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Abstract: Oats (Avena sativa L.) are rich in protein, fiber, calcium, vitamins (B, C, E, and K), amino
acids, and antioxidants (beta-carotene, polyphenols, chlorophyll, and flavonoids). β-glucan and
avenanthramides improve the immune system, eliminate harmful substances from the body, reduce
blood cholesterol, and help with dietary weight loss by enhancing the lipid profile and breaking
down fat in the body. β-glucan regulates insulin secretion, preventing diabetes. Progladins also lower
cholesterol levels, suppress the accumulation of triglycerides, reduce blood sugar levels, suppress
inflammation, and improve skin health. Saponin-based avanacosidase and functional substances
of flavone glycoside improve the immune function, control inflammation, and prevent infiltration
in the skin. Moreover, lignin and phytoestrogen prevent hormone-related cancer and improve
the quality of life of postmenopausal women. Sprouted oats are rich in saponarin in detoxifying
the liver. The literatures have been reviewed and the recent concepts and prospects have been sum-
marized with figures and tables. This review discusses recent trends in research on the functionality
of oats rather than their nutritional value with individual immunity for self-medication. The oat and
its acting components have been revisited for the future prospect and development of human healthy
and functional sources.
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1. Introduction

So-called “superfoods” are food products that boost the immunity of the body through
their rich contents of nutrients and antioxidants. Representative examples of superfoods
include tomatoes, spinach, broccoli, salmon, garlic, and blueberries [1]. Recently, interest
in so-called “functional grains”, which are also rich in nutrients and antioxidants, has
increased, particularly in the United States of America, Europe, and Japan [2]. These func-
tional grains include oats, quinoa, lentils, chickpeas, amaranth, chia seeds, wild rice,
and flaxseeds. Although there are differences in the level of nutrients between each grain,
these grains are rich in protein, vitamins, minerals, and dietary fiber compared to the com-
monly consumed rice (white rice), barley, and wheat. Functional grains help the modern
population suffering from “poverty in the midst of plenty” due to busy daily life, irreg-
ular meals, and frequent consumption of take-out restaurant meals to ingest abundant
nutrients [3–8].

Oats (Avena sativa L.) are biennial herbaceous plants that belong to the Poaceae family.
They are one of the representative crops that grow in cool and humid weather condi-
tions [9]. Oats have a shape similar to barley and are available in different types, including
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black, red, yellow, and white oats. They are the sixth most produced grain worldwide,
following wheat, corn, rice, barley, and sorghum [10,11]. Traditionally, oats have been
considered healthy as they are abundant in protein, fiber, vitamins, and minerals and are
mainly consumed as oat meals. In particular, oats contain high levels of proteins and
lipids as well as balanced amounts of essential amino acids, such as lysine, and 2–6%
of β-glucan and are, therefore, recognized as a high-value crop [12–15]. Compared to
other crops that contain an inversely proportional amount of protein to that of lysine,
oats consist of a constant amount of lysine regardless of the protein levels [16]. Globulin
accounts for 70–80% of the protein content of oats, and they also contain a low amount of
prolamin [16,17]. Oats have 5–12% fat, which is higher than that of other cereal crops [18]
(Table 1). Approximately 95% of the fat content in oats are palmitic, oleic, and linoleic
acids, and 75–80% are unsaturated fatty acids. These unsaturated fatty acids are associated
with various beneficial physiological properties, such as the prevention of dementia and
antioxidant activity [10,15,19]. Recently, unsaturated fatty acids were shown to lower
blood cholesterol, leading to increased interest in oats as a functional food [20–22]. Oats
also contain polyphenols including caffeic acids, coumaric acids, gallic acids, hydrox-
ybenzoic acids, protocatechuic acids, syringic acids and vanillic acids as the bioactive
compounds [2,9,10]. Alkaloids such as avenanthramides (Avns) are also found in oat [9,10].
In addition, oat bran-derived by-products such as proteins, β-glucan, saponin, albumin,
prolamins, and glutelins are also valuable for the nutritional components. Therefore, hu-
man consumption of whole oat grain is implicated with health benefits due to the acting
components in the whole oat grain. Metabolic diseases have been suggested for the benefits
and the whole grains or healthy grains has recently been emphasized through systematic
meta-analyses of the available information [23].

Table 1. Comparison in the functional components in white rice, wheat, oat, and barley [18].

Components Oat (%) Barley (%) Wheat (%) White Rice (%)

Protein 9–17 14.2 7–22 6.3
Fat 5–12 2.4 ~2.5 0.7

Starch 27–50 54.2 68 80.1
Total dietary

fiber 13–30 13.1 11.5–15.5 1

β-glucan content in grain (g/100 g)

3–8 2–20 0.5–1 0.13

2. Nutritional Benefits of Oats

The nutritional benefits of oats as a food product have been studied in different ways.
As shown in Table 1, oats are a good source of high-quality proteins, carbohydrates, dietary
fibers such as β-glucan and soluble dietary fibers, fat, minerals, phenolic acids, flavonoids,
and antioxidants [13,18,24]. Compared to other grains, proteins in oats are superior in quan-
tity and quality, especially for humans and non-ruminants, based on the composition of
essential amino acids. Seed storage proteins of grains are divided into globulins, which
are soluble in salt, and prolamins, which are soluble in alcohol [16,25]. Among essential
amino acids, lysine, which plays a crucial role in protein biosynthesis, is particularly im-
portant as this amino acid cannot be synthesized and must be obtained from the external
environment in mammals [26]. Grains are a preferred source of these essential amino
acids. In particular, proteins in oats are rich in lysine and have a higher ratio of globulin
proteins than other grains that have a high prolamin content [27]. Oats generally contain
3–11% of fat, and several strains contain up to 18% of fat. In addition, most of the fats
in oats are stored in the endosperm compared to other grains that store a high fat content
in the germini and germinal disk [28]. Fatty acids in oats include oleic (18:1), linoleic
(18:2), and linolenic acid (18:3), which are unsaturated fatty acids, and myristic (14:0),
palmitic (16:0), and stearic acid (18:0), which are saturated fatty acids (Figure 1) [29,30].
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Among these, oats contain high amounts of oleic, linoleic, and palmitic acid. Oleic and
linoleic acid are nutritionally essential unsaturated fatty acids, and palmitic acid prevents
peroxidation of fat, which causes toxicity and reduces the flavor of grains [31,32]. Thus,
oats contain nutritionally excellent fat content and fatty acid composition [33]. However,
depending on the use of the grain, it is necessary to evaluate the fat content in more detail.
The energy value of fat (37 kJ/g) is much higher than that of proteins or carbohydrates
(16–17 kJ/g) [34,35]. Thus, grains with high fat content are generally preferred for animal
feeds and not for consumption by humans because they lack flavor and brown excessively
during cooking [35,36].

Antioxidants 2021, 10, x FOR PEER REVIEW 3 of 21 
 

palmitic (16:0), and stearic acid (18:0), which are saturated fatty acids (Figure 1) [29,30]. 
Among these, oats contain high amounts of oleic, linoleic, and palmitic acid. Oleic and 
linoleic acid are nutritionally essential unsaturated fatty acids, and palmitic acid prevents 
peroxidation of fat, which causes toxicity and reduces the flavor of grains [31,32]. Thus, 
oats contain nutritionally excellent fat content and fatty acid composition [33]. However, 
depending on the use of the grain, it is necessary to evaluate the fat content in more detail. 
The energy value of fat (37 kJ/g) is much higher than that of proteins or carbohydrates 
(16–17 kJ/g) [34,35]. Thus, grains with high fat content are generally preferred for animal 
feeds and not for consumption by humans because they lack flavor and brown excessively 
during cooking [35,36]. 

 
Figure 1. Representative chemical structure of saturated and unsaturated fatty acids present in oats 
using ChemSpider. 

3. Functionality of β-glucan in Oats 
In 1998, the Food and Agriculture Organization approved the labeling of health ef-

fects on food products containing oat extract, and this has attracted attention globally [37]. 
In addition, oats were selected as one of the world’s top 10 superfoods. Because of the 
growing interest of consumers in healthy foods, the consumption of oats as an excellent 
functional food has increased recently [38]. Oats are an important functional ingredient 
and contain high amounts of dietary fiber and β-glucan. The β-glucan content of oats var-
ies depending on the type and part of the grain (Figure 2A) [39,40]. β-glucans in oats are 
present as insoluble and soluble dietary fibers. As soluble dietary fibers have superior 
physiological functions, interest in oats with high soluble β-glucan content has increased. 
β-glucans in oats mainly consist of (1→3), (1→4)-beta-D-glucan, which is a linear polysac-
charide, and this glucan is often abbreviated as β-glucan (Figure 2B) [41,42]. The health 
benefits of β-glucan in wheat and barley are relatively well-known [43]. β-glucans in oats 
are known to differ from those in wheat and barley in terms of solubility, gelation, and 
relative molecular weight [44]. In oats, a large amount of β-glucan is contained in the en-
dosperm and aleurone layer cell wall (Figure 2A) [40]. β-glucan regulates the gastrointes-
tinal transit rate after meals and starch digestion to dilute blood sugar level through 
changes in the glycemic index, thereby reducing the insulinemic response in diabetes 
[41,45]. In addition, β-glucan has various physiological effects such as preventing cardio-
vascular diseases by controlling the blood pressure and anti-obesity and anti-cancer 
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using ChemSpider.

3. Functionality of β-Glucan in Oats

In 1998, the Food and Agriculture Organization approved the labeling of health effects
on food products containing oat extract, and this has attracted attention globally [37]. In ad-
dition, oats were selected as one of the world’s top 10 superfoods. Because of the growing
interest of consumers in healthy foods, the consumption of oats as an excellent functional
food has increased recently [38]. Oats are an important functional ingredient and contain
high amounts of dietary fiber and β-glucan. The β-glucan content of oats varies depending
on the type and part of the grain (Figure 2A) [39,40]. β-glucans in oats are present as
insoluble and soluble dietary fibers. As soluble dietary fibers have superior physiological
functions, interest in oats with high soluble β-glucan content has increased. β-glucans
in oats mainly consist of (1→3), (1→4)-beta-D-glucan, which is a linear polysaccharide,
and this glucan is often abbreviated as β-glucan (Figure 2B) [41,42]. The health benefits of
β-glucan in wheat and barley are relatively well-known [43]. β-glucans in oats are known
to differ from those in wheat and barley in terms of solubility, gelation, and relative molec-
ular weight [44]. In oats, a large amount of β-glucan is contained in the endosperm and
aleurone layer cell wall (Figure 2A) [40]. β-glucan regulates the gastrointestinal transit rate
after meals and starch digestion to dilute blood sugar level through changes in the glycemic
index, thereby reducing the insulinemic response in diabetes [41,45]. In addition, β-glucan
has various physiological effects such as preventing cardiovascular diseases by controlling
the blood pressure and anti-obesity and anti-cancer effects (e.g., prevention of colorectal
cancer) [18,46–55]. It lowers low-density lipoprotein (LDL) cholesterol level in the blood
and elevates high-density lipoprotein (HDL) cholesterol level to help maintain normal
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blood lipid concentration and body weight [56]. Furthermore, β-glucan activates leuco-
cytes/macrophages and promotes immune function by increasing immunoglobulin levels,
and NK and killer T cell numbers [57,58]. This leads to increased resistance against cancer
and infections as well as diseases caused by parasites [57,59,60]. β-glucan water-soluble
dietary fiber in oats increases intestinal viscosity and shortens the transit time of the intesti-
nal contents and nutrients during peristalsis [61]. This helps to reduce the absorption rate
of proteins, lipids, and glucose, leading to decreased body weight and dietary efficiency
(Figures 3 and 4) [40,43,62,63]. The cell wall of oats contains a high level of mixed-linked
β-D-glucan that consists of β(1→3) and β(1→4) glucosides in a ratio of 3:7 [64]. This mixed-
linked β-D-glucan is also known to lower blood cholesterol levels [56]. β-glucans noted
above are a class of fiber identified in yeast, algae, bacteria, fungi, and some plants such as
oats and barley [43]. The particulate or soluble form of oat-derived β-glucan appears safe
when digested [39]. However, some moderate adverse effects have been reported. Symp-
toms including ulcerative colitis, diarrhea, back pain, joint pain, kidney disease, circadian
disruption-induced metabolic syndrome, bile acid storage and vascular calcium storage
are reported to be ameliorated in the specific conditions such as ingestion with a high-dose-
limiting concentration of β-glucan [48,49,65–68]. It remains to be elucidated whether this
intake is safe for women who are pregnant or breastfeeding. In addition, dietary intake of
β-glucan may be unsafe for an individual with certain disease-related conditions such as
acquired immune deficiency syndrome (AIDS) and AIDS-related complex [69]. However,
no serious adverse effects related to β-glucan supplementations have been reported during
laboratory and clinical trials except in some special cases as mentioned above [49,70,71].
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β-glucan.

4. Fermentation Enhancement of Functionality of Oat β-Glucan and Ingredients

Several previous studies have prepared lactic acid fermented beverages from various
plant materials. Soymilk has been extensively studied for its property of improved storage
and sensory characteristics after lactic acid fermentation [72]. Oligosaccharides such as
raffinose and stachyose, which cause flatulence, are hydrolyzed by lactic acid bacteria
containing α-galactosidase, thereby improving the nutritional properties [73]. Lactic acid
fermentation of peanut oil reduces the content of n-hexanal, a substance that causes a fishy
smell in soybean, and thus improves the sensory properties [74]. A study was conducted
to assess the changes in the microbiological characteristics to evaluate the growth potential
of lactic acid bacteria during fermentation with oat extract as microbial substrate.

Gut microbiome have recently received a light in human health promotion in views of
dietary grain consumption and health enhancement. Polyphenolic compounds are rich
bioactive components present in grains, indicating the crucial polyphenolic compounds
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as human health factors [75]. Polyphenolic compounds and fiber present in whole grain
diet are helpful to reduce risks of human diseases. Fiber consumption is associated with
specific microbial flora such as Bacteroides. Dietary fiber such as arabinoxylans, pectins or
insulin promotes enrichment of health-related bacterial flora [76]. In gut, the consumed
components are known to interact with the microbiome. Therefore, the oat components
are suggested to interact with the gut microbiome to exert human health [76]. The dietary
consumption of oat fiber and polyphenolic compounds is considered to help gut bacterial
promotion associated with healthy intestinal benefit.

It was observed that fermentation using a combination of Lactobacillus delbrueckii subsp.
bulgaricus (L. bulgaricus) and Streptococcus salivarius subsp. thermophilus (S. thermophilus)
increased the number of microorganisms and acid production compared to fermentation
using only L. bulgaricus or S. thermophilus. In addition, fermentation with S. thermophilus
led to a lower pH than fermentation with L. bulgaricus. Fermentation using a mix of L. bul-
garicus and S. thermophilus led to a faster decrease in the pH. These results suggest that
there is a growth-promoting phenomenon between L. bulgaricus and S. thermophilus, similar
to that in yogurt made from milk. The increased number of microorganisms and acid pro-
duction and lower pH in fermentation using S. thermophilus may be attributed to the better
adaptation to oat extract of S. thermophilus than of L. bulgaricus [75–80]. These studies have
demonstrated that the increased content of the β-glucan in oat plantation is associated with
maximum health benefits and hence, biosynthetic enhancement of the β-glucan would be
an important goal of functional oat breeding.

5. Other Bioactive Ingredients and Functionalities

Physiologically active ingredients of oats include vitamin E, carotenoids, anthocyanins,
lignans, phytic acid, phenolics, and phytosterol, and Avn, which is a phenol present only
in oats [81,82]. These components are secondary metabolites produced as defense mecha-
nisms during plant growth and act as antioxidants that control cell damage from oxidative
stress by removing reactive oxygen species in the human body [82–85]. Furthermore,
the addition of oat components during the processing of food products helps to suppress
fatty acid plaque development because of its antioxidant action and improves storage
properties [23,86,87].

Vitamin E consists of four tocopherol isomers (α-, β-, γ-, and δ-tocopherol) and
four tocotrienol isoforms (α-, β-, γ-, and δ-tocotrienol) (Figure 5) [88]. Among these,
α-tocotrienol has 40–60 times greater antioxidant capacity than β-tocotrienol, a key antioxi-
dant [89]. It lowers blood cholesterol, has anti-inflammatory effects, and inhibits tumor
cell proliferation in humans [90]. The main polyphenolic compound found in oats in-
cludes protocatechuic, syringic, vanillic, p-hydroxybenzoic, gallic, p-coumaric, o-coumaric,
and caffeic acids (Figure 6) [91–93]. Among them, Avn biosynthesized from phenylalnine
as an alkaloid (Figure 7) [9,94,95] is a polyphenol with various physiological properties,
including antioxidant, anti-inflammatory, anti-cancer, anti-thrombotic, anti-proliferative,
and anti-itch activities [9,95–103]. Avn has 30 times higher antioxidant activity than other
phenolic compounds [98,99,102]. There are various types of Avn found in oats. Depend-
ing on the residue of N-cinnamoyl anthranilic acid, Avn A combined with p-coumaric
acid, Avn B combined with ferulic acid, and Avn C combined with caffeic acid are mainly
found in oats [101,102,104]. The structure of Avn is similar to tranilast, a commercially
available anti-allergic drug, and many studies assessed the anti-inflammatory and anti-
atherogenic effects of Avn [105–108]. In particular, Avn is known to inhibit the release
of inflammatory substances by macrophages or adhesion of monocytes to vascular en-
dothelial cells and exhibit anti-cancer effects through anti-proliferative and pro-apoptotic
activities (Figures 8–10) [78,99,106–113]. In a recent study, Avn C, among different types
of Avn, was shown to be effective against dementia and hearing loss [98,114], as well as
prevention of misfolded aggregation (Figure 11) [115]. Avn is also helpful in relieving
itching of dry skin, and oat extract is widely used as a cosmetic material in Western Eu-
rope [65]. Avns (A, B and C) dose-dependently inhibit cellular tyrosinase and melanin
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synthesizing tyrosinase activities with the competitive inhibitory manner. They also in-
hibit the expression level of melanogenic proteins (TRP1 and 2). The tyrosinase-binding
affinity of Avns, which obtained by molecular docking simulation and the Derek Nexus
quantitative structure–activity relationship system, suggests that the binding affinities are
ranged between −7.5 kcal/mol and −6.8 kcal/mol [116]. Moreover, creams containing oat
extract showed improved facial skin and were safe to use [117]. Based on these findings,
it is possible to explore the feasibility of oat extract as an active ingredient in functional
cosmetics to alleviate redness and pigmentation. In addition, combining oats with other nat-
ural ingredient extracts for cosmetic products to cover wrinkles, whiten, alleviate redness,
and have other functions can lead to several positive changes [65].
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lated COX2/PGE2 pathway leads to the inhibition of cell proliferation, migration, apoptosis sup-
pression, angiogenesis, and carcinogenesis in various cell lines. Thus, Avns can be potent inhibitors 
of NF-κB-mediated inflammatory response following the downregulation of IKKβ activity in C2C12 
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Figure 8. A predicted mechanism of avenanthramides (Avns)-mediated anti-inflammatory in skele-
tal muscle C2C12 cells. Avns, the polyphenolic molecules identified solely in oats, exhibit anti-
inflammatory activity mainly by inducing nuclear factor-kappaB (NF-κB) inactivation in C2C12
cells. Avns downregulated the expression of IκB kinase beta (IKKβ) as an inhibitor of NF-κB kinase
subunit beta in cellular response to tert-butyl hydroperoxide (tBHP)-meditated oxidative stress
and attenuated the expression tumor necrosis factor alpha (TNFα) and interleukin 1β (IL-1β) at
the transcriptional level under the same condition. Furthermore, Avns reduced the expression of
cyclooxygenase-2 (COX-2) protein, along with decreased prostaglandin E2 (PGE2) levels. The down-
regulated COX2/PGE2 pathway leads to the inhibition of cell proliferation, migration, apoptosis
suppression, angiogenesis, and carcinogenesis in various cell lines. Thus, Avns can be potent in-
hibitors of NF-κB-mediated inflammatory response following the downregulation of IKKβ activity
in C2C12 cells [109,110].
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element (ARE) domain, and activates a wide range of cytoprotective and antioxidative genes, in-
cluding thioredoxin reductase (TrxR1), thioredoxin 1 (Trx1), NAD(P)H:quinone oxidoreductase 
(NQO1), heme oxygenase 1 (HO-1), glutamate-cysteine ligase (GCL), superoxide dismutase 1 
(SOD1), glutathione peroxidase (GPX), catalase (CAT) and glutathione synthetase (GSS), at the tran-
scriptional and translational levels under oxidative stress conditions. The activated antioxidant sys-
tems improve redox homeostasis by neutralizing reactive oxygen species (ROS). Thus, Avn-Bc en-
hances cell homeostasis in response to oxidative stress [99,112]. 

Figure 9. A proposed action mode of avenanthramides (Avns)-derived antiproliferative and proapop-
totic activity. p53, and p27kip1 and p21cip1 activated by Avns treatment suppress the expression of
cyclin E/ cyclin-dependent kinase 2 (CDK2) and cyclin A/CDK2 associated with cell cycle, and lead
to the cell cycle arrest (G1 to S phase). In addition, Avns also downregulate the expression of cyclin
D1/CDK4,6 and enhances phosphorylation of Rb protein (pRb) as a tumor suppressor. As a result,
Avns cause cell cycle arrest of M phase. Based on these results, Avns play a vital role in the positive
control of the cell cycle and in tumor progression [110,111]. With regard to proapoptotic activity, Avns
upregulate caspase 3 (CASP3) and caspase (CASP8), while they downregulate insulin-like growth
factor 2 mRNA-binding protein 3 (IGF2BP3), hypoxia-inducible factor 1-alpha (HIF1α), vascular
endothelial growth factor (VEGF), cyclooxygenase 2 (COX2), and prostaglandin E2 (PGE2) in tumor
cell lines [112]. Therefore, Avns reinforce anticancer effects through increased antioxidative, antipro-
liferative and proapoptotic effects, as well as induction of senescence, and inhibition of extracellular
matrix (ECM) degradation and metastatization and epithelial-mesenchymal transition (EMT).
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Figure 10. A proposed action mode of avenanthramide (Avn)-derived antioxidant activity. Avn-Bc
unties the complex of nuclear factor erythroid 2-related factor 2 (Nrf2) and Kelch-like ECH-associated
protein 1 (Keap1). Detached Ntf2 moves to the nucleus, binds to the antioxidant-responsive element
(ARE) domain, and activates a wide range of cytoprotective and antioxidative genes, including thiore-
doxin reductase (TrxR1), thioredoxin 1 (Trx1), NAD(P)H:quinone oxidoreductase (NQO1), heme
oxygenase 1 (HO-1), glutamate-cysteine ligase (GCL), superoxide dismutase 1 (SOD1), glutathione
peroxidase (GPX), catalase (CAT) and glutathione synthetase (GSS), at the transcriptional and trans-
lational levels under oxidative stress conditions. The activated antioxidant systems improve redox
homeostasis by neutralizing reactive oxygen species (ROS). Thus, Avn-Bc enhances cell homeostasis
in response to oxidative stress [99,112].
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Figure 11. Prevention of amyloid formation in the presence of avenanthramide C (Avn C). The as-
sembly of misfolded protein into amyloid fibrils that have a high β-sheet-rich secondary structure is
associated with many human diseases, including central nervous diseases (Parkinson’s, Alzheimer’s,
and Huntington’s disease), amyotrophic lateral sclerosis, and type 2 diabetes, and diseases related to
the accumulation of insoluble serum amyloid A protein in liver, spleen, and kidney. Although great
efforts have been made to elucidate the pathogenesis of these diseases and development of effective
therapy to date, there is still no evidence for the treatment and prevention associated with amyloid-
related diseases. Polyphenols such as avenanthramides have been widely studied as a key factor
of amyloid aggregation inhibitors. Their bioactive effects depend on the number and position of
hydroxyl groups around the flavone backbone. Avn C can act as a potential biomolecule in inhibiting
protein aggregation by decreasing the formation of β-sheet structure of protein aggregates [115].

In a study that compared the antioxidant effects and inhibition of cancer cell prolifera-
tion of oat extract according to extraction solvents, the antioxidant activity of the extract was
measured by assessing the scavenging of 2,2´-azinobis 3-ethylbenzothiazoline-6-sulphonic
acid (ABTS) and 1,1-diphenyl-1-picrylhydrazyl (DPPH) radicals and reducing power,
whereas the inhibition of cancer cell proliferation was assessed using colorectal, lung,
and breast cancer cell lines. It was observed that the total polyphenol content, scavenging of
ABTS and DPPH radicals, and reducing power were the greatest in methanol extracts [118].
In addition, methanol extracts had the most significant inhibitory effects on the proliferation
of colorectal cancer (HCT116), lung cancer (NCI-H460), and breast cancer (MCF7) cells [119].
Although there were differences in the antioxidant effects and inhibition of cancer cell
proliferation of oats depending on the extraction solvent, these findings demonstrate that
oats have antioxidant and anti-cancer effects [98,120]. Notably, to date no studies have
shown any adverse effects associated with Avn supplementation. Altogether, physiological
activities of oat-derived Avns were summarized into Figure 12 [65,110,121].
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6. Functionality of Sprouted Oats

In light of the nutritional value of ordinary oats, interest in sprouted oats is also
gradually increasing. Germination is a process in which the seed absorbs moisture and un-
dergoes various metabolic processes to produce young roots and shoots. The germinal disk
with determined genetic information germinates under suitable conditions, and biological
processes are induced by activities of enzymes that decompose starch, resulting in the gener-
ation of a new plant [96,122]. During germination, various enzymes, nutrients, and genetic
information in the germinal disk and endosperm of the seed are activated, and the maxi-
mum amount of nutrients is secured. In detail, the germinal disk germinates, and proteins
undergo qualitative changes. Amino acids, carbohydrates, fatty acids, and vitamins B1, B2,
and E are increased, and minerals and dietary fibers are changed (Figure 2). In addition,
physiologically contents of active ingredients such as γ-aminobutyric acid, γ-oryzanol,
and arabinoxylan are enhanced [123–125]. During germination, enzymes are activated,
and softening of the grain can lead to improved texture. In addition, the digestibility of
carbohydrates increases, leading to increased absorption of nutrients in the body. Moreover,
germination extensively changes the chemical composition of grains [126–128]. For ex-
ample, soaking barley in water and germinating them increases the biodegradability of
proteins, vitamins, minerals, and other substances in barley, leading to improved physiolog-
ical activities [129]. In rye, phytosterol, folate, lignan, and phenolic contents increase during
germination [130]. Likewise, a similar phenomenon is observed in oats. The concentration
of Avn in oats is significantly increased after germination compared to that before germi-
nation [9,131,132]. Furthermore, germination of grains can lead to saccharification effects,
which can improve palatability such as by enhancing flavor [126,133]. Thus, various types
of processed foods and functional products can be manufactured using these germination
characteristics.

7. Functional Enhancement Using Oat By-Products

Recently, studies on the creation of new value-added products from food by-products
have been actively conducted [134]. Thus, a considerable amount of by-products such as
husks, seeds, grains, and bran are thrown away as wastes [135]. Although food by-products
have been mainly used as animal feed until now, some of these by-products can be used
in eco-friendly industries [135–137]. In addition, these by-products such as sugar cane,
fruit beets, whey, bread, and wheat by-products as natural materials are also utilized for
functional components [55,138–140]. However, the functional properties and nutritional
value of these by-products have not been actively studied, although by-products can be
utilized [141]. Food by-products are considered high-value food additives for their an-
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tioxidant, anti-bacterial, colorant, and flavoring functions [142–145]. More than 20 million
tons of oats are annually produced, mainly as food or animal feed [146]. Oat bran is a key
by-product and accounts for approximately 50% of the weight of dry oat grains [147]. Oat
bran also contains high-quality proteins such as β-glucan, saponin, albumin, prolamins,
and glutelins that lower cholesterol levels (Figure 13) [148–152]. To date, studies on oats
mainly assessed the nutritional value and processing characteristics of oat grains or pow-
der [13,42,55]. There is a lack of studies on its by-products, such as the bran, hull, and leaves,
which are mostly thrown away as waste during the processing [153]. However, as recent
studies reported the content of numerous functional components in these by-products,
the utility of oats is gradually increasing [42,55].
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hypertension is related to the inhibition of angiotensin-converting enzyme (ACE) and the reduction 
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fertilizer requirements, have fewer pests, and require less chemical control, making them 
eco-friendly [154]. Approximately 70% of the produced oat grains are consumed for ani-
mal food, and the remaining 30% are consumed as food products for humans [155]. How-
ever, farmers prefer crops such as wheat, rice, and barley, which provide higher yields 
and profits compared to oats, and thus, oat production has gradually decreased over the 
past few decades globally. As a result, unlike wheat, barley, and rice, agricultural research 
on oats is limited [156]. Previous studies by oat breeders mainly focused on phenotype 
selection and disease resistance related to the yield, and there are fewer studies on genetics 
and other necessary traits of oats than those of other grains [157–159]. However, following 
the recognition of their excellent nutritional effects and health benefits, studies on oats 
and their consumption have steadily increased, including in Korea [24]. However, studies 
have been mainly focused on the cultivation or quality evaluation as fodder crops and 
development of bulky feed varieties rather than edible varieties [160–162]. Moreover, pre-
vious studies often assessed the extraction and physiological activity of its functional com-
ponent, β-glucan [163]. Thus, the development of new varieties for food or processed 
products has not been actively conducted. In particular, studies on genetic resources as 
breeding materials and breeding for improved nutritional function are limited [164]. 
However, the public awareness regarding the health functionalities of oats has rapidly 
enhanced their consumption, and such improvement in nutritional function may have 
positive effects in promoting their utilization in the future [165,166]. Therefore, future 

Figure 13. A predicted action mode of anti-obesity, anti-diabetes, and anti-hypertension effects from
oat-derived biomolecules and by-products. Anti-obesity is associated with the downregulation of per-
oxisome proliferator-activated receptor gamma (PPAR-γ), CCAAT-enhancer-binding protein isoform
alpha (C/EBPα), and sterol regulatory element-binding protein 1 (SREBP1). Anti-diabetes is involved
in the activation of insulin receptor substrate 1 (IRS-1)/phosphoinositide 3-kinase (PI3K)/protein
kinase B (Akt) and AMP-activated protein kinase (AMPK) signaling pathway. Anti-hypertension is
related to the inhibition of angiotensin-converting enzyme (ACE) and the reduction of systolic blood
pressure (SBP) [147].

8. Importance of Oat Breeding

Compared to other grains, oats grow well in harsh environmental conditions with
insufficient nutrients, can be cultivated in cold and humid climates, have low chemical
fertilizer requirements, have fewer pests, and require less chemical control, making them
eco-friendly [154]. Approximately 70% of the produced oat grains are consumed for animal
food, and the remaining 30% are consumed as food products for humans [155]. However,
farmers prefer crops such as wheat, rice, and barley, which provide higher yields and
profits compared to oats, and thus, oat production has gradually decreased over the past
few decades globally. As a result, unlike wheat, barley, and rice, agricultural research
on oats is limited [156]. Previous studies by oat breeders mainly focused on phenotype
selection and disease resistance related to the yield, and there are fewer studies on genetics
and other necessary traits of oats than those of other grains [157–159]. However, following
the recognition of their excellent nutritional effects and health benefits, studies on oats and
their consumption have steadily increased, including in Korea [24]. However, studies have
been mainly focused on the cultivation or quality evaluation as fodder crops and devel-
opment of bulky feed varieties rather than edible varieties [160–162]. Moreover, previous
studies often assessed the extraction and physiological activity of its functional component,
β-glucan [163]. Thus, the development of new varieties for food or processed products
has not been actively conducted. In particular, studies on genetic resources as breeding
materials and breeding for improved nutritional function are limited [164]. However,
the public awareness regarding the health functionalities of oats has rapidly enhanced their
consumption, and such improvement in nutritional function may have positive effects
in promoting their utilization in the future [165,166]. Therefore, future studies should not
only actively seek to increase the yield but also improve the nutritional value by cultivating
varieties with high contents of Avn and β-glucan (Figure 14) [23,166–169].
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agronomic traits on laboratory and greenhouse conditions, field trials, and mega environments (B).

9. Conclusions and Perspectives

Oats, which belong to the Poaceae family, grow well in cool and humid weather and
are annual crops. Oats are aware of the surrounding environment with superior senses
compared to other plants, effectively compete with limited resources available in the soil
and atmosphere, and accurately judge the surroundings. Oats also have the ability to
determine and implement strategies to respond to environmental stimuli. In other words,
oats detect changes and produce various useful substances while being sensitive to altered
environmental conditions. The physiological activities of oats, such as lowering blood
cholesterol levels, have been demonstrated in studies, and thus, interest in oats as a func-
tional food has increased. Oats contain 7–14% of dietary fiber and 3–5% of β-glucan,
which is one of the important functional components of oats. β-glucan is a water-soluble
dietary fiber found in oats and exhibits viscosity. It can reduce the risk of heart disease
by inhibiting the absorption of cholesterol in the intestine. β-glucan exhibits anti-obesity
effects by inhibiting the accumulation of adipocytes (thereby reducing the formation of
body fat), preventing the accumulation of cholesterol in the liver, and improving lipid
metabolism. Furthermore, Avn, which is present only in oats, has various physiological
activities along with β-glucan in increasing the nutritional and functional values of oats.
The oat β-glucans are potentially suggested as a celiac disease-targeting diet resource,
especially for gluten-free diets [165]. However, the scientific studies to apply the β-glucans
for the autoimmune diseases are not performed yet. Oats also contain high levels of to-
cotrienol (another type of vitamin E), which possesses antioxidant and anti-cancer effects
and improves hyperlipidemia. Therefore, oats embody a much more resistant and modern
crop model than other plants.

Oats are a prime example of a combination of solidity and flexibility. The modular
composition of oats is the essence of modernization, and oats can actively respond to re-
peated changes in the environment without losing their functions through their distributed
cooperative structure without a control center for quick adaptation. Their unique evolution
has led to solutions different from those of other plants, suggesting that oats are much
more modern than other plants. Thus, the unique characteristics of oats may offer several
opportunities for the development of novel functional foods in the coming years.

Oats are important to Koreans, who mainly consume rice. Many Koreans reduce
the proportion of rice in meals to decrease sugar intake; therefore, oats, which have
a good nutritional balance, are an excellent alternative to rice or can be mixed with rice.
Asians, who consume grain-oriented meals, often lack essential amino acids that must be
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additionally obtained from protein foods. Thus, the intake of oats can help to improve
the consumption of more high-quality proteins such as soybeans. In addition, individuals
often suffer from low immunity due to stress, overwork, excessive drinking, chronic fatigue,
lack of sleep, and incorrect dietary habits. Although they are aware of their problems,
proper health management in a busy life is not easy, leading to the intake of expensive
nutritional supplements or health foods. However, it is necessary to balance the nutrients
in daily meals naturally. The intake of essential nutrients leads to improved immunity to
fight against various stresses. Oats, containing various nutrients in small amounts, would
help prevent and treat different adult diseases by enhancing the immune system through
nutritional balance relatively easily. Therefore, future studies on oats must not only actively
seek to increase the yield but also improve the nutritional value by cultivating varieties
with high contents of Avn and β-glucan. In addition, studies should simultaneously assess
the physiological activity and related mechanisms of functional ingredients.
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