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Voice biometrics is one kind of physiological characteristics whose voice is different for each individual person. Due to this
uniqueness, voice classification has found useful applications in classifying speakers’ gender, mother tongue or ethnicity (accent),
emotion states, identity verification, verbal command control, and so forth. In this paper, we adopt a new preprocessing method
named Statistical Feature Extraction (SFX) for extracting important features in training a classification model, based on piecewise
transformation treating an audio waveform as a time-series. Using SFX we can faithfully remodel statistical characteristics of the
time-series; together with spectral analysis, a substantial amount of features are extracted in combination. An ensemble is utilized
in selecting only the influential features to be used in classification model induction. We focus on the comparison of effects of
various popular data mining algorithms on multiple datasets. Our experiment consists of classification tests over four typical
categories of human voice data, namely, Female and Male, Emotional Speech, Speaker Identification, and Language Recognition.
The experiments yield encouraging results supporting the fact that heuristically choosing significant features from both time and
frequency domains indeed produces better performance in voice classification than traditional signal processing techniques alone,
like wavelets and LPC-to-CC.

1. Introduction

Unlike fingerprints, iris, retina, and facial feature, our voice
is a kind of bodily characteristics that is useful in speaker
identification but it remains relatively unexplored. Compared
to other bodily features, voice is dynamic and complex, in the
sense that a speech can be spoken in different languages, dif-
ferent tones, and in different emotions. Voice biometrics plays
a central role inmany biometrics applications such as speaker
verification, authentication, and access control management.
Furthermore voice classification potentially can apply to
interactive-voice-response system for detecting the moods
and tones of customers, thereby guessing if the calls are
of complaints or complement, for example. More examples
of voice classification have been described in our previous
work [1] which attempted to classify voice data by using
hierarchical time-series clustering methods. The clustering
method only separates voice data into distinct groupswithout

knowing the labels of the groups. Voice classification method
trains and tests voice data into classes of known labels.

Voice classification has been studied intensively in the
biometrics research community using digital signal process-
ing methods. The signatures of the voice are expressed in
numeric values in the frequency domain. There lie consid-
erable challenges in attaining high accuracy in voice classifi-
cation given the dynamic nature in the speech data, not only
the contents within but also the diversity of human vocals and
different ways of speeches. In this paper we tackle the classi-
fication challenges by modeling human voices as time-series
in the form of stochastic signals. In contrast to deterministic
signals that are rigidly periodic, stochastic signals are difficult
to be modeled precisely by mathematical functions due to
uncertainty in the parameters of the computational equa-
tions. Time-series of voice data are nonstationary, with their
statistical characteristics change over time when spoken. As
far as human voice is concerned, almost all of them are
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stochastic and nonstationary, meaning that their statistics are
time dependent or time varying.

Given such temporal data properties, human voice that is
acquired continually from the time domain would be in the
form of random time-series that often has a single variable
(amplitude in loudness) over time. It is believed that the
statistical characteristics are changing over time during a
speech but they may form some specific patterns, so some
inherent information can be derived from the time-series that
are useful for classification. Specifically we adopt a recent pre-
processing methodology, called Statistical Feature Extraction
(SFX) [2], that can effectively transform a univariate time-
series voice data to a multivariate data while capturing the
informative characteristics of the time-series. It is known
that conventional data mining models can be deployed for
classifying data with only multiple attributes. Previous work
by other researchers who utilized wavelet transformation
essentially converted temporal data to the representation of
frequency domain format. For voice classification in this
paper, elements of both time domain and frequency domain
are used for obtaining the statistical characteristics of the
time-series, and subsequently subject to model learning for
classification that can be generically implemented by most of
the available classification algorithms.

Simulation experiments are carried out over four repre-
sentative types of voice data or speeches being digitized for
validating the efficacy of our proposed voice classification
approach based on SFX and metaheuristic feature selection.
This type of feature selection will find the optimal subset of
features for inducing the classificationmodel with the highest
accuracy. The four types of testing data are deliberately
chosen with the purpose of covering a wide range of possible
voice classification applications, such as Female and Male
(FM), Emotional Speech (ES), Speaker Identification (SI),
and Language Recognition (LR). Given the multiattributes
which are derived from the original time-series via the
preprocessing step, feature selection (FS) techniques could be
applied prior to training a classification model. Our results
indicate that superior performance could be achieved by
using SFX and FS together over the original time-series for
voice classification.The improvements are consistent over the
four testing datasets with respect to the major performance
indicators.

The rest of the paper is structured as follows:The previous
works on classifying voice data are reviewed in Section 2;
specifically their time-series transformation and feature
extraction techniques are highlighted. Our proposed voice
classification model which converts time-series voice data to
its encoded vector representation via statistical and spectral
analysis is described in detail in Section 3. A set of compar-
ative experiments is performed by using four kinds of voice
datasets, and they are reported in Section 4. Results that rein-
force the efficacy of our new approach are shown in Section 5.
The performance evaluation is all-rounded by considering
accuracy, Kappa statistic, precision, recall, 𝐹-measure, ROC
area under curve, and time cost for each dataset. Section 6
concludes this researchwork and suggests some futureworks.

2. Related Work

Human voice is stochastic, nonstationary, and bounded in
frequency spectrum; hence some suitable features could
be quantitatively extracted from the voice data for further
processing and analysis. Over the years, different attempts
have beenmade by previous researchers who used a variety of
time-series preprocessing techniques as well as the core
classification algorithms for extracting acoustic features from
the raw time-series data. Their performances, however, vary.

2.1. Feature Extraction on Voice Data. Some useful features
selected for the targeted acoustic surveillance are [3]weighted
average delta energy (Δ

𝐸
), LPC spectrumflatness (𝐹LPC), FFT

spectrum flatness (𝐹FFT), zero crossing rate (𝑅ZC), harmonic-
ity (𝐻), mid-level crossing rate (𝑅MC), and peak and valley
count rate (𝑅PV). The classifier model used by the authors
is the sliding window Hidden Markov Model (HMM). They
obtained an average error rate at the range of 5%–20%. Peeters
discoveredmore detailed acoustic features for sound descrip-
tion [4].These features can be roughly grouped into temporal,
energy, spectral, harmonic, perceptual, and various features.
The limitation is the expensive time and space costs of
computation for such full kind of feature extraction.

In the research community of signal processing, the most
widely used methods for voice/speech feature extraction are
Linear Prediction Coding or Linear Prediction Coefficient
(LPC), Cepstral Coefficient or Cepstrum Coefficient (CC),
and Mel Frequency Cepstral Coefficient (MFCC). LPC con-
sists of finding a time-based series of 𝑛-pole infinite impulse
response (IIR) filters whose coefficients better adapt to the
formants of a speech signal.Themain idea behind LPC is that
a sample of speech can be approximated as a linear combina-
tion of past speech samples [5]. The methods for calculating
LPCs include covariance method, autocorrelation (Durbin)
method, lattice method, inverse filter formulation, spectral
estimation formulation, maximum likelihood method, and
inner product method [6].

As a general practice of pattern recognition, the final
predictor coefficients are never applied because of the high
variance. Instead, cepstral coefficients [7] are introduced for
transforming the LPC predictor coefficients to those with
more robust property. Cepstral coefficients are the inverse
Fourier transform representation of the log magnitude of the
spectrum.The cepstral series represents a progressive approx-
imation of the envelope of the signal [8].MFCCoffers the best
performance within six coefficients (the other five coeffi-
cients are Linear Prediction Coefficient, Linear Prediction
Cepstral Coefficient, Linear Frequency Cepstral Coefficient,
and Reflection Coefficient) [9]. MFCC divided the speech
into frames (typically 20ms for each frame), applied Discrete
Fourier Transformation over every frame, retained the log-
arithm of the amplitude spectrum, smoothed the spectrum,
and appliedDiscrete Cosine Transform [10]. Severalmodified
MFCC methods are shown having better performance in
some cases. One of them is weighted MFCC. To reduce the
dimensions of feature vector while still retaining the advan-
tages of delta and double delta features, the weighted MFCC
coefficients equal the sum of MFCC coefficients, 𝑝 times
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Delta features and, 𝑞 times doubleDelta features, where𝑝 and
𝑞 are weights in real numbers [11]. An enhanced technique
for feature recognition using Improved Features for Dynamic
Time Warping (DTW) was applied as a classifier; the accu-
racy was between 85% and 98%. Zhou et al. designed a new
Kullback-Leibler distance (KLD) based weighting Perceptual
Linear Prediction (PLP) algorithm for MFCC. The KLD is
defined as the distance of two continuous functions; it is a
measure between reality distribution 𝑝 and approximating
model 𝑞.The weight is the reciprocal of this distance [12].The
word error rate was below 25%.

Similar to LPC and MFCC, PLP modifies the short-term
spectrum of the speech by several psychophysically based
transformations.The basic steps of PLP contain spectral anal-
ysis, critical-band spectral resolution, equal-loudness preem-
phasis, intensity-loudness power law, autoregressive model-
ing, and practical considerations [13]. But PLP is vulnerable
when spectral values are modified by the frequency response
of the communication channel. Thus, by employing relative
spectra filtering of log domain coefficients (RASTA), we
make PLP more robust to these distortions [14].

Tsrrneo Nitta used multiple mapping operators to extract
topological structures, hidden in time spectrum patterns.
Linear algebra is the main technique. Karhunen-Loeve trans-
formation and linear discriminant analysis were the feature
extraction methods [15]. The error rate was lower than 30%.
Lee et al. proposed a new feature extraction method called
independent component analysis (ICA). The purpose of an
ICA network is to calculate and extract independent com-
ponents from speech segment by training. Meanwhile, the
weight matrix holds the basic function coefficients from the
speech segment. One assumption of ICA is that the obser-
vation is the linear combination of the independent compo-
nents [16]. The error rate was 5% at most.

Our proposed method uses both statistical and spectral
analysis for extracting all the possible features. Subsequently
it selects useful features via a metaheuristic search. The
qualified features are then used to reduce the vector dimen-
sionality of training instances for building a classification
model.The features from the temporal domain contain richer
statistical information than only local maxima and local
minima. Our method rides on the observed current trend of
fusing information from both time and frequency domains.
Themerit is that a nonlinear relationship is represented by the
spectrum of a spectrum, so only the useful features from
the frequency domain in addition to other strong statistical
features from the time-domain are encoded into the multidi-
mensional vector which of course is limited in space. Besides,
residual and volatility are introduced and embedded into
voice classification to produce superior classification result.

2.2. Data Mining Algorithms for Voice Classification. Some
recent research tapped on the power of data mining algo-
rithms for performing voice classification in various appli-
cations. For instance, a new method is proposed by the
research team of Lee et al. [17], for prescribing personalized
medicine using vocal and facial features. It is a consti-
tution diagnostic method based solely on the individual’s
physical characteristics, irrespective of psychological traits,

characteristics of clinical medicine, and genetic factors. They
used Support Vector Machine (SVM) on a software package
called LIBLINEAR (L2-loss SVM dual type) for doing voice
classification.

As a contribution to telemedicine in home telemonitor-
ing, Maunder et al. [18] investigated the possibility of auto-
matically detecting the sound signatures of activities of daily
living of an elderly patient using nonintrusive and reliable
methods. A Gaussian mixture model (GMM) classifier was
used to differentiate sound activities. Their experiments
yielded encouraging results; with recognition accuracies in
the range 70% to 100% can be consistently obtained using
different microphone-pair positions, under all but the most
severe noise conditions.

For biomedical applications, Chenausky et al. made an
important contribution in acoustic analysis of Parkinson’s
disease (PD) speech [19].The speech of 10 PD patients and 12
normal controls was analyzed for syllable rate and variability,
syllable length patterning, vowel fraction, voice-onset time
variability, and spirantization. These were normalized by
the controls’ standard deviation to represent distance from
normal and combined into a composite measure. A feedback
device that was developed from these findings could be useful
to clinicians adjusting deep brain stimulation (DBS) parame-
ters, as a means for ensuring they do not unwittingly choose
DBS settings which impair patients’ communication.

In our previous work in [1], surveyed several approaches
have been studied, such asArtificialNeuralNetworks (ANN),
Support Vector Machines (SVMs), Hidden Markov Models
(HMMs), and Gaussian Mixture Models (GMMs). They
have been used for training up a classification model with
predefined voice samples for voice recognition. A summary
of the techniques by which majority of research works used
was shown in [1]. In particular, an approach by using unsu-
pervised clustering was described in [1], where priori labeled
samples are not required, and the characteristic groupings
will be dedicated by the samples themselves. Voiceprints who
share similar features will be placed into distinctive groups
that represent some labels about the speakers. Subsequently
a decision tree (classifier) can be built after studying and
confirming the characteristic groups.

Above all the methods a forementioned, encoding tech-
niques from the frequency domains are used as sole fea-
tures for modeling the voice samples. A single classification
algorithm was used specifically for conducting the validation
experiment in the literature. In this paper, we advocate com-
bining features from both time and frequency domains, for a
throughout coverage of all the voice data characteristics.Then
feature selection is used to reduce the dimensionality of the
training samples. This way, a minimum subset of relevant
features is ensured, and they could be applied into most types
of classification models without any limit of a specific type.

3. Proposed Method in Constructing
a Voice Classification Model

The SFX preprocessing methodology that is adopted in our
research is efficient. Its main merit lies in its ability to trans-
form voice data from one-dimensional to multidimensional
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Figure 1: Preprocessing methodology as a part of the classification model learning process.

features.The SFX technique could possibly fit into a standard
data mining process, like the one shown in Figure 1. The
training dataset in a form of time-series get converted tomul-
tidimensional vectors via the preprocessing process, ready
to be used for training a classification model. Given a large
dimensionality, ensemble feature selection could be applied
over the converted multidimensional vectors for refining the
accuracy by retaining only some selected relevant features.
In our case, a metaheuristic search method seems to per-
form very well given its efficient stochastic optimization. Its
operational nature is dynamic, suitable for choosing features
on the fly, considering that voice data could be potentially
continuous.

Themodel construction process is just a standard classifi-
cationmodel learning in data mining; for example, a decision
tree is built by creating decision paths thatmap the conditions
of the attribute values, as seen from the training samples, to
the predicted classes. Once a classifier is trained by processing
through the whole training dataset, it is ready to classify new
unseen testing samples, and its performance can be mea-
sured. The feature selection process is generalized enough to
be an ensemble where the winner takes all. During calibra-
tion, several feature selection algorithms are put into test, and
the best performing one in our case is Feature Selection with
Wolf Search Algorithm (FS-WSA) [20]. The other unique
contribution by this paper is the extraction of features from
the time-series via piece-wise transformation, in addition to
the metaheuristic feature selection algorithm. The main dif-
ference between our innovation and the others is highlighted
in red in Figure 1. We zoom into the details of preprocessing

describing the operational flow from data perspective in
Figures 2 and 3, respectively, for SFX with and without FS.

In a nutshell, the preprocessingmethodology SFX is away
of transforming a two-dimensional time-series (amplitude
versus time) into a multidimensional feature vector that
has all the essential attributes sufficient to characterize the
original time-series voice data. Information is taken from two
domains, frequency and time, based on the original time-
series.Thus there are two groups of preprocessing techniques
being used here, namely, LPC-to-CC encoding (from the
frequency domain), Descriptive Statistics of both whole and
piecewise, andDynamic TimeWrap (from the time domain).
It is believed that having features obtained fromboth domains
would yield an improved accuracy from the trained classifi-
cationmodel due to thorough consideration of the character-
istics, hence the representative features, from both domains.

Effectively the preprocessing methodology SFX trans-
forms a matrix of original time-series to a set of training
instances which have specific attribute values for building a
classification model. Assume 𝑉 (shown in Figure 2 after the
wave read process) is an archive of time-series, with each row
containing a 𝑗th time-series V

𝑗
, and V

𝑗
is an ordered sequence

of variables 𝑥
𝑗
(𝑡) such that V

𝑗
= 𝑥
𝑗
(𝑡) = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑚
)
𝑗

where 1 ≤ 𝑡 ≤ 𝑚 is the length of the time-series over different
time points and 1 ≤ 𝑗 ≤ 𝑛 is the number of instances in the
data archive 𝑉.

𝑉 is then to be transformed to a structured training
dataset 𝑆 in which each row is an instance 𝑠 that is defined
by a finite number of attributes 𝑢, such that 𝑠(𝑗) = (𝑎

1
, 𝑎
2
,

. . . , 𝑎
𝑢
, 𝑌
𝑗
) where 1 ≤ 𝑗 ≤ 𝑛 and 1 ≤ 𝑖 ≤ 𝑢. 𝑎

𝑖
is the 𝑖th attribute
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in 𝑠(𝑗), 𝑌 is a vector of known target values of 𝑆; thus 𝑌
𝑗
is the

𝑗th target value to which the attribute values of 𝑠(𝑗) are able
to map.The target labels are assumed to be known 𝑎-priori in
𝑉 (supervised learning), and their values are just carried over
from 𝑉 to 𝑆, instance for instance, by the same order of 𝑗.

The attributes 𝑎
1
⋅ ⋅ ⋅ 𝑎
𝑢
, however, are obtained from the

dual time-frequency domains which can be briefly grouped
as 𝑠(𝑗) = [(𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑢𝑓
)freq, (𝑎1, 𝑎2, . . . , 𝑎𝑢𝑡)time] where the

instance 𝑠(𝑗) is made of two components that are derived
from frequency and time domains, respectively. From the
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Figure 4: A sample time-series voice data represented in LPC
coefficients.

frequency domain alone 𝑢𝑓 attributes are extracted, 𝑢𝑡
attributes taken from the time domain, and 𝑢 = 𝑢𝑓 + 𝑢𝑡.

3.1. Feature Extraction from the Frequency Domain. Linear
Prediction Coefficients to Cepstral the Coefficients, or Linear
Prediction Coding to Cepstrum Coefficients (LPC-to-CC)
is selected as the main feature extraction method from the
frequency domain in our case. The common production
process of human voice contains the following steps of voice
generation: the lungs expel air up, acting as the initial step of
voice production. Then the air goes into the trachea, passing
through the larynx.The larynx is a box-like organ and has two
membranes named vocal folds.The voice is actually produced
by the vibration of those vocal folds [21]. The acoustic theory
of voice production assumes the voice production processes
to be a linear system. The output of a linear system is
produced based on the linear combination of its previous
outputs and current and previous inputs [22]. It is the reason
that LPC is chosen here for the purpose of encoding the voice
data.

Linear prediction calculates future values of a signal in
discrete time format based on a linear function of previous
samples. It is always called linear prediction coding, which is
a common tool widely used in speech processing for repre-
senting the spectral envelope of a signal in compressed form
[23].

The original time-series voice data 𝑠 is windowed by
multiplying a windowing sequence 𝑤(𝑛) via a hamming
method, such that 𝑥(𝑛) = 𝑠(𝑛) ⊗ 𝑤(𝑛) where 𝑛 is the window
size. It predicts the next values of points as a linear combi-
nation of previous points’ values. The predicted points with
a 𝑝th order of prediction are as follows:

𝑥 (𝑛) =

𝑝

∑

𝑖=1

𝑎
𝑖
⋅ 𝑥 (𝑛 − 𝑖) , (1)

where 𝑎
𝑖
is linear predictor coefficients of the 𝑖th order.

Figure 4 shows a sample of the predictor coefficients.
The problem of value setting of prediction order 𝑝 deter-

mines the characteristics of the vocal filter. If𝑝 is too low, then

key areas of resonance will disappear; if 𝑝 is too high, then
characteristics of source are missed. Two complex conjugate
poles are needed for characterizing correct formants. Thus,
in the signal bandwidth, 𝑝 should be two times of formants
number. Suppose 𝑓

𝑠
is the signal’s sampling frequency, and 𝑝

is usually determined as follows:

𝑝 =
𝑓
𝑠

1000
+ 𝛾, (2)

where 𝛾 is the compensation for glottal roll-off and predictor
flexibility, which is normally set to be 2 or 3 [24].The sampling
frequency is usually 10 kHz, so the value of𝑝 is approximately
12 to 13.

The prediction error generated by this estimate method is
the difference between the actual and the predicted values:

𝑒 (𝑛) = 𝑥 (𝑛) − 𝑥 (𝑛) = 𝑥 (𝑛) −

𝑝

∑

𝑖=1

𝑎
𝑖
⋅ 𝑥 (𝑛 − 𝑖) , (3)

and we define the error metric for the multidimensional sig-
nals as

𝑒 (𝑛) = ‖𝑥 (𝑛) − 𝑥 (𝑛)‖ = √

∞

∑

𝑛=−∞

[𝑥 (𝑛) −

𝑝

∑

𝑖=1

𝑎
𝑖
⋅ 𝑥 (𝑛 − 𝑖)]

2

.

(4)

The expected value of the squared error 𝐸[𝑒2(𝑛)] is mini-
mized, yielding the following equation:

𝑅
𝑠𝑠
(𝑗) =

𝑝

∑

𝑖=1

𝑎
𝑖
⋅ 𝑅
𝑠𝑠
(𝑗 − 𝑖) =

|𝑆|−1

∑

𝑛=1

𝑥 (𝑛) ⋅ 𝑥 (𝑛 − 𝑖) , (5)

where 𝑅
𝑠𝑠
(𝑗) is the autocorrelation sequence of signal 𝑥(𝑛).

The autocorrelation sequence can then be represented as
a matrix in the format of 𝑅 ⋅ 𝐴 = −𝑟 where 𝑟 is a vector that
contains elements of 𝑅(𝑥), and 𝐴 is the vector of predictor
coefficients that holds 𝑎(𝑦), for 𝑥, 𝑦 ∈ [1, 𝑝]. 𝑅 is known
as a Toeplitz Matrix with the size of 𝑝 ∗ 𝑝 from which
the predictor coefficients can be calculated by inverting the
matrix 𝑅, 𝐴 = −𝑅

−1
𝑟. Then the predictor coefficients 𝐴 =

[𝑎(1), 𝑎(2), . . . , 𝑎(𝑝)] can be used to derive the cepstrum
coefficients, 𝑐(𝑚), for 𝑚 ∈ [1, 𝑝], which are the required
output of LPC-to-CC. The cepstrum is defined as the inverse
DFT of the log magnitude of the DFT of a signal:

𝑐 (𝑛) = 𝐹
−1
[log |𝐹 {𝑥 (𝑛)}|] , (6)

where 𝐹 is discrete Fourier transform and 𝐹
−1 is inverted

discrete Fourier transform.
When a windowed frame is applied on voice data 𝑦[𝑛],

the cepstrum is

𝑐 (𝑛) =

𝑁−1

∑

𝑛=0

log(
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑁−1

∑

𝑛=0

𝑥 (𝑛) 𝑒
−𝑗(2𝜋/𝑁)𝑘𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

) 𝑒
𝑗(2𝜋/𝑁)𝑘𝑛

. (7)

The transformation steps are shown clearly in Figure 5.
The cepstrum has a lot of advantages such as orthogonal-

ity, compactness, and source-filter separation; meanwhile the
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X[k]
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Figure 5: Cepstral Coefficients computation steps.

LPC coefficients are much more susceptible to the precision
of numerical numbers, which are less robust than cepstrum
coefficients [25]. Thus it is often desirable to transform LPC
{𝑎
𝑛
} into CC {𝑐

𝑛
}:

𝑐
𝑛
=

{{

{{

{

ln𝐺 𝑛 = 0,

𝑎
𝑛
+
1

𝑛

𝑛−1

∑

𝑘=1

𝑘𝑐
𝑘
𝑎
𝑛−𝑘

1 < 𝑛 ≤ 𝑝.
(8)

Above all, the transformation converts the original time-
series 𝑥

𝑗
(𝑡) = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑚
)
𝑗
to a linear prediction coeffi-

cient vector defined by (𝑎
0
, 𝑎
1
, 𝑎
2
, . . . , 𝑎

12
)
𝑗
and then converts

this vector to a cepstrum coefficient vector defined by
(𝑐
0
, 𝑐
1
, 𝑐
2
, . . . , 𝑐

10
)
𝑗
.The cepstrum coefficient vector is ready to

formapart of the descriptive features, as (𝑎
1
, 𝑎
2
, 𝑎
𝑢𝑓
)freq where

𝑢𝑓 = 10.

3.2. Feature Extraction from the Time Domain. Here we have
a feature set (𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑢𝑡
)time that is characterized by a

collection of attribute extracted from the time-series of the
voice raw data with respect to the time domain.The statistical
attribute extraction method has been commonly used by
many researchers in the area of digital signal processing,
biosignal analysis, and so forth.

3.2.1. Descriptive Statistics. The extracted statistical features
include the following statistics:Mean, StandardDeviation, 1st
Quartile, 2nd Quartile, 3rd Quartile, Kurtosis, Interquartile
Range, Skewness, RSS (residual sum of squares), Standard
Deviation of Residuals, Mean Value of Volatilities, and
StandardDeviation of Volatilities. Suppose𝑋(𝑡) is a raw voice
data with 𝑁 sampling points, 𝑅(𝑡) is the residual array, and
𝑉(𝑡) is the volatility array.

Mean:

𝑋 =
1

𝑁

𝑁

∑

𝑡=1

𝑋
𝑡
. (9)

Standard deviation:

𝜎 = √
1

𝑁

𝑁

∑

𝑡=1

(𝑋
𝑡
− 𝑋)
2

. (10)

Quartiles: (see Figure 6).

Kurtosis:

𝐾 =

∑
𝑁

𝑡=1
(𝑋
𝑡
− 𝑋)
4

(𝑁 − 1) 𝜎
4

. (11)

Minimum MaximumMedian

Lower
Quartile

Q 1

Upper
Quartile

Q 3

Figure 6: Quartile.

A standard normal distribution has the Kurtosis value of
three. As the result, the next definition of kurtosis is widely
used and it is often known as excess kurtosis:

𝐾 =
∑
𝑁

𝑡=1
(𝑋
𝑡
− 𝑋)
4

(𝑁 − 1) 𝜎
4

− 3. (12)

Interquartile range:

IQR = 𝑄3 − 𝑄1. (13)

Skewness:

𝑆 =
∑
𝑁

𝑡=1
(𝑋
𝑡
− 𝑋)
3

(𝑁 − 1) 𝜎
3

. (14)

In the statistical analysis of the time-series data, Autoregres-
sive Moving Average models (ARMA) describes a stationary
stochastic process based on two polynomials, one for the
Auto-regression (AR) and the other for Moving Average
(MA) [26]. With the parameter settings this model is usually
notated as ARMA(𝑝, 𝑞) where 𝑝 is the order of the AR part
and 𝑞 is the order of the MA part.

Now we introduce another model for characterizing and
modeling observed time-series: autoregressive conditional
heteroskedasticity (ARCH) model. So that in the model, at
any time point in this sequence, it will have a characteristic
variance.

If an ARMA model is supposed for the build of error
variance, then the model is a Generalized Autoregressive
Conditional Heteroskedasticity (GARCH) model [27]. With
the parameter settings this model is usually referred to as the
GARCH(𝑝, 𝑞) where 𝑝 is the order of the GARCH terms 𝜎2
and 𝑞 is the order of the ARCH terms 𝜖2:

𝜎
2

𝑡
= 𝛼
0
+ 𝛼
1
𝜖
2

𝑡−1
+ ⋅ ⋅ ⋅ + 𝛼

𝑞
𝜖
2

𝑡−𝑞
+ 𝛽
1
𝜎
2

𝑡−1
+ ⋅ ⋅ ⋅ + 𝛽

𝑝
𝜎
2

𝑡−𝑝

= 𝛼
0
+

𝑞

∑

𝑖=1

𝛼
𝑖
𝜖
2

𝑡−𝑖
+

𝑝

∑

𝑖=1

𝛽
𝑖
𝜎
2

𝑡−𝑖
.

(15)

We set the parameters of GARCH model with standard
values such as the following.

Distribution = “Gaussian”;
variance Model = “GARCH”;
𝑝 (model order of GARCH(𝑝, 𝑞)) = “1”;
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𝑞 (model order of GARCH(𝑝, 𝑞)) = “1”;
𝑟 (autoregressive model order of an ARMA(𝑟, 𝑚)
model) = “1”.

RSS:

RSS =
𝑁

∑

𝑡=1

(𝑋
𝑡
− 𝑋
𝑡
)
2

. (16)

Standard deviation of residuals:

resstd = √ 1

𝑁

𝑁

∑

𝑡=1

(𝑅
𝑡
− 𝑅)
2

. (17)

Mean value of volatilities:

volmean = 1

𝑁

𝑁

∑

𝑡=1

𝑉
𝑡
. (18)

Standard deviation of volatilities:

volstd = √ 1

𝑁

𝑁

∑

𝑡=1

(𝑉
𝑡
− 𝑉)
2

. (19)

3.2.2. Dynamic Time Warping Distance. Though descriptive
statistics may give us the overall summary of time-series data
and characterize a general shape of time-series data, theymay
not be able to capture the precise trendmovements which are
also known as the patterns of evolving lines. In particular we
are interested in distinguishing the time-series which belong
to one specific class from those that belong to another class.
The difference of trend movements can be estimated by a
technique called Dynamic Time Warping.

Dynamic TimeWarping (DTW) is an algorithm for mea-
suring similarity between two time-series in the situation that
both have similar shapes but they vary in time step or speed
rate. DTW has been applied to many data objects like video,
voice, audio, and graphics. Actually, DTW can explain and
deal with any ordered set of data points by the format of linear
combination [28].

In theory, DTW is most suitable for voice wave patterns
because exactmatching for suchpatterns oftenmaynot occur,
and voice patterns may vary slightly in the time domain.
DTW finds an optimal match between two sequences that
allows for compressed sections of the sequences. In other
words it allows some flexibility for matching two sequences
that may vary slightly in speed or time. The sequences are
“warped” nonlinearly in the time dimension to determine a
measure of their similarity independent of certain nonlinear
variations in the time dimension. Particularly suitable DTW
is for matching sequences that may havemissing information
or various lengths, on condition that the sequences are long
enough for matching.

Suppose that 𝑥
𝑗
(𝑡), 1 ≤ 𝑗 ≤ 𝑛 represents an instance in

time-series archive 𝑋, the number of instances in 𝑋 is 𝑛. 𝑐
𝑖
,

1 ≤ 𝑖 ≤ 𝑚 means each class label to which every instance
belongs, where 𝑚 is the number of class labels. 𝑌

𝑗
, 1 ≤ 𝑗 ≤ 𝑛

is the 𝑗th target value to which the attribute values of 𝑥
𝑗
(𝑡) are

able to map. 𝑁
𝑖
, 1 ≤ 𝑖 ≤ 𝑚 is the number of target values in

each class 𝑐
𝑖
. For any 𝑥(𝑡) in time-series archive 𝑋, the DTW

distance of 𝑥(𝑡) to its own class 𝑐
𝑖
is defined as

dist = 1

𝑁
𝑖

𝑁𝑖−1

∑

𝑟=1

𝑑
𝑖𝑟
. (20)

Note that the count upper limit is 𝑁
𝑖
− 1 because the DTW

distance between 𝑥(𝑡) and itself is 0 by the definition (they
have the exactly same shape). The DTW distance of 𝑥(𝑡) to
another class 𝑐

𝑗
to which it does not belong is

dist = 1

𝑁
𝑗

𝑁𝑗

∑

𝑟=1

𝑑
𝑖𝑟
. (21)

So the number of distance attributes equals the number of 𝑐
𝑖
,

that is, how many classes in total. These distance attributes
compose a member of features in (𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑢𝑡
)time, which

represents the extracted features of a whole time-series raw
data in time domain. Figure 7 visually illustrates this concept
of distance in DTW computation.

3.2.3. Piecewise Transformation. So far along the time-
domain, statistics are extracted from the whole piece of the
time-series as well as the similarity in terms of distance
between the test time-series and the mean of its peer group.
For a finer level of information, a piecewise transformation
is applied which is called Piecewise Linear Function (PLF).
A continuous time-series is converted into a collection of
linear segments when PLF is applied on it. The purpose
of this compressed expression method is to approximate a
polynomial curve into a vector of finite 𝑛-dimensional
Euclidean space that consists of quantitative values.

This is the key part of the research work because it con-
tains our new contribution. Inspired by the financial analysis
of stock market, residual and volatility are firstly imported
in the application field of voice classification. Like historical
volatility for one or more stocks over some specified trading
days, we also believe that certain patterns of someone’s speech
are involved in residual and volatility.

Each sentence is read bywavread function inMATHLAB
into a one dimension array as illustrated in Figure 2. The
starting and ending points of every time-series data are just
the same as the beginning and ending points of each array,
which means that all information is used without any redun-
dancy.The depth of segmentation 𝑛 can be selected arbitrarily
but sufficiently by the user. In our experiments, the average
length of a sentence is ten words, and each word has a peak
correspondingly.Themean length of the sampled time-series
array is 100 k points. Without compromising the resolution
and the complexity of feature space, we choose 𝑛 to be 20,
thus we can cut a peak into two parts which represents up
and down gradients. Then the continuous time-series voice
data is partitioned equally into 20 pieces.

In our experiment, we try to keep the length of every
spoken sentence the same, being almost 10 k points after sam-
pling. The number of segmentations is also 20, so each piece
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Figure 7: Illustration of DTW calculation.

Table 1: The piecewise segment statistics feature extraction.

Attribute 1 2 3 ⋅ ⋅ ⋅ 𝑖 ⋅ ⋅ ⋅ 20
Gradient Grad 1 Grad 2 Grad 3 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Grad 20
RSS RSS 1 RSS 2 RSS 3 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ RSS 20
Resstd Resstd 1 Rresstd 2 Resstd 3 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Resstd 20
VolmeanVolmean 1 Volmean 2 Volmean 3 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Volmean 20
Volstd Volstd 1 Volstd 2 Volstd 3 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Volstd 20

maintains at nearly 5 k sampling points. For each segment
of the time-series, certain statistics that describe the trend
and dynamics of the movement are extracted into the feature
vector, that is, (𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑢𝑡
)time. An example of the time-

series segmentation in normal and stretched view is shown
in Figure 8.

Using this piecewise method, the features that are being
extracted are statistics of each partition of the time-series.
Table 1 shows a list of all statistics that can potentially be
harvested from 20 partitions of a particular time-series. The
definitions of the statistics parameters then follow.

For each segment 𝑠
𝑖
(𝑡), 1 ≤ 𝑖 ≤ 20, 𝑛 is the number of

points each segment contains, that is, 𝑛 = |𝑠
𝑖
(𝑡)|.

Gradient of 𝑠
𝑖
(𝑡):

grad
𝑖
= 𝛽
𝑖
, (22)

where 𝛽
𝑖
is

𝑠
𝑖
= 𝛽
𝑖
𝑡 + 𝛼
𝑖
+ 𝜀
𝑖
. (23)

RSS of 𝑠
𝑖
(𝑡):

RSS
𝑖
=

𝑛

∑

𝑡=1

(𝑠
𝑖𝑡
− 𝑠
𝑖𝑡
)
2
. (24)

Standard deviation of residuals of 𝑠
𝑖
(𝑡):

resstd
𝑖
= √

1

𝑛

𝑛

∑

𝑡=1

(𝜀
𝑖𝑡
− 𝜀
𝑖
)
2
. (25)

Mean value of volatilities of 𝑠
𝑖
(𝑡):

volmean
𝑖
=
1

𝑛

𝑛

∑

𝑡=1

𝑉
𝑖𝑡
. (26)

Standard deviation of volatilities of 𝑠
𝑖
(𝑡):

volstd
𝑖
= √

1

𝑛

𝑛

∑

𝑡=1

(𝑉
𝑖𝑡
− 𝑉
𝑖
)
2

. (27)

The model for residual and volatility is also selected as
GARCHmodel, where the parameters of GARCHmodel are
configured the same as previously: mentioned Distribution =
“Gaussian”; Variance Model = “GARCH”; 𝑝 (model order of
GARCH(𝑝, 𝑞)) = “1”; 𝑞 (model order of GARCH(𝑝, 𝑞)) = “1”;
𝑟 (autoregressive model order of an ARMA(𝑟, 𝑚) model) =
“1”.

A calibration test is used to determine the optimal choice
of the length of each piece (interval) such that the highest
classification accuracy can be obtained. Different numbers of
intervals have been tried continually for piecewise transfor-
mation, extracting the corresponding attributes and running
the classifiers. As the results shown in Figure 9, it was found
that using 20 segments of each length yields the highest clas-
sification accuracy. The test was done preliminarily without
FS and the results are averaged over all parameters.

4. Experiment

In order to compare the effectiveness of the proposed time-
series preprocessingmethodwith the other existingmethods,
we test them on four different voice/speech datasets using
nearly twenty popular and traditional classification algo-
rithms in data mining.

4.1. Data Description. Four representative types of voice data
are tested by the simulation experiments; they are Female and
Male (FM) Dataset, Emotional Speech (ES) Dataset, Speaker
Identification (SI) Dataset, and Language Recognition (LR)
Dataset.
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Figure 8: (a) An example of sampled time-series voice data and its partition. (b) The amplified view of piecewise linear regression (partly).

69.88

70.35

70.24

71.09

70.33

69.44
68.53

68.02

66
66.5

67
67.5

68
68.5

69
69.5

70
70.5

71
71.5

5
20,000 10,000 6,666 5,000 4,000 3,333 2,857 2,500

10 15 20 25 30 35 40

Ac
cu

ra
cy

 (%
)

No. of pieces
No. of sampling points 
per segment

Figure 9: Calibration curve for segmentation selection.

4.1.1. Data Sources
FM. The FM dataset is downloaded from School of Informa-
tion Technology and Electrical Engineering (ITEE), Univer-
sity of Queensland, Australia, called VidTIMIT Audio-Video
Dataset [29]. The dataset is made up of audio recordings
of recited short sentences from 43 volunteers, among which
19 are females and 24 are males. It is from the test section
of TIMIT corpus that all those sentences were selected. 10
sentences for every speaker.The first two sentences are all the
same for each speaker, with the remaining eight that differ
according to every individual. Here only the audio data is
concerned and video data is discarded.

ES. The ES dataset comes from the database of German emo-
tional speech, developed at the Technical University, Institute
for Speech and Communication, Department of Commu-
nication Science, Berlin, with Professor Sendlmeier. It was
funded by the German Research Association DFG (research
project SE 462/3-1) [30].The aimof the database is to examine
acoustical correlates of emotional speech. It is comprised of
seven basic emotions (anger, happiness, sadness, fear, disgust,
boredom, and neutral) and only four major emotions are
taken for the purpose of simplification. Ten professional
native German actors with balance gender distribution (5 for
each) produced these emotional speeches, which containing
10 sentences with 5 short sentences and 5 longer ones.

SI. The SI dataset is taken from the PDA speech database,
owned by Yasunari Obuchi in March 2003, Carnegie Mellon
University (CMU).The recordingwas done byCMU students
and staff [31]. There recording was done by using one PDA
with four small microphones mounted around and one big
microphone in the record room. The type of that big micro-
phone was an Optimus Nova 80 close-talk microphone. The
type of small ones was Panasonic WM-55DC2 and they were
mounted using a mock-up shown below. There are 16 speak-
ers and each read about 50 sentences.

LR. The LR dataset is generated through an approach called
speech synthesis.The speech synthesizer software used here is
Microsoft Text-to-Speech engine with many expansion pack-
ages [32]. Sentences of English, Cantonese, and Mandarin
were widely selected from the area of frequently used daily
conversations, daily news, educational reports, stories, scien-
tific articles, ancient proses, poems and poetries, and so forth.

4.1.2. Data Formats. The voice data is in the format of two-
dimensional time-series, with an amplitude value in sound
that varies over time; examples are given in Figures 8(a) and
8(b). The sampling rate or frequency of wave read process is
10 kHz. Group distributions of distinctive datasets are given
in Table 2. The FM dataset has only two classes, which is the
simplest classification task in datamining.The rest of datasets
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Table 2: Distributions of classes in different datasets.

Dataset
name

No. of classes or
labels Notes

FM 2 Female and male

ES 4 Happiness, anger, sadness,
and neutral

SI 16 16 different speakers

LR 3 Cantonese, English, and
Mandarin

Table 3: The numbers of attributes associated with datasets and
instances for training and testing by various preprocessingmethods.

Preprocessing method FM ES SI LR
Wavelet 50 50 50 50
LPC-to-CC 10 10 10 10
SFX 74 68 88 75
SFX + FS 20 53 20 32
No. of instances for training 258 179 564 600
No. of instances for testing 172 160 272 150

contain more than two classes that make the classification
task more difficult. The numbers of attributes or features for
every dataset and instances for training and testing are listed
in Table 3.

4.1.3. Data Visualization. Visualization of parts of each group
of the datasets, FM, ES, SI, and LR is displayed in Figures
10(a) to 10(l). Inspecting by just naked eyes, one can see some
distinctive differences between the waveforms of different
classes.

Multidimensional (MD) visualization of each group of
those datasets is shown in Figures 11(a) to 11(b). Again, by
just visual inspection, it can be observed that the voice data
between different classes are apparently distinctive in the FM
group and in the LR group. Common sense tells us that female
speakers and male speakers have distinguishing vocal tones.
Speeches of different languages also can be differentiated
easily, as each language has its unique vowels and phonics.
In contrast, the voice data of 16 unique speakers have certain
overlaps in their feature values; this implies that some speak-
ers share similar voices which are not something very uncom-
mon in real life. The voice data in the emotion groups are
highly mixed together by the feature values. That shows the
potential computational difficulty in classification between
voices of different emotions.

4.1.4. Algorithms Used in Comparison. Our experiments are
performed by using popular and standard classification
algorithms (with their default parameters applied) over the
four sets of the above-mentioned voice data that are being
handled by four preprocessing methods. A total of 20 clas-
sification algorithms are being used. The justification is that
we try to test the generality of our voice classification model
without being attached to any specific classification algo-
rithm. In other words, the design of the voice classification
model should be generic enough, and its efficacy should be

Table 4: List of standard classification algorithms used in our
experiment.

Standard classification
algorithm type Algorithm

Bayes NaiveBayes

Functions
LibSVM
Multilayer perceptron
SMO

Meta Bagging

Rules

Conjunctive rule
Decision table
FURIA
JRip/RIPPER
NNge
OneR
PART

Decision Trees

BF tree
FT
J48/C4.5
LMT
NB tree
Random forest
Random tree
REP tree

independent from the choice of classifier. While the focus of
the voice classificationmodel is centered at the preprocessing
steps which leverage the features from both time and fre-
quency domains followed by feature selection for reducing
the feature space dimension, classification algorithms can
become flexible plug-and-play in our model design. The
standard classification algorithms used in our experiments
are well known in data mining research community as well as
available in Weka (http://www.cs.waikato.ac.nz/ml/weka/),
and they are listed in Table 4.

The four preprocessing methods used for comparison are
as follows.

LPC-to-CC. Only the cepstrum coefficients are used as the
encoding result of time-series voice data.Meanwhile, the LPC
coefficients are ignored in final attributes set.

Wavelet. Only the 50-largest Harr wavelet coefficients are
taken as converting the sequence from time domain to fre-
quency domain. The number of decomposition level of Harr
wavelet transform is 3.

SFX. Statistical Feature Extraction (SFX) converts the time-
series voice data to a whole set of attributes with both fre-
quency and time domains, using a collection of feature
methods described in Section 3.

SFX + FS. Statistical Feature Extraction + Feature Selection
(SFX + FS) is exactly the same as SFX except that the full
set of features or attributes were filtered by using different

http://www.cs.waikato.ac.nz/ml/weka/
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Figure 10: Continued.
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Figure 10: Continued.
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Figure 10: (a) Visualization of FM dataset that belongs to the “Female” group. (b) Visualization of FM dataset that belongs to the “Male”
group. (c) Visualization of ES dataset that belongs to the “Anger” group. (d) Visualization of ES dataset that belongs to the “Happiness” group.
(e) Visualization of ES dataset that belongs to the “Neutral” group. (f) Visualization of ES dataset that belongs to the “Sadness” group. (g)
Visualization of SI dataset that belongs to the “Speaker 1” group. (h) Visualization of SI dataset that belongs to the “Speaker 2” group. (i)
Visualization of SI dataset that belongs to the “Speaker 3” group. (j) Visualization of LR dataset that belongs to the “Cantonese” group. (k)
Visualization of LR dataset that belongs to the “English” group. (l) Visualization of LR dataset that belongs to the “Mandarin” group.
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Figure 11: (a) MD visualization of FM. (b) MD visualization of ES. (c) MD visualization of SI. (d) MD visualization of LR.

feature reductionmethods. Note that it is an ensemble feature
selection method, using multiple models to obtain the best
performance. Two facts are considered: mean accuracy and
time cost.The compensation is made between time and accu-
racy, which means that we prefer a little bit lower accuracy
and more on acceptable time cost. The optimal one was
chosen as the final FS method.

WSA. Wolf Search Algorithm (WSA) is a bioinspired heuris-
tic optimization algorithm [33]. It naturally balances scouting
the problem space in random groups (breadth) and searching
for the solution individually (depth). The pseudocode of
WSA is given in Pseudocode 1.

Chi-Square. In statistics, the purpose of chi-square (𝜒2) test
is to measure the independence of two events 𝐴 and 𝐵. From
the knowledge of probability and statistics, we know that two

events are independent if the probability equation has the
following relationships: 𝑃(𝐴 | 𝐵) = 𝑃(𝐴) and 𝑃(𝐵 | 𝐴) =

𝑃(𝐵) or 𝑃(𝐴𝐵) = 𝑃(𝐴)𝑃(𝐵) equivalently. In feature selection,
let occurrence of the term be event 𝐴 and occurrence of the
class be event 𝐵. We then rank values based on the following
quantity [34, 35]:

𝜒
2
(𝐷, 𝑡, 𝑐) = ∑

𝑒𝑡∈{0,1}

∑

𝑒𝑐∈{0,1}

(𝑁
𝑒𝑡𝑒𝑐

− 𝐸
𝑒𝑡𝑒𝑐
)
2

𝐸
𝑒𝑡𝑒𝑐

, (28)

where 𝐷 is the whole set of observations,𝑁 is the frequency
actually found in 𝐷, and 𝐸 is the expected one. At the same
time, 𝑒

𝑡
= 1means that the document contains term 𝑡, 𝑒

𝑡
= 0

means that the document does not contain 𝑡, 𝑒
𝑐
= 1 means
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Objective function f (x), 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑑
)
𝑇

Initialize the population of wolves, 𝑥
𝑖
for 𝑖 = 1, 2, . . . ,𝑊

Define and initialize parameters:
𝑟 = radius of the visual range
𝑠 = step size by which a wolf moves at a time
𝛼 = velocity factor of wolf
𝑃
𝑒
= a user-defined threshold [0, 1], that determines how frequently an enemy appears, so will the wolf escape

WHILE (𝑡 < generations && stopping criteria not met)
FOR 𝑖 = 1, . . . ,𝑊 // for each wolf

Prey new food initiatively ();
Generate new location ();
// check whether the next location suggested by the random number generator is new. If not, repeat
generating random location.
IF(dist(𝑥

𝑖
, 𝑥
𝑗
) < 𝑟 && 𝑥

𝑖
is better as 𝑓(𝑥

1
) < 𝑓(𝑥

𝑗
))

𝑥
𝑖
moves towards 𝑥

𝑗
// 𝑥
𝑗
is at a better place than 𝑥

𝑖

ELSE-IF
𝑥
𝑖
= Prey new food passively ();

END-IF
Generate new location ();
IF (rand () > 𝑝

𝑒
)

𝑥
𝑖
= 𝑥
𝑖
+ rand () + V; // escape to a new position farther than V

END-IF
END-FOR

END-WHILE

Pseudocode 1: Pseudocode of WSA.

that the document is in class 𝑐, and 𝑒
𝑐
= 0 means that the

document is not in 𝑐.

CFS. An essential assumption is made before going directly
into the discussion of Correlation Feature Selection (CFS). It
is that good feature subsets always have highly corresponding
features, whereas there are uncorrelated features among the
rest of them [36]. On the basis of that, CFS starts its work and
evaluates features. The merit containing 𝑘 features for a
specific feature subset 𝑆 is

Merit
𝑆𝑘
=

𝑘𝑟
𝑐𝑓

√𝑘 + 𝑘 (𝑘 − 1) 𝑟𝑓𝑓

, (29)

where 𝑟
𝑐𝑓
represents the average value of all 𝑐-𝑓 (classification

to feature) correlations, and 𝑟
𝑓𝑓

is the mean value of all 𝑓-𝑓
(feature to feature) correlations. Then CFS is defined as
follows:

CFS = max
𝑆𝑘

𝑟
𝑐𝑓1
+ 𝑟
𝑐𝑓2
+ ⋅ ⋅ ⋅ + 𝑟

𝑐𝑓𝑘

√𝑘 + 2 (𝑟
𝑓1𝑓2

+ ⋅ ⋅ ⋅ + 𝑟
𝑓𝑖𝑓𝑗

+ ⋅ ⋅ ⋅ + 𝑟
𝑓𝑘𝑓1

)

,
(30)

where 𝑟
𝑐𝑓𝑖

and 𝑟
𝑓𝑖𝑓𝑗

variables are correlations just like the
aforementioned.

MRMR. Maximum Relevance is normally referred to as
subsets of data identified by feature selection which are
relevant to the parameters. There often exist relevant but
redundant components in those subsets. MRMR, known
as Minimum Redundancy Maximum Relevance, however,
attempts to detect those redundant subsets, find them out,

and delete them. Example application fields ofMRMR are but
not limited to cancer diagnosis, face detection, autoresponse,
and speech recognition.

Suppose 𝑝(𝑥), 𝑝(𝑦), and 𝑝(𝑥, 𝑦) to be probabilistic den-
sity functions of two random variables 𝑥 and 𝑦; then their
mutual information is defined as [37]

𝐼 (𝑥; 𝑦) = ∬𝑝 (𝑥, 𝑦) log
𝑝 (𝑥, 𝑦)

𝑝 (𝑥) 𝑝 (𝑦)
𝑑𝑥 𝑑𝑦. (31)

The nature of feature selection in mutual information model
is to find a feature set 𝑆 containing𝑚 features {𝑥

𝑖
}, which also

have the largest dependency on the target class 𝑐. This is the
definition of Max Dependency:

max𝐷 (𝑆, 𝑐) , 𝐷 = 𝐼 ({𝑥
𝑖
, 𝑖 = 1, 2, . . . , 𝑚} ; 𝑐) . (32)

Max-Relevance and Min-Redundancy are

max𝐷 (𝑆, 𝑐) , 𝐷 =
1

|𝑆|
∑

𝑥𝑖∈𝑆

𝐼 (𝑥
𝑖
; 𝑐) ,

min𝑅 (𝑆) , 𝑅 =
1

|𝑆|
2
∑

𝑥𝑖 ,𝑥𝑖∈𝑆

𝐼 (𝑥
𝑖
, 𝑥
𝑗
) .

(33)

Out of the chosen popular feature selection algorithms that
are put into test in the calibration process, we can see that
WSA which is a metaheuristic FS algorithm consistently is
having superior performance, except for the Speaker Identi-
fication dataset which is known for its overlaps in feature val-
ues. The testing results are shown in full in Table 5. The com-
puting environment is on a PC workstation, with Windows
7 Enterprise Edition, 64 bits, Intel Core i7 CPU, and 8GB
RAM.
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Wavelet LPC2CC SFX SFX + FS

𝑄1

𝑄3

FM accuracy (%) Wavelet LPC2CC SFX
Feature selection method WSA
Original no. of attributes 50 10 74 74
No. of attributes after FS                   n/a

n/a n/a

n/a

n/a

20

Classification algorithm
J48 62.791 72.4806 64.7287 67.0543
BFTree 62.016 72.4806 68.9922 69.7674
FT 60.078 78.6822 75.5814 81.3953
LMT 65.892 79.845 93.7984 95.3488
NBTree 62.791 72.8682 65.1163 71.7054
RandomForest 63.178 73.6434 71.3178 76.7442
RandomTree 55.814 66.6667 60.0775 69.7674
REPTree 58.14 72.8682 72.093 72.093
ConjunctiveRule 48.837 55.4264 55.814 55.814
DecisionTable 62.016 74.031 70.155 70.155
FURIA 64.729 76.7442 73.6434 76.7442
JRip 63.954 73.2558 73.6434 64.7287
NNge 48.837 74.031 70.5426 72.093
OneR 62.791 50.3876 55.0388 54.2636
PART 65.116 67.0543 69.7674 71.3178
NaiveBayes 63.178 75.1938 63.1783 75.1938
Bagging 66.667 74.031 74.4186 77.1318
LibSVM 55.814 62.7907 87.9845 87.2093
MultilayerPerceptron 55.426 77.1318 77.907 92.2481
SMO 48.837 79.845 77.907 79.4574

55.814 71.124 65.0194 69.7674
Min 48.837 50.3876 55.0388 54.2636
Median 62.403 73.4496 70.9302 72.093
Mean 59.845 71.4729 71.085265 74.01163
Max 66.667 79.845 93.7984 95.3488
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ES accuracy (%) Wavelet LPC2CC SFX
Feature selection method ChiSquared
Original no. of attributes 50 10 68 68
No. of attributes after FS 53
Rank value

Classification algorithm
J48 38.75 57.25 58.75 59.375
BFTree 40.625 62.25 56.25 56.25
FT 43.75 68.5 71.875 78.125
LMT 53.125 74.125 83.75 83.125
NBTree 43.125 55.375 55.625 59.375
RandomForest 48.125 60.375 65 74.375
RandomTree 42.5 55.375 53.75 66.25
REPTree 51.25 56 61.25 61.25
ConjunctiveRule 46.875 49.125 55 55
DecisionTable 46.25 53.5 56.25 56.25
FURIA 53.75 63.5 59.375 68.75
JRip 51.875 56.625 54.375 54.375
NNge 47.5 58.5 42.5 46.25
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FT 27.5735 64.706 90.8088 97.427
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RandomForest 31.6176 64.338 74.2647 90.441
RandomTree 22.0588 47.059 57.3529 69.118
REPTree 26.1029 52.941 79.4118 84.927
DecisionTable 25 34.559 54.4118 67.279
FURIA 24.6324 57.721 73.1618 80.515
JRip 18.3824 48.897 45.2206 74.265
NNge 24.2647 58.824 91.1765 92.647
OneR 25 19.853 51.1029 55.147
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Figure 12: (a) FM boxplot and accuracy table. (b) ES boxplot and accuracy table. (c) SI boxplot and accuracy table. (d) LR boxplot and
accuracy table.

5. Results and Analysis

The objective of our experiments is to compare the perfor-
mance of those four preprocessing methods on four kinds
of voice datasets when a collection of data mining classifiers
are applied. Our performance evaluation covers four main
aspects: (1) accuracy comparison of datasets; (2) accuracy
comparison of preprocessing methods; and (3) overall aver-
aged performance comparison.

Twenty popular classification algorithms were used on
FM and LR datasets, which is regarded as a representative set
of commonly used classifiers. However, the classifier of Lib-
SVM could not be applied on ES and SI due to their formats.
Some attribute data contain infinitely small values. Results
from some classifiers are not available because of the time
limitation: it takes too much time for them to build a classi-
fication model when the number of attributes gets very large.
As such, LibSVM is excluded from experiments involving
ES and SI. NBTree and Conjunctive Rule are excluded
from experiments over the dataset SI. For feature selection,

the algorithm candidate that yields the highest accuracy is
used in the subsequent experiments.

5.1. Accuracy Comparison of Datasets. The accuracy of the
classification result is the most significant criterion for evalu-
ating the performance. It is defined as the percentage of cor-
rectly classified instances over the total number of instances.
This section shows total accuracies of four preprocessing
methods on each voice dataset. Four sets of accuracy results
and box plots for different dataset are presented in Figures
12(a) to 12(d).

From the aforementioned figures we find that the first two
preprocessing methods, which are wavelet and LPC-to-CC,
yielded a relatively nonstationary accuracy result on all four
datasets. For LR dataset, wavelet method generated better
result than LPC-to-CC. Conversely, LPC-to-CC was better
for FM, ES, and SI. Recalling from Section 4.1.1, we know
that only the LR dataset is synthetic, which was produced by
a Text-to-Speech engine. LPC-to-CC, known as a common
voice encoding method, has a problem in obtaining the more
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Figure 13: Comparison of average accuracy for different voice
datasets and different preprocessing methods.

realistic components: there are many transition frames that
the LPCmodel fails to sort correctly [38]. Such inaccuracy of
the model might be due to annoying artifacts like buzzes and
tonal noises. So the performance was relatively worse.

Meanwhile, SFX and SFX + FS showed relatively more
stable results than the first two. They really improved the
accuracy a lot. By a contrast of SFX and SFX+ FS, after feature
selection, the main range (𝑄

3
–𝑄
1
) of accuracy distribution

became narrower and the accuracy results increased.
More evident comparison result is given when the accu-

racies are averaged out and placed together side by side in a
bar chart in Figure 13.

An interesting phenomenon is observed fromFigure 13—
the accuracy fell a little after SFX compared to LPC-to-CC
over FM dataset. However, from the methodology of SFX, we
know that cepstral coefficients are involved in the attributes
of SFX. This indicates that the classification accuracy may
decrease when the number of attributes increases due to the
redundancy of those unnecessary features [39]. FM has only
binary classes; the performances of the preprocessing meth-
ods differ very little compared to those in other datasets that
have multiple classes. In particular, SI has 16 different classes;
the differences of performance between the preprocessing
methods become obvious.

Another considerable fact is also derived from Figure 12
on LR dataset—Wavelet seemed to have a better performance
than what LPC-to-CC did. Besides the drawback of LPC
encoding method, we can also consider other reasons. The
inherent frequency of one’s speech is an important acoustic
feature for identifying different individuals. Other necessary
features may include behavioral patterns (such as voice pitch
and speaking style) and human anatomy patterns (like the
shape of throat). Remember that the result of LPC-to-CConly

contains 10 cepstral coefficients, and the number of target
groups to be classified is 16. It contains too few informa-
tion for correct classification and wavelet provides relatively
sufficient features.

Considering the number of classes in each dataset
together with the accuracy result, we can find that the
accuracy of binary targets classification (FM) is higher than
multiple targets classification (ES) and (SI) for the frequency-
domain encoding methods. For the time-domain methods
like SFX and SFX-FS, good accuracy still can be attained in
multiclass classification as in SI where the frequency-domain
methods underperform.

Multiclass classification categorizes instances into more
than two classes, whereby a hypothesis is constructed tomake
sure that discriminates can be distinguished between a fixed
set of classes. An assumption is made before that, which
is closed set and good distribution. If all possible instances
belonging to each case fall into one of the classe, and each
class contains statistically representative instances, then the
performance of classification is good enough. For now, the
boundary of every emotion in ES dataset is not clear (which
is already shown in Figure 11(b)), so it does not meet the
condition of closed set, and the result is worse than FM. For
SI and LR, the features of each individual and language are
discriminative enough to tell all classes apart, meaning that
they are well distributed, so the results are better than FM.

5.2. Accuracy Comparison of Preprocessing Methods. This
section shows the accuracies of four datasets when every pre-
processing method is applied on them, respectively. Four sets
of accuracy results and radar charts by different preprocessing
methods are shown in Figures 14(a) to 14(d).

It can be seen that in general the classification algorithms
produce consistent results when wavelet and LPC-to-CC
preprocessing methods are used. These almost all-rounded
accuracy results are displayed in Figures 14(a) and 14(b).
Comparatively, SFX and SFX + FS yield a jagged outline for
the curves of accuracy results in the radar chart, which can be
seen in Figures 14(c) and 14(d). Overall, Wavelet and LPC-to-
CC show lower average accuracy than those in SFX and SFX+
FS. Some classifiers produce exceptionally perfect accuracy
on all the four datasets after statistical feature extraction and
feature selection are applied. They are LMT and Multilayer
Perceptron.

The classifier model generated from LMT is a single tree
with different shapes on basis of various types of training data.
If the data type is numeric, then a binary tree will be built
with splits on those attributes; if the type is nominal, then
a multi-split tree is the consequence. But the same thing is
that the leaves are each logistic regression model which is
quite capable for analysis of dataset with dependent features
and bounded magnitudes of time-series. The algorithm is
guaranteed that only relevant attributes are selected [40].The
result is much more intelligible and reasonable than a com-
mittee of multiple trees on voice classification. So under such
kind of circumstance, LMT offers a better result than other
tree classifiers.

Multilayer Perceptron is a standard algorithm for any
supervised learning task in data mining. The result is
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Figure 14: Continued.
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Figure 14: (a) Accuracy comparison of Wavelet preprocessing method. (b) Accuracy comparison of LPC-to-CC preprocessing method. (c)
Accuracy comparison of SFX preprocessing method. (d) Accuracy comparison of SFX + FS preprocessing method.

relatively better than any other classifiers, achieving almost
100% accuracy but the time cost is higher and sometimes
unacceptable. However, some classifiers produce low accu-
racy, for instance, Näıve Bayes. Based on Bayes’ theoremwith
strong independence assumptions, Näıve Bayes acts as quite
a simple classifier and it gets very widely adopted in many
classification situations. But sometimes the relation between
any pair of attributes is always dependent and the distribution
of features is unknown in advance; thus the performance of
such a simple probabilistic classifier is bad and unstable.

5.3. Overall Averaged Performance Comparison. For a
throughout performance evaluation, performance considera-
tion of other parameters is considered as well; these include
Kappa, Precision, Recall, F1, and ROC, which are commonly
used in assessing the quality of the classification models
in data mining. These performance indicators are briefly
described as follows. The performance results pertaining to
these indicators are averaged over all the four datasets and
all the 20 classification algorithms. They are then shown in
Section 5.3.6 together with the comparison of time cost.

5.3.1. Kappa Statistic. Kappa statistic is widely used to mea-
sure variability between multiple observers. The meaning of
Kappa statistic is how often multiobservers agree in terms
of their interpretations. When two or more evaluators are
checking the same data, Kappa statistic is assessed to show
an agreement of evaluators when the same data categories
are correctly assigned. As well known, simple agreement just
between yes and no is poor because of the property of chance
and arbitrary. That is why Kappa statistic is introduced and it
is preferred [41]. The definition of Kappa statistic is given as
follows:

𝜅 =
Pr (𝑎) − Pr (𝑒)
1 − Pr (𝑒)

, (34)

where Pr(𝑎) is the relative observed agreement among raters
and Pr(𝑒) is the hypothetical probability of chance agreement.
When the application is classification, the measure of chance
between the classification results and the true classes (labeled
categorical data class) is assessed by Kappa statistic. It reflects
the reliability of the evaluation of our classifier. Table 6 is the
general criterion of evaluating Kappa statistic [42]. A com-
parison of different voice datasets and different preprocessing
methods, in terms of average Kappa statistic, is shown in
Figure 15. Wavelet method is relatively unstable in datasets
of FM, ES, and SI. The Kappa statistics for LPC-CC method
are almost the same across different datasets. SFXwithout FS,
however, underperformedwhen compared to LPC-CC in FM
and ES datasets which are relatively simple. SFX-FS shows its
superiority in Kappa statistics in all datasets.

5.3.2. Precision. In pattern recognition and data mining,
precision is the fraction of relevantly retrieved instances. In
the situation of classifications, the terms positive and negative
describe the classifier’s prediction results, and the terms true
and false refer to whether the prediction results correspond
to the fact or not [43]. This is illustrated by Table 7.

Precision is defined as:

Precision = TP
TP + FP

. (35)

Precision is concisely defined as “of all the instances that
were classified into a particular class, howmany were actually
belonged to that class?” In classification task, a perfect pre-
cision score for a particular class means that every instance
classified into that class does indeed belong to that class
(but it says nothing about the number of instances from
that class that were not classified correctly). As shown in
Figure 16, for example, SFX-FS when applied on LR dataset
has the maximum precision score 0.88—that means 88% of
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Figure 15: Comparison of average Kappa statistic for different voice
datasets and different preprocessing methods.

Table 6: Strength of agreement of Kappa statistic.

Kappa Agreement Interpretation
<0 Less than chance agreement Poor
0.01–0.20 Slight agreement Slight
0.21–0.40 Fair agreement Fair
0.41–0.60 Moderate agreement Moderate
0.61–0.80 Substantial agreement Substantial
0.81–1.00 Almost perfect agreement Almost perfect

the instances that are classified into a particular indeed belong
to that class. SFX-FS for SI has precision score 0.85, for ES has
only 0.64, and for FM has 0.73. Wavelet method was unac-
ceptable for all datasets except LR, for it has merely 0.59, 0.42,
and 0.25 precision scores, respectively. The comparison with
respect to precision scores is shown in Figure 16.

5.3.3. Recall. In pattern recognition and data mining, recall
is defined as the fraction of relevantly retrieved instances. We
can infer that the samepart of both precision and recall is rele-
vance, based on which they all make a measurement. Usually,
precision and recall scores are not discussed in isolation and
the relationship between them is inverse, indicating that one
increases and the other decreases. Recall is defined as

Recall = TP
TP + FN

. (36)

In a classification task, recall is a criterion of the classification
ability of a prediction model to select labeled instances from
training and testing datasets. A recall of score 1.0 means that
each instance from that particular class is labeled to this class
and all are predicted correctly, and none shall be left out
[44]. Recall in this context is defined as the number of true
positives divided by the total number of elements that actually
belong to the positive class (i.e., the sum of true positives
and false negatives, which are items which were not labeled
as belonging to the positive class but should have been).

0.59 

0.42 

0.25 

0.80 

0.73 

0.62 
0.57 

0.69 0.70 

0.61 

0.79 0.81 

0.73 

0.64 

0.85 
0.88 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

FM ES SI LR

Pr
ec

isi
on

Dataset

Preprocessing method:
Wavelet
LPC-to-CC

SFX
SFX + FS

Figure 16: Comparison of average precision for different voice
datasets and different preprocessing methods.

Table 7: Definitions of precision and recall terms.

Actual Class (Observation)

Predicted Class
(Expectation)

TP (True Positive)
Correct Result

FP (False Positive)
Unexpected Result

FN (False Negative)
Missing Result

TN (True Negative)
Correct Absence of

Result

The recall scores defined loosely as “of all the instances that
are truly of a particular class, how many did we classify them
into that class?” For example, as shown in Figure 17, 86%
of instances are classified into the classes and they actually
belonged to those classes. Inversely 14% is missed out. Again,
the recall scores for Wavelet method are comparatively low
except in the LRdataset it exceeds that of LPC-to-CCmethod.
Having a low recall score means the classifier is conservative.
SFX-FS is outperforming the rest of the methods in terms of
recall scores. The comparison is shown in Figure 17.

5.3.4. 𝐹-Measure. 𝐹-measure is the harmonic mean of preci-
sion and recall, that is,

𝐹-measure = 2

1/Precision + 1/Recall

=
2 ⋅ Precision ⋅ Recall
Precision + Recall

.

(37)

It is also known as balanced𝐹 score or𝐹-measure in tradition,
because recall and precision are equally weighted.The general
formula for 𝐹

𝛽
measure is

𝐹
𝛽
=

1 + 𝛽
2

1/Precision + 𝛽2/Recall

=

(1 + 𝛽
2
) ⋅ Precision ⋅ Recall

𝛽2 ⋅ Precision + Recall
.

(38)
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Figure 17: Comparison of average recall for different voice datasets
and different preprocessing methods.

Table 8: Overall Averaged Performance Comparison of Pre-
processing Methods.

Average
performance

Pre-processing methods
Wavelet LPC-2-CC SFX SFX + FS

Accuracy % 52.67789 63.70274 72.72099 76.72044
Kappa
Statistics 0.335301 0.490773 0.58568 0.643008

Precision 0.515225 0.652195 0.730832 0.771412
Recall 0.519617 0.638896 0.721978 0.763601
F-measure 0.496758 0.610196 0.701144 0.747919
ROC 0.717222 0.787528 0.836521 0.859025

As mentioned before, precision and recall scores should be
taken into account simultaneously because they have a strong
relation essentially. Consequentially, both are combined into
a single measure, which is 𝐹-measure. Other complicated
combinations of precision and recall include but are not lim-
ited to the weighted harmonic mean of precision and recall
(𝐹
𝛽
), and the geometric mean of regression coefficients, and

Informedness and Markedness (Matthews correlation coeffi-
cient [45]). In our experiments, we only concern 𝐹

1
-measure.

𝐹
1
measure is a derived effectivenessmeasurement.The resul-

tant value is interpreted as a weighted average of the precision
and recall. The best value is 1 and the worst is 0. Figure 18
shows a comparison of average 𝐹

1
measure for different voice

datasets and different preprocessing methods. SFX-FS shows
superior 𝐹

1
score in datasets SI and LR; it duels with LPC-to-

CC in simple datasets like FM and ES.

5.3.5. ROC. A Receiver Operating Characteristic (ROC) is
generated by plotting True Positive Rate (TPR) verse False
Positive Rate (FPR)withmany value settings of threshold. It is
a graphical plot which illustrates the performance of sensitiv-
ity and specificity. TPR is also known as sensitivity, and FPR is
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Figure 18: Comparison of average 𝐹-measure for different voice
datasets and different preprocessing methods.

one minus the specificity or true negative rate. A ROC space
is defined by FPR and TPR as 𝑥 and 𝑦 axes, respectively, with
the coordinate (0, 1) representing the best prediction result.
The area-under-curve (AUC) statistic of ROC is commonly
used in machine learning and data mining community for
model comparison. The AUC is an equivalent and simple
replacement of ROC curve.

ROC is useful for gaining insight into the decision-
making ability of the model—how likely is the classification
model to accurately predict the respective classes? The AUC
measures the discriminating ability of a classification model.
The larger the AUC, the higher the likelihood that an actual
positive case will be assigned a higher probability of being
positive than an actual negative case. The AUC measure is
especially useful for datasets with unbalanced target distribu-
tion (one target class dominates the other). A comparison in
terms of ROCAUCwhich is normalized to [0, 1] for different
voice datasets and different preprocessing methods is shown
in Figure 19. Again, they show similar performance results
to those in 𝐹

1
measures. SFX + FS perform equally well in

SI dataset and LR dataset with 0.94AUC; it is slightly higher
than SFX and LPC-to-CC in FM and ES datasets.Wavelet has
the lowestAUC in all datasets except LRwhere it is better than
that of LPC-to-CC.

5.3.6. Aggregated Results. The final results that are averaged
and aggregated, from the individual results tested by using
different datasets and different classification algorithms, are
shown as follows. We compare in particular various pre-
processing methods against a collection of performance
indicators, as in Table 8.

FromTable 8, we can reach a conclusion that SFX with FS
is indeed themost suitable preprocessingmethod for all types
of voice datasets. It has a higher value across all performance
indicators than the rest of the preprocessing methods.

The accuracy and CPU time are evaluated across different
feature selection algorithms; the averaged results together
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Table 9: Overall averaged performance comparison of ensemble feature selections.

FS No. attributes from
frequency domain

No. attributes from
time domain

Total no.
attributes

No. attributes
after FS

Average CPU
time (s) Av. Acc. %

CFS 10 66 76 19 1.28 74.25
ChiSq 10 66 76 52 3.05 73.44
MRMR 10 66 76 30 3.26 68.54
WSA 10 66 76 25 1240 (min. 31) 75.29

Table 10: Overall averaged time cost comparison.

Time Preprocessing FS Build Model Total
Dataset LPC2CC DS DTW Piecewise

FM 10 s 5m 23 s 15m 3 s 32m

CFS 0.78 s

1.13 s

52m 37.9 s
ChiSq 2.867 s 52m 40 s
MRMR 3.56 s 52m 40.7 s
WSA 31.275 s 53m 18.4 s

ES 9.5 s 9m 35 s 21m 38 s 1 h 13m

CFS 1.03 s

1.25 s

1 h 44m 24.8 s
ChiSq 3.328 s 1 h 44m 27.1 s
MRMR 1.439 s 1 h 44m 25.2 s
WSA 441.476 s 1 h 51m 45.2 s

SI 15.8 s 25m 6 s 38m 23 s 2 h 14m

CFS 1.91 s

1.7 s

3 h 17m 48.4 s
ChiSq 3.815 s 3 h 17m 50.3 s
MRMR 3.26 s 3 h 17m 49.8 s
WSA 3585 s 4 h 17m 31.5 s

LR 13.4 s 16m 48 s 42m 45 s 1 h 57m

CFS 1.39 s

1.56 s

2 h 56m 49.4 s
ChiSq 2.17 s 2 h 56m 50.1 s
MRMR 4.8 s 2 h 56m 52.8 s
WSA 906 s 3 h 11m 54 s
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Figure 19: Comparison of average ROC AUC for different voice
datasets and different preprocessing methods.

with the amount of attributes before and after FS are shown
in Table 9.

In Table 9, the first three FS algorithms have been widely
used, and the last one is recently proposed by Fong [20].

WSA gives the second fewest number of attributes after fea-
ture selection, highest classification accuracy, and a compro-
mising time costwith 31 secondsminimum. So to some extent
WSA is a good choice of feature selection if time requirement
is not a concern in training up a voice classification model.
WSA is done at the cost of incurring extra time in doing the
heuristic optimization on the feature subset.

Table 9 shows the overall averaged time cost of each
process step applied on different datasets. Piecewise trans-
formation and DTW need much longer time than the other
processes due to the computational complexity. The time
consumption by piecewise transformation is relatively long
especially for complex datasets like SI and LR. Statistic
measures are computed for each segment (20x) for each time-
series.WSAworks as a stochastic iterationmodel, which pro-
gressively refines the performance and is superior to the other
three FSmethods but comes at a certain time cost. In contrast
the classificationmodel construction times in general are very
short, with an average of less than two seconds. Please see
Table 10. The total time required for preprocessing voice data
for classification ranges from slightly less than an hour to
four hours and eighteen minutes, depending on the choice
of preprocessing algorithms and complexity of the datasets.
Be reminded that the reference of time consumption shown
here is for training a classifier based on the given training set;
once a classifier is trained, the testing is very fast that takes
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almost no time. Therefore, a system designer can choose
the best performing algorithms in terms of accuracy and
other performance quality indicators if the voice classification
application is not prone to frequent update of training dataset
(that means no need to build the classification model over
again), and of course vice versa this implies.

6. Conclusion and Future Works

Human voice is referred to as one of the bodily vital signs that
could be measured, recorded, and analyzed as fluctuations of
amplitude of sound loudness. Voice classification constitutes
to a number of biometrics techniques of which the theories
have been formulated, studied, and implemented in practical
applications. Traditional classification algorithms from data
mining domain, however, require the input of training data
to be formatted in a data matrix where the columns represent
features/attributes that characterize the voice data, and the
rows are the instances of the voice data. Each record must
have a verdict known as predicted class for training data.
In the literature, mainly the characteristics of voice data
are acquired from the frequency domain, for example, LPC,
cepstral coefficients, and MFCC. Those popular preprocess-
ing methods have demonstrated significant advantages in
transforming voice data which is in the form of time-series to
signatures in the frequency domain. There exist possibilities
that some useful attributes can be harvested from the time
domain considering the temporal patterns of voice data that
are supposedly distinctive from one another. A challenge to
overcome is its expensive computational cost of time and
large search space in the time domain.

Considering the stochastic and nonstationary nature of
human voice, a hybrid data preprocessing methodology is
adopted in voice classification in this paper, where combined
analysis fromboth frequency and time domain is included. In
particular, a time domain feature extraction technique called
Statistics Feature Extraction (SFX) is presented. SFX utilizes
piecewise transformation that partitions a whole time-series
into segments and statistics features are extracted subse-
quently from each piece. Simulation experiments were con-
ducted on classifying four types of voice data, namely, Female
and Male, Emotional Speech, Speaker Identification, and
Language Recognition into different groups by using SFX and
its counterparts (SFX and Feature Selection). The results
showed that SFX is able to achieve a higher accuracy in the
classification models for the four types of voice data.

The contribution is significant as the new preprocessing
methodology can be adopted by fellow researchers that
will enable them to build more accurate voice classification
model. Besides, the feature selection result proves that a
metaheuristic feature selection algorithm called Wolf Search
(WSA) can achieve a global optimal feature subset for highest
possible classification accuracy. As there is no free lunch in
the world, WSA costs considerable amount of computational
time.

The precision of piecewise transformation segmentation
can be one of the future works. If the number of segments
is too large (low resolution in time-series modeling), then it
will lead to the low accuracy of feature extraction; if

the window is too small (with very refined resolution), then a
lot more computational costs are incurred. Although calibra-
tion was done beforehand for calculating the ideal segment
length for subsequent processing, this again contributes to
extra processing time, and the calibrated result may need to
be refreshed should the natures of the voice data evolve. Some
dynamic and incremental methods are opted for solving
this calibration problem for estimating the correct length of
segments. Furthermore the segment lengths can be variables
that cope with the level of fluctuation of the voice data,
dynamically.
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