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Jean Rodgers1., Amy Jones1., Stéphane Gibaud2, Barbara Bradley1, Christopher McCabe3, Michael P.

Barrett4, George Gettinby5, Peter G. E. Kennedy1*

1 Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom, 2 Laboratoire de
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Abstract

Human African trypanosomiasis (HAT), or sleeping sickness, results from infection with the protozoan parasites
Trypanosoma brucei (T.b.) gambiense or T.b.rhodesiense and is invariably fatal if untreated. There are 60 million people at
risk from the disease throughout sub-Saharan Africa. The infection progresses from the haemolymphatic stage where
parasites invade the blood, lymphatics and peripheral organs, to the late encephalitic stage where they enter the central
nervous system (CNS) to cause serious neurological disease. The trivalent arsenical drug melarsoprol (Arsobal) is the only
currently available treatment for CNS-stage T.b.rhodesiense infection. However, it must be administered intravenously due to
the presence of propylene glycol solvent and is associated with numerous adverse reactions. A severe post-treatment
reactive encephalopathy occurs in about 10% of treated patients, half of whom die. Thus melarsoprol kills 5% of all patients
receiving it. Cyclodextrins have been used to improve the solubility and reduce the toxicity of a wide variety of drugs. We
therefore investigated two melarsoprol cyclodextrin inclusion complexes; melarsoprol hydroxypropyl-b-cyclodextrin and
melarsoprol randomly-methylated-b-cyclodextrin. We found that these compounds retain trypanocidal properties in vitro
and cure CNS-stage murine infections when delivered orally, once per day for 7-days, at a dosage of 0.05 mmol/kg. No overt
signs of toxicity were detected. Parasite load within the brain was rapidly reduced following treatment onset and magnetic
resonance imaging showed restoration of normal blood-brain barrier integrity on completion of chemotherapy. These
findings strongly suggest that complexed melarsoprol could be employed as an oral treatment for CNS-stage HAT,
delivering considerable improvements over current parenteral chemotherapy.
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Introduction

Human African trypanosomiasis (HAT), also known as sleeping

sickness, is endemic in 36 countries, in sub-Saharan Africa where

60 million people are at risk from infection [1,2]. The disease is

caused by the protozoan parasites Trypanosoma brucei (T.b.) gambiense

in West Africa and T.b.rhodesiense in East Africa and is spread by

the bite of the tsetse fly vector [1,2]. Infection with T.b.gambiense

usually results in a disease that follows a chronic course which can

last for up to several years before death ensues while T.b.rhodesiense

infection follows an acute pattern with death occurring in only

weeks to months [3]. In both infections the disease progresses in

two stages, the early or haemolymphatic stage and the late

encephalitic or CNS-stage [3]. During the early-stage the parasites

migrate from the site of the tsetse fly bite and spread throughout

the body via the blood and lymph, invading the peripheral organs.

The trypanosomes then cross the blood-brain barrier (BBB) and

migrate into the CNS to cause the characteristic clinical

manifestations of CNS-stage disease such as alteration of sleep

patterns, neuropsychiatric symptoms and a variety of motor and

sensory disturbances [4]. If the disease is diagnosed during the

early stage it can be treated with pentamidine (for T.b.gambiense) or

suramin (for T.b.rhodesiense) [5]. If the infection has reached the

CNS, T.b.gambiense infections can be treated with either a concise

10-day regimen of melarsoprol [6,7] or the recently developed

nifurtimox-eflornithine combination therapy (NECT) [8]. In the

case of CNS-stage T.b.rhodesiense infections the only treatment

option currently available is a lengthy melarsoprol schedule

comprising 3–4 cycles of a series of 3–4 injections, of increasing

melarsoprol concentration, separated by a 7–10 day interval

between each cycle [6,9].

Melarsoprol (Figure 1A) is a highly lipophilic molecule that is

poorly soluble in water with a log POW of 2.53 and a solubility of

only 6 mg/L at 25uC [10]. Despite these properties the drug is a

www.plosntds.org 1 September 2011 | Volume 5 | Issue 9 | e1308



potent trypanocide and has been used for the treatment of HAT

since its introduction in 1949 [11]. The limited solubility of

melarsoprol precludes its oral delivery as only a small fraction of

the drug is absorbed through the gastrointestinal tract. Currently

melarsoprol is produced as a 3.6% solution in propylene glycol

(Arsobal H) which restricts its administration to the intravenous

route. The treatment schedules employed are protracted,

excruciatingly painful and require continuous hospitalization. In

addition, treatment with ArsobalH is associated with numerous

adverse effects including severe tissue necrosis at the injection site,

neuropathy, and gastrointestinal upset [4]. However, the most

serious adverse reaction is the development of a post-treatment

reactive encephalopathy (PTRE) which occurs in 10% of all

treated patients, 50% of whom die as a result. ArsobalH treatment

is therefore responsible for the death of 5% of all patients given

the drug [1,12]. Although the pathogenesis of the PTRE remains

unclear, several hypotheses have been postulated to explain its

occurrence. These include direct arsenical toxicity [13,14],

autoimmune reactions [15] and pro-inflammatory immune

response directed against trypanosomes remaining within the

CNS following systemic clearance of the parasites [16,17] or

parasite antigen released as a consequence of chemotherapy [18].

The severity of the complications associated with ArsobalH
chemotherapy make accurate staging of the disease via

cerebrospinal fluid analysis absolutely essential both to manage

proven CNS-stage infections appropriately and to prevent

unnecessary administration of this highly toxic drug to early

stage patients [19].

Cyclodextrins are naturally occurring cyclic oligosaccharide

molecules composed of six or more glycopyranose units linked by

a-1, 4 gycosidic bonds. They take the form of a truncated cone or

torus with a hydrophilic exterior and a hydrophobic interior cavity

which can be occupied by various guest molecules [20].

Cyclodextrins have been widely utilized by the pharmaceutical

industry to alter the physiochemical properties of a variety of drugs

through enhancing their solubility and oral bioavailability and

decreasing their toxicity [10,21]. Complexation of melarsoprol

with either hydroxypropyl-b-cyclodextrin (mel/HPbCD) or ran-

domly methylated-b-cyclodextrin (mel/RAMbCD) (Figure 1A)

has been shown to increase the inherent solubility of the drug by a

factor of 7.26103, which raises the possibility that the melarsoprol

cyclodextrin complexes could be efficacious when delivered via the

oral route for the treatment of trypanosomiasis [10].

In the current study the efficacy of the melarsoprol cyclodextrin

inclusion complexes was investigated using both in vitro and in vivo

methodologies and compared with that of contemporary melar-

soprol formulations. The effect of oral drug treatment on the BBB

was examined using MRI, and both the CNS parasite load and the

CNS neuroinflammatory response monitored throughout the

treatment regimen. We show here that melarsoprol cyclodextrin

complexes are orally effective and non-toxic in curing CNS-stage

trypanosome infections in mice.

Methods

Alamar blue assay
Trypanotoxicity was determined using an adapted version of the

Alamar Blue assay [22]. Bloodstream form T. brucei brucei (strain

427) were cultivated in HMI-9 medium (BioSera Ltd., UK) [23]

supplemented with 2 mM b-mercaptoethanol (Sigma-Aldrich,

UK) and 10% fetal calf serum (BioSera Ltd., UK) at 37uC in a

humidified 5% CO2 environment. Parasites (100 ml of 16104

trypanosomes/ml) were added to wells of 96-well plates containing

doubling dilutions of the drugs (100 ml) ranging in final

concentration from 100 mM to 24 pM and incubated for

48 hours. Alamar Blue reagent (20 ml, 0.49 mM in PBS, pH 7.4;

Sigma-Aldrich, UK) was added to each well and, after 24 hours,

the fluorescence was measured using a LS 55 luminescence

spectrophotometer (PerkinElmer Life and Analytical Sciences,

USA) set at excitation and emission wavelengths of 530 nm and

590 nm respectively. Data was analysed and inhibitory concen-

tration (IC50) values determined with Prism 5.0 (GraphPad

Software, USA) software. The experiment was performed in

duplicate on three independent occasions.

Animals and infections
A well established and characterised model of CNS-stage

human African trypanosomiasis was employed throughout this

investigation. Briefly, female CD-1 mice (Charles River Labora-

tories) (20–30 g body weight) were infected with 36104 Trypano-

soma brucei brucei GVR35 parasites by intraperitoneal injection. The

infection was allowed to progress until day 21 without drug

intervention. At this point the parasites have established within the

CNS and the infection has entered the encephalitic stage.

Infection was confirmed in all mice prior to drug treatment by

examination of a wet blood film for the presence of parasites. To

determine whether a treatment regimen was curative, blood

smears were examined for the presence of parasites on a weekly

basis for a period of 60 days. If the animals relapsed to

parasitaemia the regimen was considered unsuccessful and the

mice were killed. Mice that remained aparasitaemic for the

duration of the monitoring period were killed, the brains excised

and lightly homogenised in PBS supplemented with 1.5% glucose

w/v and injected intraperitoneally into a clean recipient animal.

This mouse was then monitored for the presence of parasites for a

further 60 days. If the mouse remained aparasitaemic the

treatment regimen was considered successful.

All animal procedures were authorised under the Animals

(Scientific Procedures) Act 1986 and approved by the University of

Glasgow Ethical review Committee.

Author Summary

Human African trypanosomiasis (HAT) is caused by infection
with either Trypanosoma brucei gambiense or T.b.rhode-
siense and is fatal if untreated. In the late stages of the
disease the parasites enter the brain, producing severe
neurological symptoms. The arsenical drug melarsoprol is
the only treatment available for rhodesiense disease once it
has reached the brain. Melarsoprol is very poorly soluble in
water which severely limits its oral bioavailability. Currently
melarsoprol is solubilised in propylene glycol which restricts
its administration to the intravenous route and treatment
schedules are protracted and extremely painful. Further, this
formulation of melarsoprol is toxic and kills 5% of all treated
patients through the induction of a severe post-treatment
reactive encephalopathy. In this study we show that
combining melarsoprol with cyclodextrin molecules in-
creases the oral bioavailability of the drug. In a murine
model of late stage HAT oral treatment regimens employing
melarsoprol cyclodextrin inclusion complexes rapidly
cleared parasites from the brain, restored blood-brain
barrier function and reduced the severity of the neuropath-
ological response induced by the infection. If complexed
melarsoprol is equally efficacious in patients with HAT this
would not only have significant positive socio-economic
impact but also constitute a major therapeutic advance in
the field.

Complexed Melarsoprol for Oral Chemotherapy of HAT
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Quantitative PCR
Trypanosome load within the brain was determined by real-time

quantitative PCR. Briefly, whole brains were homogenised and

digested with proteinase K (AppliChem GmbH) and DNA extracted

from a 25 mg sample of the homogenate (Qiagen, DNeasy Tissue kit).

The concentration of the extracted DNA was assessed by measuring

the absorbance and the sample diluted to 20 ng/ml. The reaction mix

was comprised of; Taqman Brilliant II master mix (Agilent),

0.05 pmol/mL of each primer, 0.1 pmol/mL probe (Eurofins MWG

Operon) and 100 ng DNA template. The amplification was

performed on a MxPro 3005 thermocycler (Agilent).

Drugs and treatment regimens
The mel/HPbCD and mel/RAMbCD inclusion complexes

were prepared as previously described [10]. Each complex was

dissolved in sterile water and administered at dose rates of 0.0125,

0.025, 0.05, 0.1 and 0.2 mmol/kg (equivalent to 4.975, 9.95, 19.9,

39.8, and 79.6 mg/kg) of the active ingredient, melarsoprol. Non-

complexed HPbCD and RAMbCD (Sigma) were used as control

treatments and administered at dose rates equivalent to

0.1 mmol/kg of the complexed agent.

Contemporary melarsoprol and the melaminophenyl arsine

derivatives [24], melarsamine hydrochloride (MelCy) (Cymelar-

sanH) and melarsonyl potassium (MelW) (TrimelarsenH) were

prepared as solutions or fine suspensions in sterile water and

administered at a dose of 0.05 mmol/kg.

All drug treatments were delivered orally by gavage, once per

day for a period of 7 days beginning on day 21 post-infection.

Body weights were measured in groups of uninfected mice

before and after completion of treatment and clinical appearance

Figure 1. In vitro and in vivo efficacy of melarsoprol cyclodextrin inclusion complexes. The trypanocidal activity and the efficacy of oral
administration of a variety of melarsoprol formulations was assessed. (A) Chemical structures of melarsoprol, MelCy (cymelarsanH) and MelW
(trimelarsenH) are shown together with a b-cyclodextrin molecule used to form the melarsoprol inclusion complexes. (B) The IC50 values of mel/
HPbCD and mel/RAMbCD were evaluated against T.b.brucei trypanosomes using an Alamar blue assay and compared with those of melarsoprol,
diminazene aceturate and the empty cyclodextrin molecules. The assay was performed using duplicate samples on three independent occasions. The
in vitro trypanocidal activity of the melarsoprol inclusion complex were no different to that of standard melarsoprol (P = 0.2002, P = 0.999; mel/HPbCD,
mel/RAMbCD respectively). (C) The empty cyclodextrins and the melarsoprol cyclodextrin inclusion complexes were given to T.b.brucei infected mice
daily for a period of 7-days by oral gavage beginning on day 21 post-infection during the CNS-stage of the disease (n = 6 per group). Relapse rates,
drug dosages and significant differences between the efficacy of the dosages are shown. (D) Standard melarsoprol, MelCy and MelW, failed to
produce satisfactory cure rates when administered following an identical dosing regimen to that of the inclusion complexes.
doi:10.1371/journal.pntd.0001308.g001

Complexed Melarsoprol for Oral Chemotherapy of HAT
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was monitored using an established visual assessment scale [25]

throughout the drug regimens to assess overt signs of drug toxicity.

Magnetic Resonance Imaging
MRI was performed on two mice at day 21 post-infection prior

to drug treatment. The mice were re-scanned at 24 hours, 8 and

15 days after completion of chemotherapy. Uninfected mice (n = 3)

were also examined. All scans were performed as described

previously [26]. Briefly, mice were anaesthetised and the tail vein

was cannulated with a 26 gauge619 mm cannula to facilitate

contrast agent administration during MRI scanning. The animal

was placed into a mouse cradle and restrained using ear and tooth

bars to minimise head movement. Anaesthesia was maintained

throughout the procedures and respiration, heart rate and body

temperature were observed. The animal was maintained normo-

thermic by an enclosed warm water circuit.

MRI was performed on a Bruker Biospec 7 T/30 cm system

equipped with an inserted gradient coil (121 mm ID, 400 mT/m)

and a 72 mm birdcage resonator. A surface coil was used for brain

imaging. The scanning protocol consisted of a RARE T2 weighted

scan [effective TE (echo time) 76 ms, TR (repetition time)

5362 ms, 25 averages, matrix 1766176, FOV (field of view)

17.6617.6 mm, 20 contiguous coronal slices of 0.4 mm thickness]

followed by a RARE T1 weighted scan (effective TE 9 ms, TR

8000 ms, 20 averages, matrix 1766176, FOV 17.6617.6 mm, 20

contiguous coronal slices of 0.4 mm thickness). Following the

RARE T1 weighted scan 0.1 ml of a solution containing 50 mL

gadolinium-diethylenetriamine penta-acetic acid (Gd-DPTA Mag-

nevistH; Bayer) and 50 mL of sterile water was injected via the tail

vein cannula. Five minutes later the T1 weighted scan was

repeated. Gd-DTPA cannot readily cross the intact blood brain

barrier due to its charge and high molecular weight [27].

Extravasation of Gd-DTPA observed within the parenchyma

demonstrates an impairment of the BBB integrity.

Images were analysed using Image J software (http://rsbweb.

nih.gov/ij/). Contrast enhancement maps were generated from

the the per and post-contrast T1 weighted scans according to the

equation: Enh = (Spost2Spre)4Spre where Spost = post contrast agent

signal and Spre = pre-contrast agent signal. Regions of interest

(ROIs) were manually defined to include the entire brain and

meninges. The mean percentage signal change for each brain slice

was then calculated and signal enhancement maps generated.

Histopathological analysis
Following sacrifice the brains were excised and fixed in 4%

neutral buffered formalin, paraffin wax blocks prepared and

sections of 3 mm thickness cut and stained with haematoxylin and

eosin. These sections were examined by two independent assessors

and the severity of the neuropathological reaction graded on a

scale of 0–4 where 0 represented normal pathology with no

indications of inflammation and a grade of 4 was characterised by

the presence of a severe meningoencephalitis with the presence of

inflammatory cells in the brain parenchyma [26,28] (Table S5).

Immunocytochemistry was performed to detected T-cells

(rabbit anti-CD3), B-cells (rat anti-B220) and macrophages (rat

anti-F4/80) following a standard peroxidise anti-peroxidase

protocol using the DakoH EnVision system and DAB visualisation.

Statistical analyses
Data were analyzed using analysis of variance methods and the

General Linear Model (GLM) procedure in Minitab Version 16

followed by multiple pair wise comparison tests. This identified

significant main effect differences between groups of uninfected

animals, infected animals and treated animals. In studies with

measurements over time the GLM procedure provided tests for

treatment and time effects and their interaction. Proportions of mice

relapsing in different treatment groups were compared using a

Tukey-type multiple comparison test for proportions [29]. Changes

in body weight were investigated using a paired t-test. P values of

less than 5% were considered to be statistically significant. Where

appropriate data were log transformed prior to analysis. Group

means were plotted showing means and their standard errors, and

the size of treatment effects were estimated using differences

between group means and their 95% confidence intervals. Log dose

response curves provided estimates of IC50 concentrations.

Results

Assessing the trypanocidal activity of melarsoprol
cyclodextrin inclusion complexes

To determine whether the complexed melarsoprol retains its

trypanocidal properties a modification of the Alamar blue assay

[22] was used to investigate the inhibitory concentration (IC50) of

the complexed melarsoprol molecules in comparison to standard

melarsoprol and an unrelated trypanocidal drug, diminazene

aceturate, in an in vitro trypanosome culture system. The IC50

values determined for mel/HPbCD and mel/RAMbCD were

21.6 nM and 8.8 nM respectively (Figure 1B). Standard melarso-

prol returned an IC50 value of 6.9 nM. Statistical analyses of the

Alamar blue data revealed no significant changes in the

trypanocidal activity of melarsoprol following complexation when

compared to the standard form of the drug (P = 0.2002,

P = 0.9999; mel/HPbCD and mel/RAMbCD respectively). The

HPbCD and RAMbCD molecules alone did not display any

trypanocidal activity (Table S1, Figure 1B).

Determining the efficacy of melarsoprol cyclodextrin
inclusion complexes in vivo

The ability of the complexed melarsoprol compounds to cure

CNS-stage trypanosome infections was investigated in a well

established and characterized murine model of the disease. The

drugs were administered by oral gavage each day at doses ranging

from 0.0125 mmol/kg to 0.2 mmol/kg for a seven day period. All

animals became aparasitaemic following the melarsoprol regi-

mens; however, all mice treated at the 0.0125 mmol/kg level

relapsed to parasitaemia. A relapse to parasitaemia was also

detected in one third of the mice treated with mel/HPbCD and

one sixth of the mice given mel/RAMbCD at the 0.025 mmol/kg

level. Successful cures were obtained in all mice treated with the

0.05 mmol/kg, 0.1 mmol/kg or 0.2 mmol/kg dosage of either

complex, indicating that 0.05 mmol/kg was the minimum dosage

necessary to achieve successful cures. Animals given HPbCD or

RAMbCD alone remained parasitaemic throughout the proce-

dure (Figure 1C).

Paired t-test analysis detected no evidence of decreased body

weight in uninfected mice following 7-days of oral drug treatment.

A significant (P = 0.019, 95% confidence interval 0.213 g, 1.954 g)

increase was detected between the mean body weight of the pre-

and post treatment groups (25.8360.696 g; 26.9260.890 g

respectively). No adverse clinical signs were detected at any point

during the chemotherapy regimen with the mice remaining alert

and showing good coat condition.

Determining the efficacy of contemporary melarsoprol
formulations in vivo following oral administration

The efficacy of melarsoprol (MelB) and the water soluble

melaminophenyl arsine derivatives [24], melarsamine hydrochloride

Complexed Melarsoprol for Oral Chemotherapy of HAT
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(MelCy) and melarsonyl potassium (MelW) (Figure 1A) when

administered per os at a dose of 0.05 mmol/kg for seven consecutive

days, during CNS-stage infections was investigated. No cures were

obtained in the mice treated with MelCy or MelW and only 33% of

the mice given MelB were successfully cured (Figure 1D).

Assessing parasite load within the brain following oral
complexed melarsoprol treatment

Taqman real-time PCR was performed (Figure S 1) to determine

the parasite numbers present within the brain tissue prior to

chemotherapy and at 24 hours after each oral dose of mel/HPbCD

or mel/RAMbCD (Figure 2A). Animals killed on day 21 post-

infection, prior to receiving any drug treatment showed a mean

parasite load of 626682.8 (mean 6 SE). Following a single dose of

mel/HPbCD or mel/RAMbCD the parasite numbers detected

within the brain were significantly (P,0.001) reduced (68.1614.7;

66.2610.8 respectively). The decrease in parasite numbers

continued in a stepwise manner with successive treatments until

the trypanosomes were completely cleared from the brain (Figure 2B

& C, Table S2 & S3). Interaction plots comparing the mean copy

numbers detected after each dose of mel/HPbCD and mel/

RAMbCD show that there are no significant differences between

the clearance rates achieved by either of the drugs (Figure 2D).

From the Taqman results it is apparent that both forms of

complexed melarsoprol clear the trypanosomes from the brain in a

rapid and efficient manner with a reduction of greater than 80% of

the parasite load 24 hours after the initial drug treatment.

MRI of BBB intergrity
We determined the effect of oral treatment with mel/HPbCD

on BBB function using MRI. Mice were examined prior to

treatment, and 24 hours, 8 and 15 days following the chemother-

apy regimen (Figure 3A). MRI scans were performed before and

after the injection of MagnevistH contrast agent (Gd-DPTA) [27]

and signal enhancement maps generated as previously described

[26]. Changes in BBB integrity were investigated in two infected

mice scanned at day 21 post-infection and compared with scans

prepared in the same animals 24 hours, 8 days and 15 days after

completing a 7 day oral course of mel/HPbCD as well as those

from uninfected mice (n = 3). At day 21 post-infection the BBB was

significantly compromised (17.8761.62) (Figure 3B, Figure 4,

Table S4). Signal enhancement was present throughout the brain

with highest signal change found in the ventricular region.

Changes in signal intensity were also apparent in the cerebral

cortex, hypothalamus, hippocampus and median eminence

(Figure 4). However, by 24 hours after completion of the

chemotherapy (Figure 4) the percentage signal change

(7.9360.455) had dropped significantly (P,0.0001) and was

comparable (P = 0.9296) to that seen in uninfected mice

(7.1160.162) (Figure 3B, Figure 4) indicating that by this point

the integrity of the BBB had become re-established. The integrity

of the barrier was maintained in all subsequent scans performed at

8 days (9.2560.596) (Figure 3B, Figure 4) and 15 days

(6.5560.463) (Figure 3B, Figure 4) after completion of the

treatment schedule (Table S4).

Figure 2. Clearance of parasites from the brain following mel/HPbCD or mel/RAMbCD chemotherapy. The ability of the melarsoprol
cyclodextrin inclusion complexes to clear the trypanosomes form the brain was studied. (A) Animals were infected (I) with T.b.brucei. On day 21 post-
infection one group (n = 6) of mice were sacrificed (K) while the remainder were treated with mel/HPbCD or mel/RAMbCD (M) at 0.05 mmol/kg.
Further groups (n = 6) were sacrificed 24 hours following each drug administration. Days post-infection are indicated below the treatment schedule.
Trypanosome load within the brain was assessed using Taqman PCR (Figure S1); (B,C) Interval plots of trypanosome load following each drug
administration showing the mean and standard error of the mean are presented for mel/HPbCD and mel/RAMbCD respectively. Analyses of the data
using the GLM procedure identified significant differences between the means (Table S2 & S3). (D) Interaction plot demonstrates no significant
interaction between mel/HPbCD and mel/RAMbCD treatment and the trypanosome load after each administration (P = 0.813).
doi:10.1371/journal.pntd.0001308.g002

Complexed Melarsoprol for Oral Chemotherapy of HAT
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Assessing the severity of the neuropathological response
The severity of the neuropathological response to the trypano-

some infection and drug treatment was determined in mice killed

15 days after completing the treatment schedule and compared to

animals killed at day 21 post-infection prior to receiving

chemotherapy using a well established grading scale [28] (Table

S5). Pathological examination of the brains prepared from animals

prior to drug treatment showed mild neuroinflammatory changes

(1.560.158) with the presence of an inflammatory cell infiltrate in

the meninges and Virchow–Robin spaces (Figure 5). Some

perivascular cuffs were also apparent surrounding the blood

vessels in the hippocampus (Figure 5). The cellular infiltrate was

composed mainly of lymphocytes, and macrophages (Figure 6). A

significant (P = 0.0366) resolution of this neuroinflammation

(1.08360.083) was apparent in mice killed 15 days after

completion of the oral mel/HPbCD regimen. This represents a

mean decrease of 27.8% with a 95% confidence interval (0.032,

0.801). Only a few inflammatory cells could be detected in the

meninges of these animals accompanied by very mild perivascular

infiltration of the occasional blood vessel in the hippocampus

(Figure 5 & 6).

Discussion

New drugs to treat HAT remain an urgent priority. In spite of

some recent positive developments [30] the situation remains

precarious as evidenced by the failure, late in clinical trials, of

pafuramidine (DB289). Ideally new drugs should be orally

available and of equal or better efficacy than current drugs with

improved safety. Melarsoprol is the only drug suitable to treat

CNS-stage rhodesiense disease and remains in use in some areas for

gambiense. Its use, however, is tainted by its being administered

parenterally and through its well documented adverse events. The

study reported here shows that complexation of melarsoprol with

the cyclodextrin molecules does not affect the trypanocidal

properties of the compound and appreciably enhances the ability

of the drug to cure CNS-stage trypanosome infections when given

as an oral chemotherapy regimen. The improved oral bioavail-

ability seen in these investigations is most likely due to the

increased solubility and reduced degradation kinetics of the drug

following complexation with the cyclodextrin molecules [10,31].

Further, cyclodextrins can also act as carriers, delivering the drug

directly to the intestinal membrane while protected within the

cavity of the molecule [32,33]. Consistent with our findings is the

improved oral bioavailability reported with a variety of cyclodex-

trin drug inclusion complexes including anti-parasitic agents. The

potent anti-malarial drug artemisinin has low aqueous solubility

that severely limits its absorption following oral administration.

Complexation of artemisinin with cyclodextrin molecules has been

shown to improve the pharmacokinetic profile of the drug

compared with Artemisinin 250H when given per os [34]. This

has also been demonstrated for the anti-helminthic drug

albendazole [35].

The pathogenesis of the PTRE associated with standard

melarsoprol treatment is currently unknown although several

hypotheses have been suggested [13–18]. However, it is probably

caused, at least in part, by an acute toxic reaction to low levels of

arsenic within the CNS following delivery of an intravenous bolus

of the arsenical drug [13,14]. On the basis of our combined data

the lack of toxicity and the resolution of the CNS inflammatory

reaction shown following oral treatment with melarsoprol

cyclodextrin inclusion complexes can most easily be explained

by the more controlled delivery of the trypanocidal drug to the

brain following a sustained absorption from the gut compared with

that of an intravenous bolus. Consistent with this explanation are

the extremely low levels of arsenic in the brain tissue following

chemotherapy which were below the level of detection (,5 ng/

mL) of the GC-MS assay employed (unpublished data) and the

extremely rapid clearance of the parasites from the CNS following

drug administration. This is also reflected by the restoration of

BBB integrity detected in the mice 24 hours after completion of

the chemotherapy regimen. However, a direct comparison of these

criteria following a curative IV regimen of ArsobalH would be

required to corroborate this hypothesis. Multiple IV doses of

ArsobalH cannot be administered in the murine model due to the

severe venous damage caused by the propylene glycol solvent

present in the drug preparation. Therefore, data regarding drug

levels, parasite clearance and BBB function following IV ArsobalH
remain unavailable.

Taken together these findings strongly suggest that mel/

HPbCD and mel/RAMbCD could be used to treat patients with

CNS-stage HAT. Since these experiments were performed using a

T.b.brucei model of infection it is possible that these drug complexes

will not show the same activity profile when transferred to human

disease. However, since the active trypanocidal component of the

complex is melarsoprol, with proven effectiveness against both

T.b.rhodesiense and T.b.gambiense infections, this scenario seems

highly unlikely. Consequently, in the first instance, these

complexes should be tested in subjects with T.b.rhodesiense, even

though these comprise the minority of cases of HAT compared

with T.b.gambiense, since melarsoprol is currently the only drug that

can be effective in rhodesiense disease. The drugs are effective orally

at dosages that could be delivered in humans. During the concise

10-day schedule for ArsobalH treatment a 60 kg patient would be

given a total dose of 1320 mg of melarsoprol. In the current study,

melarsoprol cyclodextrin complexes were curative when admin-

istered at 0.05 mmol/kg or 19.9 mg/kg melarsoprol daily for a

Figure 3. MRI scanning regimen and evaluation of blood-brain
barrier integrity. The effect of mel/HPbCD treatment on the integrity
of the blood-brain barrier was assessed using MRI. (A) Treatment and
scanning scheduled employed. Infected (I) mice (n = 2) were treated
with mel/HPbCD at 0.05 mmol/kg (M) and scanned (S) at the times
indicated and prior to the initial drug treatment (S*). (B) Interval plot,
showing the mean and standard error of the mean, of MRI post-contrast
percentage signal change data at each scan point. GLM analyses
identified significant differences between the group means (Table S4).
doi:10.1371/journal.pntd.0001308.g003
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seven day period. To obtain an approximate human equivalent

dose (HED) from this data the dosage must be normalized

according to body surface area which can be achieved by dividing

the murine dose by a factor of 12 [36]. The HED for the

complexed drugs would therefore be approximately 1.6 mg/kg,

with a total dosage of 672 mg assuming a seven day course and a

60 kg body weight. This is a considerable reduction in the total

amount of arsenical required for each drug course, even when

compared with the concise schedule. This decreased arsenical

dosage could also be a major factor in the apparent lack of toxicity

associated with the oral regimen.

These complexes rapidly clear the trypanosomes from the brain

following administration, reduce the severity of the neuropatho-

logical response induced by the infection, and also restore BBB

integrity following treatment. The availability of an orally

administrable drug would preclude both the need for hospitaliza-

tion of the patient throughout the period of treatment and the

provision of highly skilled clinicians to administer the drug by slow

intravenous infusion. Further, the pain and fear associated with

current melarsoprol therapy would be circumvented and patients

would be far more likely to be compliant in finishing the treatment

course. This would have a significant positive socio-economic

Figure 4. Serial MRI scans prepared from each time point investigated. The signal enhancement maps (top) and T2-weighted images
(bottom) of 4 representative slices (hind brain to fore brain) from an animal serially scanned prior to drug treatment, 24 hours, 8 days, and 15 days
after completion of the treatment course as well as an uninfected control mouse are shown. Brian areas including the ventricular region (1), cerebral
cortex (2), hippocampus (3), hypothalamus (4) and median eminence (5) are representatively labeled on pre-drug treated T-2 images.
doi:10.1371/journal.pntd.0001308.g004
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impact in local communities and on the already burdened health

care budgets of these regions.

One of the major problems in the management of HAT is that

there is no clear consensus on the criteria used to classify an

infection as having progressed to the CNS-stage [19,37]. The

current WHO criteria suggest that CSF containing .5 white blood

cells (WBC)/mL with or without the presence of trypanosomes

indicates CNS-stage infection [9]. However in some T.b.gambiense

infections the higher value of .20 WBC/mL has been used before

commencing melarsoprol treatment [38,39]. This has significant

implications for choosing the correct chemotherapeutic approach to

best manage the infection. Inappropriate administration of

melarsoprol to patients with early-stage disease exposes them to

unnecessary risks form drug toxicity while failure to use melarsoprol

in CNS-stage disease will have inevitably fatal consequences [19].

The use of an alternative treatment strategy without the associated

adverse safety profile of the intravenous melarsoprol formulation

would also obviate significantly the difficulties associated with the

current methods of disease staging [19].

In conclusion, the current chemotherapy options for treatment

of CNS-stage HAT are extremely limited and all involve

parenteral administration of highly toxic and sometimes ineffective

drugs. Moreover there are no new alternative drugs for CNS HAT

likely to be used in clinical practice for at least 5–10 years [30].

Only one compound, fexinidazole, is currently in Phase I clinical

trials [40]. Due to the high failure rate of novel compounds it is

critical to maintain drug development in this area to ensure that

effective treatments for both forms of this disease are available in

the future. Sir James Black, the Nobel Laureate said ‘the most

fruitful basis for the discovery of a new drug is to start with an old

drug’ [30]. If melarsoprol cyclodextrin inclusion complexes, given

via the oral route, prove equally efficacious in patients with HAT

this would constitute one of the most significant therapeutic

advances in the long history of the disease. Plans to test these drug

complexes in a phase II trial in East African patients with

T.b.rhodesiense are currently being formulated.

Supporting Information

Figure S1 Taq man analyses to determine parasite
load. Examples of the amplification plot and standard curves

obtained using the primer and probe sets detailed for detection of

the PFR2 gene to determine parasite load. Amplification was

performed on an Agilent MxPro3005 thermocycler using Brilliant

II mastermix (Agilent), 0.05 pmol/mL primer, 0.1 pmol/mL probe

(labelled with FAM and TAMRA) and 100 ng template DNA.

(DOC)

Table S1 Inhibitory concentration (IC50) of mel/
HPbCD, mel/RAMbCD, melarsoprol, diminazene acetu-
rate, HPbCD and RAMbCD. The IC50 of each compound was

determined against wild type S427 T. b. brucei trypanosomes by

Alamar blue assay. The figures in the body of the table

demonstrate the comparisons, in terms of statistical significance,

between the IC50 (nM) of each compound, shown in the row and

column headings. The p-values and 95% confidence intervals for

differences are based on analysis using the logarithmic transfor-

mation [log(x+1)] of the IC50. The mean IC50 value 6 the

standard error and the number of repeats are also shown.

(DOC)

Table S2 Copy number of the PFR2 gene detected
within the brain following mel/HPbCD chemotherapy.
Mice were infected with T. b. brucei GVR35/C1.9. Mel/HPbCD

Figure 5. Histopathology demonstrating the neuropathologi-
cal response in mice. Sections are prepared from mice killed at day
21 post-infection, prior to drug treatment (left column) and animals
killed 15 days after completion of the treatment with mel/HPbCD (right
column). H&E stained coronal sections showing the neuropathological
response in the meninges, hippocampus and choroid plexus/interven-
tricular foramen (scale bars from top 100 mm, 200 mm and 200 mm).
doi:10.1371/journal.pntd.0001308.g005

Figure 6. Immunocytochemistry demonstrating macrophages,
T-cells and B-cells. Macrophages, T-cells and a few B-cells were
present within the inflammatory cell infiltrate in mice prior to drug
treatment (left column). Following drug treatment these cell types were
rarely seen (right column) (scale bars 50 mm).
doi:10.1371/journal.pntd.0001308.g006
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chemotherapy commenced on day 21 post-infection. The

compound was administered by orally gavage, daily for 7

consecutive days at dose of 0.05 mmol/kg. The number of copies

of the PFR2 gene present within 100 ng of DNA prepared from

approximately 25 mg of whole brain homogenate, 24 hours after

administration of each dose was determined by Taqman PCR.

The figures in the body of the table demonstrate the comparisons,

in terms of statistical significance, between the number of copies of

the PFR2 gene detected after administration of each dose, shown

in the row and column headings. The p-values and 95%

confidence intervals for differences are based on analysis using

the logarithmic transformation [log(x+1)] of the copy number. The

mean copy number 6 the standard error and the number of

animals per group are also shown. No copies of the PFR2 gene

were detected following the 4th treatment or subsequent drug doses

these groups have been removed from the analysis.

(DOC)

Table S3 Copy number of the PFR2 gene detected
within the brain following mel/RAMbCD chemotherapy.
Mice were infected with T. b. brucei GVR35/C1.9. Mel/

RAMbCD chemotherapy commenced on day 21 post-infection.

The compound was administered by orally gavage, daily for 7

consecutive days at dose of 0.05 mmol/kg. The number of copies

of the PFR2 gene present within 100 ng of DNA prepared from

approximately 25 mg of whole brain homogenate, 24 hours after

administration of each dose was determined by Taqman PCR.

The figures in the body of the table demonstrate the comparisons,

in terms of statistical significance, between the number of copies of

the PFR2 gene detected after administration of each dose, shown

in the row and column headings. The p-values and 95%

confidence intervals for differences are based on analysis using

the logarithmic transformation [log(x+1)] of the copy number. The

mean copy number 6 the standard error and the number of

animals per group are also shown. No copies of the PFR2 gene

were detected following the 5th treatment or subsequent drug

administration these groups have been removed from the analysis.

(DOC)

Table S4 Comparison of the percentage signal change
data generated from MRI scans. Mice were infected with T.

b. brucei GVR35/C1.9. Immediately prior to treatment commenc-

ing on day 21 post-infection, animals were MRI scanned.

Following recovery from the MRI procedure animals were

administered mel/HPbCD orally at a dose of 0.05 mmol/kg.

Mel/HPbCD treatment continued for the next 6 days. Twenty-

four hours, 8 and 15 days after administration of the last dose,

corresponding to days 28, 35 and 42 post-infection respectively,

the MRI scans were repeated. Each MRI scan consisted of 20

continuous coronal slices. The brain was manually selected in each

slice and the percentage signal change calculated. The figures in

the body of the table demonstrate the comparisons, in terms of

statistical significance, between the times post-treatment shown in

the row and column headings. The P-values and 95% confidence

intervals are based on analysis using the percentage signal change

for each slice. The mean signal change 6 the standard error and

the number of animals per group are also shown.

(DOC)

Table S5 Parameters defining the injury score allocated
to the severity of the neuropathology. Injury sores are given

horizontally while the criteria used to define the scores are detailed

vertically.

(DOC)
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