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1 |  INTRODUCTION

Glioblastoma multiforme (GBM), the most malignant type 
of central nervous system tumor, is the most aggressive 
and lethal form of cancer, with an average survival time of 
15 months after diagnosis.1,2 For GBM cases in China, the 
1‐ and 5‐year overall survival (OS) rates are 61% and 9%, re-
spectively.3 Despite the availability of a variety of treatments, 

such as surgery, chemotherapy, radiation and biotherapy, 
death inevitably occurs from either recurrent or progressive 
disease; thus, scientific and clinical advances are desperately 
needed. In current academic research circles, there are in-
tensive efforts to elucidate the relationship between tumors 
and the immune microenvironment.4,5 Immunotherapy has 
attracted increasing attention, remarkable success has been 
achieved in cancer immunotherapies treating advanced 
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Abstract
Understanding the interactions between tumors and the host immune system holds 
great promise to uncover biomarkers for targeted therapies, predict the prognosis of 
patients and guide clinical treatment. However, the immune signatures of glioblas-
toma multiforme (GBM) remain largely unstudied in terms of systematic analyses. 
We aimed to classify GBM samples according to immune‐related genes and comple-
ment the existing immunotherapy system knowledge. In this study, we designed a 
strategy to identify 3 immune subtypes representing 3 different immune microenvi-
ronments (M1‐M3) and associated with prognosis. The 3 subtypes were significantly 
different in terms of specific immune characteristics (immune cell subpopulations, 
immune responses, immune cells, and checkpoint gene interactions). In additional, 
copy number variations and methylation changes were identified that correlated with 
genes related to a worse prognosis subtype in the microenvironment. More impor-
tantly, in M3 (worst prognosis subtype) and M2 (best prognosis subtype), the in-
teraction between immune cells and checkpoint genes was different, which had an 
important effect on the prognosis. Finally, we used risk scores of immune cells and 
checkpoint genes to evaluate the prognosis of GBM patients and validated the re-
sults with 3 independent datasets. Disordered interactions between immune cells and 
checkpoint genes result in a change in the immune microenvironment and affects the 
prognosis of patients. We propose that a better understanding of the immune micro-
environment of advanced cancers may provide new insights into immunotherapy.
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tumors, and targeted therapy will become an important means 
of tumor treatment in the future.6 However, immunotherapy 
is only applicable to a substantial fraction of patients, while 
others either are not suitable candidates or fail to respond. 
This has become a difficult problem, so new standards are 
urgently needed to guide individualized treatment.

An imbalance between the host microenvironment and 
tumor cells can result in tumor invasion, progression, and me-
tastasis. Immune responses play critical roles in carcinogene-
sis and the progression of solid tumors.7,8 It has been reported 
that nascent transformed cells can be initially eliminated by 
the host immune system based on both innate and adaptive 
immunity.9 The immune environment of a primary tumor is 
associated with the clinical response and benefit of immu-
notherapy.10,11 For example, the immune checkpoint mole-
cules programmed cell death protein 1 (PD1) and PD1 ligand 
1 (PDL1) are targets of drugs in clinical practice.12 Some 
studies have demonstrated that tumor‐infiltrating CD8 + T 
lymphocyte cells and intratumoral TH1‐type molecules are 
associated with positive responses to therapeutics by block-
ading PD1 and PDL1. However, therapies with an antibody 
targeting PD1 (anti‐PD1) displayed response rates from 17% 
to 21%, with some responses being remarkably durable.13,14 
The reason for this phenomenon may be tumor mutational 
burden15 or cytokine release syndrome.16 However immune 
responses and diseases are not caused by a single immune 
cell or checkpoint, their interaction relationship changes.17 
Therefore, studies of the relationship between the tumor and 
host microenvironment have revealed that interactions be-
tween the immune microenvironment and molecules affect 
the therapeutic outcome of patients. Researchers have also 
explored promising candidate biomarkers for predictive and 
prognostic value to further guide the individualized treatment 
of patients.

This study aimed to investigate the overall immune land-
scape and its clinical relevance in GBMs. From The Cancer 
Genome Atlas (TCGA) GBM cohort, we identified 3 im-
mune subtypes (M1‐M3) of GBMs based on the expression 
of global immune genes and the subtypes were related to pa-
tients’ survival. Each subtype was characterized by a differ-
ent subpopulation of immune cells and immune responses. 
The abnormally expressed genes in M3 (the worst prognosis 
subtype) also exhibited different methylation and copy num-
ber variation (CNV) levels from the M1 and M2 subtypes. 
In M2 (the best prognosis subtype) and M3, the interactions 
between immune cells and checkpoint genes differed signifi-
cantly, and we identified 3 checkpoints (CD27, PDL1, and 
CTLA4) with the most significant differences between the 2 
subtypes. Then, we found that the total risk scores for these 3 
checkpoints and 24 immune cells were related to patients’ sur-
vival, furthermore, high risk scores predicted worse progno-
sis. In addition, we validated these findings in 3 independent 
datasets. We observed that the immune microenvironment of 

different patients was different, which would affect the im-
mune treatment outcome of patients. Through this method, 
we hope to find target markers in different immune micro-
environments that interact with immune cells to predict pa-
tients’ prognosis in order to guide individualized treatment.

2 |  MATERIALS AND METHODS

2.1 | Patients and samples
The GBM samples used in this study were obtained from 
Beijing Tiantan Hospital between January 2005 and 
December 2009 (detailed information about the tissue sam-
ples is presented in Table S1). Overall survival (OS) was cal-
culated from the date of diagnosis until death or the end of 
follow‐up, while progression‐free survival was defined as the 
time between diagnosis and the first unequivocal clinical or 
radiological sign of disease progression. All samples were 
rinsed with normal saline after surgical resection and divided 
into 2 portions: one was placed in liquid nitrogen immediately 
and then stored at −80°C until use, and the other was placed 
in formaldehyde solution and hematoxylin‐eosin stained to 
assess the percentage of tumor cells. All patients signed in-
formed consent forms. The use of human tissue samples and 
the experimental procedures for this study were reviewed and 
approved by the Ethics Committee of the Cancer Institute and 
Hospital, Chinese Academy of Medical Sciences.

2.2 | RNA isolation and gene 
expression microarray
Total RNA from frozen samples was extracted using the 
mirVana miRNA Isolation kit (Ambion 1561) according 
to the manufacturer's protocol. RNA concentrations were 
determined by an ND‐1000 UV‐VIS Spectrophotometer 
(NanoDrop Technologies, Wilmington, DE), and RNA in-
tegrity was evaluated using the RNA 6000 LabChip kit in 
combination with the Agilent 2100 Bioanalyzer (Agilent 
Technologies, Santa Clara, CA). The RNA samples used in 
this study all exhibited RNA concentrations >40 ng/μL and 
RNA integrity numbers >7.0. After RNA concentration and 
integrity analysis, the samples were analyzed using Agilent 
4 × 44K Whole Human Genome Oligo Microarrays at the 
Cancer Hospital, Chinese Academy of Medical Sciences, ac-
cording to the manufacturer's specifications. In brief, 500 ng 
of purified total RNA was reversed transcribed in vitro 
using the Low RNA Input Linear Amplification Kit PLUS 
(Agilent) and then transcribed into cRNA labeled with Cy3. 
In total, 1.65 μg of cRNA was hybridized to each microar-
ray. After hybridization, the slides were washed and scanned 
with an Agilent G2505B Microarray Scanner System. The 
fluorescence intensities of the scanned images were extracted 
and preprocessed using Agilent Feature Extraction Software 
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(v9.1). The raw data were normalized using the GeneSpring 
GX software program, version 11.5 (Silicon Genetics, 
Redwood City, CA). The raw and processed data are publicly 
available at the Gene Expression Omnibus (GEO) website 
under the accession number GSE122586.

2.3 | Public clinical and molecular 
data collection
In TCGA datasets, RNAseq data (level 3, RSEM‐normalized 
data), methylation array data (Illumina Human Methylation 
450) and CNV data (Affymetrix SNP 6.0) of GBMs were 
downloaded from the NIH National Cancer Institute GDC 
Data Portal (https ://portal.gdc.cancer.gov/). Two external 
independent transcriptome datasets of GBMs were used 
for validation, namely, the Chinese Glioma Genome Atlas 
RNA sequencing dataset (CGGA data) and GEO microarray 
datasets GSE16011, as well as their corresponding clinical 
information.

A total of 404 immuno‐related human genes, including 
4 immune response types, 24 immune cells, and 22 immune 
response categories, that were curated from the nCounter® 
PanCancer Immune Profiling Panel (NanoString) were im-
plemented as candidate genes in this study. Detailed annota-
tions for these 404 genes are listed in Table S2.

2.4 | Identification of immune subtypes of 
GBMS by immune genes
The expression of immune‐related genes was used to iden-
tify immune subtypes. Through T‐Distributed Stochastic 
Neighbor Embedding (t‐SNE), the TCGA GBM cohort was 
divided into 3 immune subtypes, representing 3 different im-
mune microenvironments. The optimal cluster number was 
determined by NbClust, an R package that determines the 
best number of clusters in a dataset.

2.5 | Immune cell subpopulations and 
responses in GBM subtypes
We used gene set enrichment analysis to identify immune 
cell types that were enriched in each immune subtype. The 
expression level of each gene was log2‐transformed for 
subsequent analysis. For each patient, genes were ranked in 
descending order according to their expression values, and 
the association was represented by a normalized enrichment 
score. An immune cell type was considered enriched in a 
patient when the P‐value was <0.1. The percentage of each 
immune cell with significant enrichment in each immune 
subtype was calculated to compare the proportion of immune 
cell types in different classifications.4

The enrichment scores of immune responses in each im-
mune subtype were determined by single sample enrichment 

analysis in the R package GSVA. Gene set variation anal-
ysis (GSVA) is used to estimate the variation in gene set 
enrichment through samples of expression datasets, so the 
enrichment scores of immune responses in each subtype to 
be computed can be compared.18

2.6 | Regulation of abnormally expressed 
genes in the M3 subtype
For each subtype, the featured genes were identified by 
comparing the samples in this subtype with the remain-
ing samples using Student's t test. Through comparing 
the differentially expressed genes of M3 subtype with M1 
subtype and M2 subtype, respectively, we selected signifi-
cantly differentially expressed genes in the M3 subtype, 
and then to explore the mechanisms of changes differen-
tially expressed genes of M3 subtype via epigenetic varia-
tions and CNVs.

As for mRNA expression, median expression levels (used 
to summarize expression in each subtype) were computed 
using only samples with nonmissing values.

To study the relationship between the expression and 
DNA methylation of those genes, we mapped DNA methyla-
tion probes to the genes. The methylation level of a particular 
gene was defined as the mean value of all probes mapping 
to that gene. For a given gene, the beta value was evaluated 
within each immune subtype. In addition, we used Student's t 
test to examine whether these genes were differentially meth-
ylated in M3 subtype compared with M1 subtype and M2 
subtype.

We used the GISTIC2 method to estimate the thresholded 
gene‐level CNV of GBMs to examine CNV changes in M3 
abnormal genes across subtypes.19

2.7 | Reconstruction of the immune 
response interaction network 

Based on the gene expression data, we reconstructed immune 
cell‐gene (immune checkpoint inhibitors and co‐inhibitory 
and co‐stimulatory markers of the innate and adaptive im-
mune systems) networks; these immune checkpoint genes 
were selected from a previous report.20 Through GSVA to es-
timate the enrichment scores of each immune cells, this score 
can represent the expression or infiltration of immune cells. 
Then we used Pearson correlation to computer the correlation 
of the enrichment score of immune cells and the expression 
level of the target checkpoint genes. The network was visu-
alized using Cytoscape.21 The edge weights of the network 
were based on the Pearson correlation coefficient between 
the immune cells and the target checkpoint genes. The cyan 
elliptical nodes represent immune cells, and the salmon oc-
tagonal nodes represent immune checkpoint genes.

https://portal.gdc.cancer.gov/
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2.8 | Prognostic analysis
To identify the infiltration of immune cells and checkpoint 
genes that could predict GBM patient prognosis, a risk fac-
tor score was calculated to assess the survival of patients. In 
brief, we used univariate Cox regression analysis to evalu-
ate the association between survival time and the infiltra-
tion of each immune cell type and the expression levels of 
checkpoint genes. Regression coefficients with a plus sign 
indicated that increased expression was associated with de-
creased survival, that is risky factors; conversely, a minus 
sign indicated that increased expression was associated with 
increased survival, that is protective factors. A mathematical 
formula was constructed to predict survival, and we assigned 
a risk score to each patient by the regression coefficients 
from the univariate Cox regression analysis.22 The risk score 
of each patient was calculated as follows:

�i and β represent the regression coefficients of gene expres-
sion values and the infiltration degree of immune cells, re-
spectively. All patients in the dataset were thus assigned to 
high‐risk and low‐risk groups using the median risk score as 
the cut‐off point. Patients with higher risk scores were ex-
pected to have poor survival outcomes. The Kaplan‐Meier 
method was used to estimate the OS time for the two sub-
groups, and differences in survival time were analyzed using 
the log rank test (R package “survival”).

2.9 | Statistical analysis
All statistical analyses in this study were performed using 
R software (http://www.r-proje ct.org). T‐SNE was imple-
mented in the R package Rtsne. Heatmaps and Circos plots 
were generated by the R packages pheatmap and OmicCircos, 
respectively. All statistical tests were 2‐sided, and a P value 
less than 0.05 was considered statistically significant.

3 |  RESULTS

3.1 | Immune subtypes in cancer
To characterize the immune characteristics of all TCGA 
GBM samples, immune signatures according to the nCoun-
ter® PanCancer Immune Profiling Panel classification into 
4 immune response types (adaptive response, inflammation 
response, humoral response and innate response) containing 
a panel of 404 immune‐related genes were used to describe 

the immune landscape in GBM samples (Figure 1A). We ob-
served that different immune responses in different samples 
were associated with differences in the immune microenvi-
ronment, additionally, the interactions between tumors and 
hosts were diverse. To identify common immune subtypes 
and evaluate whether tumor microenvironment features can 
predict outcomes, we analyzed the microenvironments across 
the landscape of all GBM samples. Four immune response 
types, that is 404 genes were used to perform a cluster analy-
sis, and 3 immune subtypes were obtained, representing 3 dif-
ferent immune microenvironments (referred to as M1, M2, 
and M3, Figure 1B). Furthermore, the immune microenvi-
ronment subtypes were associated with OS. M2 had the best 
prognosis, while M3 had the least favorable outcome (Figure 
1C). These findings suggested that the immune microenviron-
ment affects the prognosis of patients. Therefore, we adopted 
the perspective of immune microenvironments to explore im-
munotherapy effects, which provided us with fresh clues.

3.2 | Composition of the 3 immune subtypes
The immune cell proportions of the tumor stromal fraction 
varied across immune subtypes. Using a transcriptome ex-
pression dataset, we performed GSVA of 24 immune cell 
subpopulations, including 11 innate and 13 adaptive im-
mune cell subpopulations. The results showed that the pro-
portion of subpopulations of immune cells was different in 
each immune subtype. In M1, the immune cell subpopula-
tions with the top 3 highest enrichments included Tcm (cen-
tral memory T) cells (79%), TFH (T follicular helper) cells 
(42%), and B cells (39%). In M2, the top 3 highest enrich-
ments included Tcm cells (84%), macrophages (80%), and 
TFH cells (31%); however, in M3, the top 3 highest enrich-
ments were Tcm cells (79%), macrophages (63%), and B 
cells (51%). These results, which are shown in Figure 2A‐C, 
indicated that the proportion of immune cells was associ-
ated with the immune microenvironment, and different im-
mune microenvironments affected the prognosis of patients.

In addition to immune cell subpopulation differences, 
through GSVA, we observed that the 3 subtypes demon-
strated different immune responses. The M3 subtype (with 
the worst prognosis) showed high enrichment scores in im-
munosuppression, phagocytosis, leukocyte migration, TNF 
superfamily members and receptors, while the M2 subtype 
(with the best prognosis) exhibited high enrichment scores in 
CD8‐positive response, B‐cell activation, B‐cell receptor sig-
naling pathway, transcription factors, and so on (Figure 2D).

3.3 | Regulation of abnormally expressed 
genes in the M3 subtype
The abnormally expressed genes in M3 were not conducive 
to the prognosis of patients; therefore, we speculated that 

Risk_Score=

n
∑

i=1

�i ∗ expression (checkpoint genes)

+� ∗ infiltration (immune cells)

http://www.r-project.org
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these genes might be critical for cancer occurrence and de-
velopment. To further explore this theory, understanding of 
their expression in different states of the immune microen-
vironment was needed. We examined the expression and 
expression control of those genes via epigenetic and CNV 
mechanisms.

The expression profiles of 179 abnormally expressed 
genes in M3 immune subtype varied across different immune 
subtypes, perhaps indicating their role in shaping the immune 
microenvironment. The methylation levels of these genes in 
M3, there were 70 (39.1%) genes had lower methylation lev-
els than in the M1 and M2 subtypes, and, 57 (31.8%) genes 

had higher methylation levels than in the M1 and M2 sub-
types, indicating that the methylation levels affected the ex-
pression of multiple genes and varied across immune subtype 
(Figure 3A). However, the CNVs of most genes remained 
unchanged; yet, for the CNVs in M3 compared with the M1 
and M2 immune subtypes, the amplification frequency (82 
genes, 45.8%) was the highest, while the deletion frequency 
(51 genes, 28.5%) was higher than that of M2, but lower than 
that in the M1 subtype (Figure 3B). These findings suggest 
that changes in copy number may affect gene expression lev-
els to some extent. The changes in the transcriptome expres-
sion, methylation and CNV levels of these genes are shown 

F I G U R E  1  Differentially expressed immune signatures in GBM. A, The expression of an immune signature containing 404 immune‐
related genes in GBM samples is shown as heatmap. Generally, these genes were classified into 4 groups: adaptive, inflammation, humoral, and 
innate immune response‐related genes. B, GBM samples were divided into 3 groups. The blue shading represents immune microenvironment 
1 (M1, 38 samples), the magenta shading represents immune microenvironment 2 (M2, 45 samples), and the red shading represents immune 
microenvironment 3 (M3, 68 samples). C, Kaplan‐Meier survival plots of each subtype. The blue line represents the M1 subtype, the magenta line 
represents the M2 subtype, and the red line represents the M3 subtype
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on chromosome. In the circos plot, an ideogram of a normal 
karyotype is shown in the outermost ring. The next outermost 
ring is the heatmap of gene expression at corresponding ge-
nomic coordinates, red represents high gene expression and 
blue represents low gene expression; the next ring represents 
the CNVs, multiple lines in stair steps show different indi-
viduals, red lines represent copy number amplification and 
blue lines represent copy number deletion; the innermost 
ring is heatmap illustrating DNA methylation β values, red 
represents high methylation β values and blue represents low 

methylation β values; and the middlemost lines showing the 
interaction between genes and genes (Figure 3C). Overall, 
these marked differences in M3 abnormally expressed genes 
may be reflective of modulation of the immune microenvi-
ronment by immune cells and cancer cells and may affect the 
therapeutic outcome of patients. The observed differences 
in the regulation of those genes might have implications for 
therapeutic development and combination immune therapies, 
and the multiple mechanisms at play in evoking them further 
highlight their biological importance.

F I G U R E  2  Immune cell subpopulations and immune responses in 3 immune subtypes. A‐C, Proportion of immune cell subpopulations in 
each immune subtype. D, Different immune responses in 3 immune subtypes
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3.4 | Networks modulating immune 
response interactions
A number of immune checkpoint inhibitors and co‐inhibi-
tory and co‐stimulatory markers of the innate and adaptive 
immune systems are currently under investigation for im-
munotherapy in various cancers. In an attempt to identify 
promising candidates for GBM immunotherapy, we recon-
structed a network of immune cells and immunomodula-
tory molecules to explore which molecules are available. 
The interaction network between immune cells and these 
checkpoint genes was then filtered for molecules that were 
significantly associated with prognosis. We found that in 
the M2 (good prognosis) and M3 (bad prognosis) subtypes, 
the interactions between immune cells and checkpoint mol-
ecules were significantly different, and the interaction co-
efficient was higher in M2 subtype than M3 subtype, that is 

the stronger interaction between immune cells and check-
point genes, the better the prognosis of patients. CD27, 
PDL1, and CTLA4 were at the center of the network, at the 
same time, the 3 checkpoint genes were the most signifi-
cant changes in their interactions between M2 subtype and 
M3 subtype, we hypothesize that these three genes in dif-
ferent immune microenvironments significantly affect the 
prognosis of patients (Figure 3D‐E). It has been suggested 
that the prognosis of patients or the occurrence of disease is 
determined not by a single molecule but by the interaction 
of genes or molecules. Because different patients have sig-
nificant differences in medicine sensitivity, their progno-
sis also differs significantly. This requires that individual 
treatment be adopted for different individuals in order to 
achieve the best therapeutic effect. Studying the interac-
tions between target molecules and other molecules or cells 
and then connecting them with the prognosis of patients is 

F I G U R E  3  Regulation of abnormally expressed genes in the 3 subtypes and the interaction network between 24 immune cells and 18 
checkpoint genes in the M2 and M3 subtypes. A, From left to right: mRNA expression (median normalized expression levels); methylation 
expression (median DNA methylation beta value). B, The ratio of amplification and deletion frequencies in 3 immune subtypes, respectively. 
C, Circos plot displaying the distribution of gene expression, DNA methylation, CNV, and interactions between genes on chromosomes. D‐E, 
The interaction networks between 24 immune cells and 18 checkpoint genes in the M2 and M3 subtypes, respectively. The cyan elliptical nodes 
represent immune cells, and the salmon octagonal nodes represent checkpoint genes. The edges represent correlation coefficients, and the colors 
of the edges represent the Pearson correlation coefficients, where red represents a high correlation coefficient and blue represents a low correlation 
coefficient
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of great importance for determining patients' prognosis and 
guidelines for clinical therapy.

3.5 | Correlation between interaction 
relationship and overall survival
To explore the influence of network relationships on sur-
vival, we tested the prognostic value of CD27, PDL1, and 
CTLA4 and 24 immune cells. We performed a univariate 
Cox regression analysis to evaluate the association between 
survival time and the 3 checkpoint genes expression lev-
els and 24 immune cells enrichment scores. In our datasets 
(GSE122586) and 2 external independent datasets, survival 

analysis indicated that the relationship could predict the prog-
nosis of GBM patients, and high risk scores were associated 
with poor survival (Figure 4A‐D). These results suggested 
that the interaction relationship was able to predict the prog-
nosis of GBM patients, assisting with postsurgical treatment 
management and providing a priori guidance for individual-
ized treatment and targeted treatment.

4 |  DISCUSSION

We have developed an integrated strategy to character-
ize the interaction relationship between the immune 

F I G U R E  4  Kaplan‐Meier estimates of OS of patients according to the risk scores. A‐D, The survival curves for risk scores of 24 immune 
cells and 3 genes in TCGA, CGGA, GSE122586, and GSE16011 datasets
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microenvironment and the clinical outcome of human 
GBM. Our approach to deeply mine large datasets enabled 
us not only to disentangle tumor‐immune interactions but 
also to devise strategies for guiding cancer immunotherapy 
in GBM.

There is a growing body of evidence suggesting that the 
interaction between cancer cells and the host immune micro-
environment plays a critical role in the occurrence and de-
velopment of tumors.23 Research into immune checkpoints 
marks the beginning of a new era in cancer immunotherapy. 
However, immunotherapy works in only a small number of 
cancers, and only a fraction of patients have good treatment 
results.24 Further research into how to guide the clinical treat-
ment and predict the prognosis of patients offers considerable 
potential.

GBM is the most malignant tumor of the nervous sys-
tem, but the function of the immune response in GBM 
progression and prognostication remains completely un-
known. High‐throughput sequencing technology provides 
objective data for this purpose. In this study, we divided 
GBM samples into 3 subtypes utilizing immune signa-
tures. The 3 subtypes differed significantly in terms of spe-
cific immune characteristics (immune cell subpopulations, 
immune response, interactions between immune cells, and 
checkpoint genes). In additional, CNV and methylation 
changes were identified that correlated with genes related 
to a worse prognosis in the microenvironment. These find-
ings may provide new insight into strategies for immuno-
therapy of GBM.

Previous studies have reported some molecular subtypes 
of glioma based on genome‐wide profiles.25,26 In our anal-
ysis, we focused only on global immune‐related gene pro-
files, which could provide more detailed information about 
the immune landscape of GBM. The M2 subtype had the 
most favorable prognosis, suggesting that the CD8‐positive 
response and an increase in B‐cell infiltrates are needed for 
cancer control, consistent with previous reports.27-29 In con-
trast, the M3 subtype conferred the worst prognosis and dis-
played composite signatures reflecting immunosuppression 
response, leukocyte migration, and so on.

Possible impacts of methylation changes and CNVs in 
abnormally expressed genes in M3 were seen. Most of these 
genes were methylation changes, indicating that the methyl-
ation levels of these genes affected the expression profiles 
of multiple genes. Regarding the CNVs in M3 compared 
with the M1 and M2 immune subtypes, the amplification 
frequency was the highest, and the deletion frequency was 
higher than that in M2, but lower than that in the M1 sub-
type. These findings suggest that changes in CNV may af-
fect gene expression levels to some extent. Further work 
is needed to determine the functional aspects of these 
associations.

The immune response is determined by the collective 
states of intracellular molecular networks in tumor, im-
mune, and other stromal cells via soluble proteins such as 
cytokines, which mediate interactions among those cells.30 
Therefore, studying the interactions between immune cells 
and molecules is important for the immunotherapy of 
various cancers. We found that the interactions between 
immune cells and immune checkpoint genes differed be-
tween the M2 and M3 subtypes. In M2 compared with the 
M3 subtype, the interaction coefficients between immune 
checkpoint genes and immune cells were greater, the dis-
ordered interactions between immune cells and checkpoint 
genes result in changes in the immune microenvironment 
and affect the prognosis of patients. Based on immune 
cell‐gene interactions, we identified the top 3 genes sig-
nificantly different interactions with immune cells in the 
M2 and M3 subtypes, and then we used risk scores of 24 
immune cells and 3 checkpoint genes (CD27, PDL1, and 
CTLA4) in 4 independent datasets to predict the prognosis 
of patients and to guide their clinical treatment. Of note, 
using these methods, it is not always possible to fully as-
certain whether a particular interaction works in the tumor, 
immune, or stromal cell compartment, but this could be 
improved by incorporating additional cell type‐specific 
knowledge.

There are some limitations in our study. First, the histo-
logical samples were too small and not sufficiently repre-
sentative to evaluate immune cell infiltration. Second, for 
most tumor types in TCGA, samples with fewer than 60% 
tumor cell nuclei according to a pathologist review were 
excluded from study,31 thus potentially excluding the most 
immune‐infiltrated tumors from the analysis. The degree to 
which this biased the results, relative to the general popula-
tion of cancer patients, is difficult to ascertain. In addition, 
our analyses were limited by restricting them to data from 
molecular assays in the absence of targeted classical cellular 
immunology assays for confirming cell phenotype distribu-
tion, as those types of data have not been collected from 
TCGA patients.

In conclusion, using the gene expression profile of global 
immune genes, we identified 3 immune subtypes in GBM 
samples. These subtypes were associated with prognostic, 
genetic, and immune‐modulatory alterations that may shape 
the specific types of immune environments we observed. With 
our increasing understanding that the tumor immune environ-
ment plays an important role in prognosis as well as response 
to therapy, defining the immune subtype of a tumor may play 
a critical role in predicting the disease outcome as opposed to 
relying solely on features specific to individual cancer types. 
These findings regarding the intratumoral immune microenvi-
ronment may shed new light on immunotherapy strategies for 
advanced gliomas.
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The cancer microenvironment has high prognostic value. 
The analysis of the immune context of tumors revealed a set 
of cellular and molecular immune markers that could be used 
to effectively and reproducibly classify patients according to 
their survival. Further studies are needed to validate our con-
clusions and to elucidate the underlying mechanisms of these 
phenomena.
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