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Abstract 

Bioinformatics and phylogeography models use viral sequence data to analyze spread of epidemics and pandemics. 
However, few of these models have included analytical methods for testing whether certain predictors such as 
population density, rates of disease migration, and climate are drivers of spatial spread. Understanding the specific 
factors that drive spatial diffusion of viruses is critical for targeting public health interventions and curbing spread. 
In this paper we describe the application and evaluation of a model that integrates demographic and environmental 
predictors with molecular sequence data. The approach parameterizes evolutionary spread of RNA viruses as a 
generalized linear model (GLM) within a Bayesian inference framework using Markov chain Monte Carlo (MCMC). 
We evaluate this approach by reconstructing the spread of H5N1 in Egypt while assessing the impact of individual 
predictors on evolutionary diffusion of the virus. 

Introduction 

Bioinformatics and phylogeography models use viral sequence data to analyze spread of epidemics and pandemics. 
However, few of these models have included analytical methods for testing whether certain predictors such as 
population density, rates of disease migration, and climate are drivers of spatial spread. While spatial epidemiology 
has successfully developed models of environmental predictors such as global mobility and air travel,  these models 
remain disconnected to molecular sequence data that are analyzed through bioinformatics and phylogeography 
applications to unlock information about virus coalescence, spatial spread, and gene flow.1  Combining spatial 
epidemiology and molecular sequence data can lead to discoveries about risk of transmission between animals and 
humans as well as the relationship between geography and genetic evolution of the virus. In addition, understanding 
the specific factors that influence spatial diffusion of viruses is critical for targeting public health interventions and 
limiting spread. In this study, we describe the application and evaluation of a phylogeographic model that integrates 
demographic and environmental factors. Here we focus on a variant clade of H5N1 viruses in Egypt and its 
countrywide diffusion among avian and human hosts. This approach is generalizable to other RNA viruses and may 
enhance both public health prevention and response by identifying the drivers that are most vital to viral spread.  

Background 

Many emerging or re-emerging infectious diseases are zoonotic in origin, and pose significant threats to human and 
animal health.2 There are many potential drivers of transmission between animals and humans and many of these 
drivers likely vary between countries. This variation could be caused by climate differences, population sizes, and 
living conditions, as well as cultural practices related to food preparation and distribution. In response to these 
complexities, many epidemiologic models have studied potential contributors such as human and avian population 
densities, or precipitation.3  For example Van Boeckel et al. examined anthropogenic and ecological variables 
relating to avian species within developed regions in Asian farming communities following flood conditions,4 while 
Tamerius et al. observed the effects of temperature, humidity, and precipitation on H5N1 spread in tropical 
climates.5  While this research has resulted in valuable epidemiologic insights, it has traditionally ignored the 
information about the evolutionary processes occurring within the viral genome. Phylodynamic analysis of RNA 
viruses can lead to crucial information regarding transmission, genetic diversity and selection, as well as 
epidemiologic characteristics.6 Bioinformatics and phylogeography techniques have enabled researchers to depict 
local and global virus spread, providing valuable information to the public health community as to the origin and 
epidemic patterns of spread. For instance, Lam et al. determined that the spread of influenza A subtype H5N1 was 
likely introduced into Indonesia by a single introduction in East Java in approximately 2002, followed by both an 
east and westward migration throughout the country.7 Bioinformatics approaches such as these are informative; 
though few incorporate demographic and environmental factors often used in epidemiology.  Ypma et al. 
demonstrate this concept by including geographic and temporal elements as well as genetic data to estimate the 
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migration patterns of influenza A subtype H7N7 in the Netherlands.8 By taking an integrated approach, this work 
highlighted the estimates of certain drivers on evolutionary transmission with greater accuracy.8 The same group 
also demonstrated that using within-host dynamics and genetic data of pathogens to simultaneously generate both 
the phylogenetic tree and transmission route leads to more accurate models and plausible estimation of connecting 
variables.9 Thus, epidemiologic and viral phylogenetic approaches have been incorporated into a rough framework 
which join evolutionary and ecologic dynamics to explain spatial diffusion.10   Phylogeography naturally 
compliments models based on observed epidemiologic data, as the genomic data can provide a record by which to 
confirm or reject hypothesized patterns of viral spread. Our aim is to demonstrate the utility of combining 
epidemiologic and phylogeographic approaches to identify drivers of virus diffusion.  We evaluate this approach by 
reconstructing the spread of H5N1 in Egypt while assessing the impact of individual predictors on evolutionary 
diffusion of the virus. 

Methods 

A Bayesian generalized linear model (GLM) approach was adopted which was developed by Lemey et al., in which 
the spatiotemporal patterns of viral diffusion are reconstructed while potential contributing factors are 
simultaneously assessed.11 We use the work of Scotch et al.12 as a basis by which to analyze the potential 
environmental drivers of highly pathogenic avian influenza (HPAI) H5N1 movement among multiple hosts by 
considering discrete geographic locations within Egypt.  We chose to focus on Egypt because it has recently 
emerged as an epicenter for H5N1, with 173 human cases reported to the World Health Organization (WHO) as of 
June 2013.12  In addition, the local cultures prefer to obtain their poultry via live bird markets which create an 
atmosphere of high human-avian transmissibility.   

Sequence data 

We used the same dataset described by Scotch et al.12 that included 226 H5N1 hemagglutinin (HA) sequences 
previously isolated, however we excluded two sequences for which the host was recorded as environmental.   
Sequences collected from avian (n=210) and human (n=14) hosts in Egypt spanning 2007-2012. The sequences were 
selected based on their Egyptian origin and classification within the recently defined variant subclade 2.2.1.1. 
published by WHO.13 

We reconstructed the spread of H5N1 in Egypt using a discrete phylogeography approach while estimating the 
effect of a diverse set of variables on phylogeographic diffusion within a GLM. This process was implemented using 
the development version of the BEAST software package, available at http://code.google.com/p/beast-mcmc/, which 
uses a Bayesian Markov Chain Monte Carlo (MCMC) analysis.14  We modeled sequence evolution using the 
generalized time-reversible (GTR) model of nucleotide substitution, while using a relaxed molecular clock. Multiple 
chain lengths were tested using Tracer,15 with the final run set at 20 million. 

 Generalized linear model 

We tested the effect of predictors on spatial spread while reconstructing the spatiotemporal history. Here, we used 
modeling techniques described in Lemey et al.,11 and innovative methods for Bayesian phylogeographic inference of 
phylogenetic history and discretized diffusion processes.16 We utilized a GLM model by integrating diffusion of 
viral spread as a non-reversible continuous time Markov chain processes expressed as a K x K infinitesimal rate 
matrix of location change (Λ) among K discrete locations.11 We represented all rates of movement Λij using a log 
linear function to incorporate a set of n predictors on the log-scale. 

logΛij = β1δ1log(p1) + β2δ2log(p2) + … + βnδnlog(pn) 11 

Here, β signifies the contribution of a given predictor to the model, and δ is a binary indicator (0, 1) variable that 
oversees whether a particular predictor is to be incorporated in the model.17 This allows for Bayesian stochastic 
search variable selection (BSSVS),16-18 in which posterior probabilities of all possible models that may or may not 
include a given predictor are estimated, as discussed in Lemey et al, 2009.17, 18 We utilized a Bernoulli prior 
probability distribution for δ as in Lemey et al. 2012, to place equal probability of inclusion or exclusion of 
predictors.11 

We selected local predictors based on feedback from experts who study H5N1 in Egypt.19 These predictors were 
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chosen to represent genomic, geographical, demographical, and numerical indicators to develop a preliminary model 
and include:  

Avian and human population density:  We incorporated population density for all possible origins and destinations 
for both humans and chickens from City Population, an online resource for worldwide population statistics, and the 
Food and Agriculture Organization of the United Nations (FAO).20, 21 

Latitude: We obtained the latitude of the centroid location for each governorate in order to reflect diverse climatic 
conditions within the country by using GeoNames.22 While this likely does not reflect the true locations of where 
sequences were collected, this method was adopted to impose uniformity across the model.  

Distance: We calculated the distance between governorates using the centroid latitude and longitude obtained from 
GeoNames.22 

Case and Sequence counts: We obtained estimates of human and avian H5N1 cases for each governorate from the 
FAO for the years of 2006-2012.19 We averaged these to obtain the final predictor values for our model. The 
sequences incorporated into the phylogeographic analysis were differentiated by the location from which they were 
isolated for both human and avian sequences.  We included these variables not to explain diffusion, but rather to 
minimize bias on predictors being tested by indicating the sample sizes at particular locations throughout viral 
spread. 

We log transformed and standardized all predictors before their incorporation into the model. 

Evaluation of predictor inclusion 

Following Lemey et al.11, 16  we determined the support for predictors within the model using Bayes factors (BFs). To 
calculate the BFs, the posterior odds of predictor inclusion were divided by their prior odds: 

BF =      ( 𝑝𝑖
1−𝑝𝑖

)/( 𝑞𝑖
1−𝑞𝑖

) 11   

Here pi represents an estimate of the posterior probability that a given predictor is included while qi represents the 
prior probability. For this study, the BF cutoff for support within the model was set at 3. We implemented a 
technique for adjusting β to a fixed correlation X′X in order to account for possible high correlation between 
predictors.  Finally, we evaluated δ under a bit flip operator as discussed by Drummond et al.  in greater detail.23  

Results 

The BF results suggest the importance of avian populations to the viral diffusion of H5N1 clade 2.2.1.1 in Egypt 
(figure 1). Most notably, avian population density at the origin had a strong support for inclusion within the model 
of viral spread with a BF score of 22.3. Additionally, we derived the 95% Bayesian credible interval for the 
coefficient of each predictor which indicates the level of uncertainty of a particular variable. The inclusion of avian 
densities at the origin within the model was also supported in this respect, with a credible interval which did not 
span zero. However, the credible interval for distance, latitude of origin, and human density at the origin did span 
zero. Compared to avian densities at the origin, human population density did not indicate nearly the degree of 
support. For both populations the origin achieved a higher probability of inclusion compared to the destination of 
spread during the observed time period. Other predictors included in the model such as distance between the origin 
and destination of spread and latitude within Egypt achieved negligible BF scores and inclusion probability. Human 
density, avian density and latitude at the destination were not supported within model as BF values dropped to 
approximately 1 or below. Finally, while the variables relating to sample size of sequences and case counts do not 
directly contribute to the model, their inclusion lends increased credibility for the predictors relating to the avian 
host data, in particular the avian sequence data which received a BF score of 61.5 and variables associated with the 
human host obtained unsupportive BF values. 

Discussion 

Mitigation and prevention of infectious disease is essential to population health, and to achieve these goals we must 
first understand the processes that drive the spread of viruses such as influenza.  Our preliminary work indicates the 
potential to uncover variables of interest for a particular virus and region, which highlight the integration of 
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epidemiologic and phylogenetic approaches. Of the tested predictors for H5N1 spread within Egypt, we have found 
host population densities within the region to be strong indicators for viral dispersal and highly supported for 
inclusion within the model by BF values. These results are consistent with the nature of close proximity within large 
populations, and with other findings related to H5N1 risk factors. For instance, Martin et al. found that chicken and  

 

Figure 1. Predictors of H5N1 diffusion in Egypt. Inclusion probability defined by indicator expectations E(δ), which 
reflects the likelihood of meaningful impact of the predictor on viral diffusion. Bayes Factor (BF) support values 
shown at the top of the figure and are indicated by vertical lines. Coefficient (β|δ=1) represents the contribution of 
each predictor, with the 95% credible interval represented by brackets. 

human density in China was a leading contributor to risk of infection.24   However, we do not preclude the possibility 
of other potential underlying dynamics driving influenza H5N1 in Egypt. While our case study involved influenza, 
this approach can be applied to other RNA viruses as they have shorter genomes and more rapid nucleotide 
substitutions compared to other pathogens.25 

Limitations 

There are several limitations of this work, largely related to incomplete or outdated data sources. Our assignment of 
the centroid of each governorate as the latitude for discrete locations can only approximate the geographic 
distribution of viral spread.  In addition, it is nearly certain the actual number of case counts observed in human and 
avian populations was not represented as mild cases may go unrecognized. Case counts can also vary year-to-year, 
possibly indicating the influence of another predictor.  This possibility is overlooked using our current method of 
averaging a range of years.  Additional sequencing of collected viruses from known cases would also aid our 
depiction of the spatial distribution, particularly human sequences as this data is sparse. Finally, estimates of avian 
population densities used here were collected in 2005, which may over or underestimate actual densities throughout 
our study period. 

Conclusion 

We demonstrate the potential of phylogeography and bioinformatics techniques to incorporate traditional 
epidemiologic data for understanding the evolutionary diffusion of viruses.  Future work will involve testing 
additional variables that are indicated in viral proliferation within Egypt.  Predictors of interest include domestic 
avian population ranges with migratory bird habitat overlap, cross species spill over migration rates, as well as the 
recent discovery of an important shift in amino acid composition of the hemagglutinin cleavage site to viral 
pathogenicity within Egyptian strains.26 
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