan 
(2001)

fMRI Visual, linguistic 14 19 Relational reasoning > Baseline

2 Abstract reasoning > Concrete 
reasoning

3 Concrete reasoning > abstract 
reasoning

8 Acuna et al. (2002) fMRI Visual, nonlinguistic 15 17 Transitive Inference > Height 
Comparison Task

9 Knauff et al. (2002) fMRI Auditory, linguistic 12 18 Transitive Inference > Baseline

10 Knauff et al. (2003) fMRI Auditory, linguistic 12 9 Inference > Baseline

11 Goel and Dolan 
(2001)

fMRI Visual, linguistic 16 12 Deductive reasoning > Baseline

12 Goel et al. (2004) fMRI Visual, linguistic 14 14 Unfamiliar > Unfamiliar 
Environment Baseline

5 Familiar Environment 
Reasoning > Familiar Environment 
Baseline

13 Heckers et al. (2004) fMRI Visual, nonlinguistic 16 13 Transitive Inference > Baseline

14 Noveck et al. (2004) fMRI Visual, linguistic 16 4 MP > Baseline

6 MT > Baseline

4 MT > MP

15 Canessa et al. (2005) fMRI Visual, linguistic 12 18 Descriptive	(DES)	conditional	
reasoning task > Baseline

23 Social-exchange	(SE)	conditional	
reasoning task > Baseline

9 Social-exchange	(SE)> Descriptive 
(DES)

1 Descriptive	(DES)>	Social-exchange	
(SE)

16 Fangmeier 
et al. (2006)

fMRI Visual, nonlinguistic 12 11 Reasoning > Memory

17 Monti et al. (2007) 
(exp1)

fMRI Visual, linguistic 10 31 Complex >	Simple	deductions

18 Monti et al. (2007) 
(exp2)

fMRI Visual, linguistic 12 26 Complex >	Simple	deductions

19 Reverberi et al., 2007 fMRI Visual, linguistic 14 8 disjunctive > conditional problems 
integration effect

(Continues)
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No. Studies
Scanning 
methods Stimuli modality N Foci Conditions

20 Prado and Noveck 
(2007)

fMRI Visual, linguistic 20 10 Complex >	Simple	conditional	
reasoning in Verification task

6 Complex >	Simple	conditional	
reasoning in Falsification task

21 Kroger et al. (2008) fMRI Visual, linguistic 16 16 logic > math problems

22 Rodriguez-Moreno 
et al. (2009)

fMRI Visual/
auditory,linguistic

17 13 Reasoning > Baseline

23 Fangmeier and Knauff 
(2009)

fMRI Auditory, nonlinguistic 12 3 Reasoning > Memory

24 Goel et al. (2009) fMRI Visual linguistic 17 10 Reasoning > Baseline

25 Monti et al. (2009) fMRI Visual linguistic 15 26 Reasoning > Baseline for logic 
arguments

43 Reasoning > Baseline for linguistic 
arguments,

26 Reverberi et al. (2010) fMRI Visual linguistic 26 4 Conditional problems > Rest

9 Syllogistic	problems	> Rest

2 Syllogistic	problems	> Conditional 
problems

27 Prado et al. (2010) fMRI Visual linguistic 15 3 Transitive reasoning task > Rest

1 Transitive reasoning 
task > Numerical comparison task

28 Prado and Van Der 
Henst (2010)

fMRI Visual linguistic 13 5 integrable 
arguments > nonintegrable in MT

7 integrable 
arguments > nonintegrable in 
Relational	Syllogism

2 Modus Tollens > Relational 
Syllogism

1 Relational	Syllogism	> Modus 
Tollens

29 Wendelken and 
Bunge (2010)

fMRI Visual, nonlinguistic 16 3 Inference > Baseline

8 specific relations > general relations

30 Reverberi et al. (2012) fMRI Visual linguistic 26 15 Reasoning > Baseline

31 Stollstorff	et	al.	
(2012)

fMRI Visual linguistic 16 2 Incongruent > Congruent in 
reasoning

6 Incongruent > Neutral in reasoning

32 Liu et al. (2012) fMRI Visual linguistic 14 16 Falsification card > BL

9 Nonfalsification card > BL

9 Falsification > Nonfalsification

13 MT > Nonfalsification

6 MT > MP

33 Monti et al. (2012) fMRI Visual linguistic 21 16 Reasoning > Baseline in linguistic 
arguments

10 Reasoning > Baseline in algebraic 
arguments

12 algebraic equivalence > linguistic 
equivalence

34 Prado et al. (2013) fMRI Visual linguistic 30 2 verbal task > Rest

TA B L E  1   (Continued)

(Continues)
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In the present study, all Talairach coordinates were trans-
formed to MNI space using the icbm2tal transform, which has been 
shown to provide an improved fit over the mni2tal transform (Brett 
et al., 2001; Matthew et al., 2002). Based on the MNI stereotactic 
coordinates reported and transformed by the studies, ALE analysis 
of single datasets was conducted. ALE maps were created by model-
ing each focus as a three-dimensional Gaussian function with a full-
width half-maximum (FWHM) of 10 mm. Results were thresholded 
for significance using a cluster-level family-wise error (FWE) correc-
tion at p < .01 with a cluster defining threshold of p < .0001 (1,000 
permutations, 200 mm3 minimum volume) (Eickhoff et al., 2012; 
Eklund et al., 2016). The results were viewed using MATLAB soft-
ware	(with	loaded	SPM	and	DPABI	toolboxes)	and	were	overlaid	to	a	
standard space using the MNI file.

We defined the brain regions obtained from the meta-analy-
sis results as our ROIs. To examine the coactivation patterns of 
these regions commonly recruited by deductive reasoning, we 
conducted MACM analyses (meta-analytic connectivity mapping) 
using the BrainMap Database (http://www.brain map.org/) (Laird 
et al. 2009). MACM delineates patterns of coactivation across 
thousands of studies using neuroimaging databases and produces 
data-driven functional connectivity maps based on predefined 
ROIs (Langner et al., 2014). For our analysis, we constrained our 
analysis to fMRI and PET experiments from “normal mapping” 
whole-brain neuroimaging studies in healthy population, which 
report activation in standard space. While other studies investi-
gating differences in age, gender, interventions, or clinical pop-
ulations were excluded. For the IPL, 433 experimental contrasts 
and 7,041 foci from 5,223 participants were identified; for the 
MFG, 228 experimental contrasts and 3,372 foci from 3,432 par-
ticipants; for the MeFG, 422 experimental contrasts and 6,769 
foci from 5,140 participants; for the IFG (BA45), 135 experimen-
tal contrasts and 1,735 foci from 1,782 participants; for the IFG 
(BA46), 45 experimental contrasts and 662 foci from 755 partici-
pants; for the Caudate, 104 experimental contrasts and 1,897 foci 
from 1,730 participants; and for the Insula, 116 experimental con-
trasts and 1,641 foci from 1,708 participants. Importantly, MACM 
analyses cover experiments in the BrainMap database associated 
with different types of tasks that involve these activations (Laird 
et al., 2005). These analyses consisted of the following two steps. 

First, whole-brain peak coordinates of all those experiments in 
the BrainMap database were downloaded if the study reported 
at	least	one	focus	of	activation	within	each	ROI.	Second,	ALE	me-
ta-analyses were conducted over all coordinates of the retrieved 
experiments to quantify their convergence and coactivation with 
each ROI. Finally, the ALE maps were family-wise error (FWE) cor-
rected at a threshold of p < .01 at the cluster-level. The resulting 
regions were anatomically labeled by reference to probabilistic 
cytoarchitectonic maps of the human brain using the DPABI tool-
box. We reported the peak coordinates of the significant cluster 
and demonstrated the brain regions nearest the peak coordinates 
within ± 5 mm (Xin et al., 2015).

3  | RESULTS

Selected	 contrasts	 from	 38	 neuroimaging	 studies	 of	 deductive	
reasoning comparing a reasoning condition and baseline condition 
yielded a total of 702 foci. Pooling the results of 69 experiments 
onto a single brain resulted in a diffuse pattern of activation across 
all lobes, with some clustering evident across left hemispheres in the 
inferior parietal lobule (IPL, BA 40), middle frontal gyrus (MFG, BA 
6), medial frontal gyrus (MeFG, BA 8), inferior frontal gyrus (IFG, BA 
45/46), caudate, and insula (BA 47) (Figure 2). Coordinates of the 
activation maxima of the meta-analysis on deductive reasoning are 
provided in Table 2.

Functional connectivity analysis was conducted to determine 
the intersection between these key brain regions identified during 
deductive	reasoning.	Since	the	caudate,	one	of	 the	key	brain	re-
gions, is a subcortical structure and the other brain regions are 
cortical structures, two separate conjunction analyses were con-
ducted (one analysis for the cortical brain regions and a separate 
analysis for the subcortical caudate). The results of the analysis 
indicated that three common regions existed in the IFG, insula (BA 
13), and cingulate gyrus (BA 32) of the left hemispheres among the 
cortical brain regions. In addition, the bilateral IFG, the bilateral 
caudate, MFG (BA 6), insula (BA 13), thalamus (BA 32), IPL, supe-
rior	parietal	lobule	(SPL),	and	cingulate	gyrus	(BA	23/32)	of	the	left	
hemispheres were revealed as common regions in the conjunction 
analysis of the caudate (Figure 3). Coordinates of the activation 

No. Studies
Scanning 
methods Stimuli modality N Foci Conditions

1 spatial task > Rest

35 Cocchi et al. (2014) fMRI Visual linguistic 21 18 Rule > null trials

28 MP > null trials

36 Porcaro et al. (2014) fMRI Visual linguistic 13 2 Contradictory > Noncontradictory

37 Alfred et al. (2018) fMRI Visual, nonlinguistic 27 4 Reasoning > Baseline

38 Coetzee and Monti 
(2018)

fMRI Visual linguistic 20 30 complex > simple reasoning

Note: N = number of subjects; Foci = number of coordinates.

TA B L E  1   (Continued)

http://www.brainmap.org/
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maxima of the results of the conjunction analysis are provided in 
Table 3.

4  | DISCUSSION

Previous studies have claimed that deductive reasoning does not rely 
on a unitary brain system but relies on a fractionated neural system 
located in both cortical (frontal and parietal cortices) and subcorti-
cal (BG) structures (Prado et al., 2011). As in previous investigations, 
our ALE meta-analysis indicated both unified and fractionated neu-
ral systems activated in cortical areas, specifically IPL, MFG, MeFG, 
IFG, and insula, but we also found activity in subcortical (caudate) 
structures during deductive reasoning. On the whole, all the brain 
regions that were significantly activated were located in the left 
hemisphere, which is consistent with findings from previous stud-
ies on the neural basis of deductive reasoning. Monti et al. (2007) 
revealed a content-independent network that was responsible for 
carrying out deductive processes and included the left hemisphere 
(frontal and parietal cortices). Moreover, experiments with pa-
tients suffering from brain lesions in the prefrontal lobe (Goel et al. 
2007), temporal cortex (Langdon & Warrington, 2000; Read, 1981), 

or throughout widespread regions across the entire hemisphere 
(Golding, 1981) have supported a left hemisphere dominance for 
deductive reasoning. One possible explanation for this spatial lo-
calization is that when confronted with the premises of a deductive 
argument, the left hemisphere might recognize logical structures 
and generate a hypothesis regarding a collective conclusion (Goel, 
2007). It is not surprising to link mental model theory, having a visu-
ospatial nature, with right hemisphere activation and mental logic 
theory—which have a propositional nature—with left hemisphere 
activation (Heit, 2015). Nevertheless, some researchers (e.g., Knauff 
et al., 2002) have suggested that left hemisphere activation may be 
consistent with mental model theory, because comprehension of ar-
guments will recruit linguistic areas of the brain (Monti et al., 2007, 
2009). However, intrahemispheric differences are apparent, and we 
will discuss relevant regions in the following sections:

For cortical (IPL, IFG and insula) structures, some studies have 
identified that the IPL is involved in spatial realignment, which 
governs shifts of spatial attention and target detection (Chapman 
et	al.,	2010;	Shulman	et	al.,	2010).	Likewise,	a	large	body	of	evidence	
coming from neuroimaging studies has implicated the activation of 
the left IFG in syntactic processing at the word or sentence level 
(Friederici	&	Kotz,	2003;	Grodzinsky	&	Santi,	2008),	which	appears	
to support a syntactic- or rule-based view of deductive reasoning 
(Goel. 2007). More specific, the left IFG (BA 45) is activated during 
both the encoding and the integration of propositional premises, and 
the BA46 of the frontal cortex is involved in the control and alloca-
tion of attention (Bishop, 2009; Luks et al., 2002), Others have also 
found that BA46 (Dorsolateral prefrontal cortex) may represent the 
site of meta-cognition (Nelson, 1990; Tzu-Ching et al., 2014), and is 
associated with rule-guided operations in the early stage of condi-
tional-proposition testing (Jimei et al., 2012). Additionally, it is note-
worthy that both the IPL and IFG are canonical mirror neuron brain 
regions in humans (Buccino et al., 2004; Chong et al., 2008; Iacoboni 
et al., 1999; Kilner et al., 2009), which play a crucial role in associa-
tive learning (Heyes, 2010; Ray & Heyes, 2011). Associative learning 
is often considered as a stable adaptation for tracking relation-
ships between events (Heyes, 2012), and the mirror neuron system 
plays an important role in the representation and storage of sim-
ple and complex relationships (Cook, 2012; Ferrari & Fogassi, 2005; 
Keysers et al., 2003). Here, the IPL and IFG may be closely related 
to the activation of logically related experiences, which may indi-
cate that human deductive reasoning is at least partially derived 

F I G U R E  2   The results of ALE 
meta-analysis revealed the key brain 
regions most consistently activated 
in neuroimaging studies of deductive 
reasoning. (IFG, inferior frontal gyrus; 
IPL, inferior parietal lobule; MeFG, medial 
frontal gyrus; MFG, middle frontal gyrus)

TA B L E  2   Brain regions that was significantly activated in all 
deductive-reasoning studies

Region label Brodmann area

MNI coordinates

x y z

L. Inferior Parietal 
Gyrus

40 −40 −53 49

L. Middle Frontal 
Gyrus

6 −44 16 44

L. Medial Frontal Gyrus 8 −5 26 45

L. Inferior Frontal 
Gyrus

45 −53 19 15

L. Inferior Frontal 
Gyrus

46 −47 47 −8

L. Caudate −13 6 10

L. Insula 47 −34 21 7

Note: L. left hemisphere.
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from experience/schema/mental models and that both of these two 
brain regions might mediate conclusions or activities in the context 
of processing premises. In other ways, the IPL and IFG—as key com-
ponents of the mirror neuron system—may help us understand peo-
ple's actions, words, and intentions, and it's even an important brain 
region for human empathy (Baird et al., 2011; Hojat & Cohen, 2012), 
which seem to a certain extent that the human reasoning system is 
an evolutionary system that helps individuals to prove and justify on 
the basis of understanding external information during evolution or 
social activities. Moreover, The activation of the insula seems to con-
firm the participation of higher-order cognitive control and attention 
processing during this process (Luca et al., 2013).

Furthermore, the MFG and MeFG have been connected to work-
ing memory in previous studies (Kirschen et al., 2005; Koechlin et al.; 
Owen, 2010; Ranganath et al., 2003; Ricciardi et al., 2006). An early 
response in the left MFG potentially reflects semantic comprehen-
sion processing (Porcaro et al., 2013). In this context, the MFG and 
MeFG may be particularly sensitive to the difficulty of deductive 
reasoning.

For subcortical (caudate) structures, previous imaging stud-
ies of reasoning have reported that activation of the caudate is 
involved when multiple rules need to be deduced and integrate 
(Christoff & Prabhakaran, 2001; Fangmeier et al., 2006; Prabhakaran 
et al., 2001). Furthermore, caudate activation has been linked to 
planning and executing demands of reasoning in both reasoning and 
working memory systems (Melrose et al., 2007). Moreover, in the 
present study, we found that the frontal lobe (IFG and MFG), pari-
etal	lobe	(SPL	and	IPL)	cingulate	gyrus,	insula,	caudate	and	thalamus	
were all significant regions as indicated by conjunction analysis of 
the caudate. About frontal lobe, IFG and MFG are mainly related to 

the representation and integration of premise information and work-
ing	memory.	Similar	 to	 the	 IPL,	 left	SPL	occurs	across	a	variety	of	
tasks requiring manipulation and rearrangement of information in 
spatial working memory (Koenigs et al., 2009) and allocation of spa-
tial attention (Dehaene et al., 2003). In regard to the cingulate gyrus, 
several recent neuroimaging findings suggest that it is associate with 
general executive, and it also plays a central role in a wide spectrum 
of highly integrated tasks such as visuospatial imagery and episodic 
memory	retrieval	 (Cavanna	&	Trimble,	2006;	Sommer	et	al.,	2010).	
More significantly, the dorsal anterior cingulate and insular cortices 
represent key neural hubs of the cingulo-opercular network, which 
is implicated in maintaining and implementing task set (Dosenbach 
et al., 2006, 2007). Additionally, Many previous studies have indi-
cated that the thalamus is related to various higher brain functions 
such as memory and learning (Karussis et al., 2000; Nagaratnam 
et	 al.,	 1999;	Radanovic	&	Scaff,	 2003),	 and	may	be	 related	 to	 the	
regulation and/or facilitation of ongoing cortical processing of mem-
ory and language (Baker et al., 1997; Ojemann et al., 2015; Elizabeth 
et al., 1996; Warburton et al., 1996). As an important nucleus within 
the basal ganglia, the caudate nucleus has a strong connection with 
the dorsolateral prefrontal lobe, and its interaction with the prefron-
tal lobe in deductive reasoning task may be related to the facilitation 
of inferences and application of rules.

The results of our functional conjunction analysis among the 
four cortical brain regions indicated that three common regions 
existed in the IFG, insula (BA 13), and cingulate gyrus (BA 32) of 
the left hemispheres. According to the brain maps, the activation 
position of the inferior frontal gyrus is adjacent to the triangle 
(BA45) (close to insula), and inferior frontal gyrus pars triangularis 
is a part of the frontoparietal operculum, which covers the upper 

F I G U R E  3   Functional-connectivity 
analysis. (a) The results of the analysis 
for the cortical brain regions of the key 
brain areas (all brain regions are located 
in the left hemisphere). (b) The results of 
the analysis for the caudate (IFG, Inferior 
Frontal Gyrus; IPL, Inferior Parietal 
Lobule; L, left hemisphere; MFG, Middle 
Frontal	Gyrus;	R,	right	hemisphere;	SPL,	
Superior	Parietal	Lobule)
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surface of the insula. Reverberi et al. (2010) demonstrated that the 
left IFG (BA 45) is activated during both the encoding and the in-
tegration of propositional premises, and this region also has been 
suggested to be involved in the extraction and representation 
of the superficial structure of a problem (Reverberi et al., 2007, 
2010). About insula, recent evidence from network analysis sug-
gests a critical role for the insula in high-level cognitive control and 
attentional processes, and more researches unveiled that the in-
sula is unique in that it is situated at the interface of the cognitive, 
homeostatic, and affective systems of the human brain, providing 
a link between stimulus-driven processing and brain regions in-
volved in monitoring (Luca et al., 2013; Menon & Uddin, 2010). In 
addition, the neuroimaging results converge with the general ex-
ecutive, learning, and conflict resolution processes in anterior cin-
gulate cortices (BA 32) (Botvinick et al., 1999, 2004). Beyond that, 
the dorsal anterior cingulate and insular cortices represent key 
neural hubs of the cingulo-opercular network, which is implicated 
in maintaining and implementing task set (Dosenbach et al., 2006, 
2007). Compare to previous findings, our present meta-analysis 
revealed that the IFG, insula, and cingulate may represent poten-
tial core site to collaborate in deductive reasoning. However, sev-
eral studies have shown that the left IFG (BA44), which largely 
overlaps with the traditional Broca's area, is a key area in repre-
senting the formal structure of a logical problem during deductive 
reasoning (Reverberi et al., 2012; Reverberi et al., 2009). Here, our 
IFG cluster was positioned on is adjacent to the triangle (BA45) 
and closer to insula rather than BA 44 corresponding to Broca's 

Area. Besides, as mentioned above, the functions of the insula and 
cingulate are related to high-level cognitive control, execution, 
and monitoring, which suggested that in the process of deductive 
reasoning, the coding and integration of premise information is in-
dispensable, and it is also crucial to the execution and monitoring 
of the cognitive processing of reasoning.

5  | CONCLUSION

Overall, our results suggest that deductive reasoning is supported 
by a distributed network of regions encompassing frontal/parietal 
cortices and subcortical structures (e.g., caudate), and the results 
of our conjunction analysis highlights the IFG, insula, and cingulate 
(the key neural hubs of the cingulo-opercular network) as core locus 
of deductive reasoning. These results conflict with the supposition 
that logic is subserved by a set of language-independent regions 
within frontopolar (BA10) and fronto-medial (BA8) cortices related 
to the putative core of deductive reasoning (Monti et al., 2007, 
2009). Moreover, a recent study revealed that the transient inhibi-
tion of Broca's area disrupted linguistic processing without affect-
ing thought processing (Coetzee & Monti, 2018). The discrepancies 
between these results support the view that deductive reasoning 
requires a succession of stages that progressively transform prem-
ises into a conclusion or a series of conclusions; these stages include 
the decoding of the initial linguistic information, the conversion and 
correction of rules, and the transformation of inferential results into 
conclusive outputs (Coetzee & Monti, 2018; Monti et al., 2009). 
However, our study did not have valid classification criteria to suf-
ficiently separate these different stages of deductive reasoning. 
Hence, future research can use high-time resolution EEG and NMR 
techniques to synchronously record the brain signals of participants 
or inhibit the activity of certain brain regions to further elucidate 
the activation characteristics of brain regions at different stages of 
deductive reasoning and the precise relationship between deduc-
tive reasoning and linguistic representations. Besides, researchers 
need to increase the diversity of reasoning materials. in addition to 
abstract materials, we should also increase concrete materials that 
exist in real life to help us better understand reasoning.

ACKNOWLEDG EMENTS
We would like to thank anonymous reviewers for their helpful 
comments.

CONFLIC T OF INTERE S T
The authors declared that they had no conflicts of interest with re-
spect to their authorship or the publication of this article.

AUTHOR CONTRIBUTIONS
L.	Wang	and	M.	Zhang	developed	the	study	concept.	Study	Selection	
and Meta-analysis algorithm were performed by all authors. L. Wang 
and M. Zhang drafted and revised the manuscript. All authors ap-
proved the final version of the manuscript for submission.

TA B L E  3   Results of the meta-analysis of functional connectivity

Region label
Brodmann 
area

MNI coordinates

x y z

FC analysis for cortical 
brain regions

L. Inferior Frontal Gyrus −36 20 −2

L. Insula 13 −34 20 6

L. Cingulate Gyrus 32 −6 22 40

FC analysis for subcortical 
caudate

L. Inferior Frontal Gyrus −46 14 38

L. Caudate −14 6 8

L. Middle Frontal Gyrus 6 −32 4 56

L. Insula 13 −32 22 2

L. Thalamus 32 −12 −10 8

L. Inferior Parietal 
Lobule

−46 −38 44

L.	Superior	Parietal	
Lobule

−22 −64 52

L. Cingulate Gyrus −2 16 44

R. Inferior Frontal Gyrus 34 24 −2

R. Caudate 14 6 6

Note: L. left hemisphere; R. right hemisphere.
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