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Abstract

Bisphenol A (BPA) is the most common monomer in polycarbonate plastics and an 

endocrine disruptor. Though some effects of BPA on thyroid hormone (TH) synthesis and 

action have been described, the impact of this compound on thyroid H2O2 generation 

remains elusive. H2O2 is a reactive oxygen species (ROS), which could have deleterious 

effect on thyrocytes if in excess. Therefore, herein we aimed at evaluating the effect of 

BPA exposition both in vivo and in vitro on H2O2 generation in thyrocytes, besides other 

essential steps for TH synthesis. Female Wistar rats were treated with vehicle (control) 

or BPA 40 mg/kg BW for 15 days, by gavage. We then evaluated thyroid iodide uptake, 

mediated by sodium-iodide symporter (NIS), thyroperoxidase (TPO) and dual oxidase 

(DOUX) activities (H2O2 generation). Hydrogen peroxide generation was increased, 

while iodide uptake and TPO activity were reduced by BPA exposition. We have also 

incubated the rat thyroid cell line PCCL3 with 10−9 M BPA and evaluated Nis and Duox 

mRNA levels, besides H2O2 generation. Similar to that found in vivo, BPA treatment 

also led to increased H2O2 generation in PCCL3. Nis mRNA levels were reduced and 

Duox2 mRNA levels were increased in BPA-exposed cells. To evaluate the importance of 

oxidative stress on BPA-induced Nis reduction, PCCL3 was treated with BPA in association 

to N-acetylcysteine, an antioxidant, which reversed the effect of BPA on Nis. Our data 

suggest that BPA increases ROS production in thyrocytes, what could lead to oxidative 

damage thus possibly predisposing to thyroid disease.

Introduction

Bisphenol A (BPA) is the most common monomer in 
polycarbonate plastic composition. It is used not only in 
the manufacture of polycarbonate-made products, such as 
beverage and food containers, but also in the synthesis of 
epoxy resins, found in the covering of canned food (1). 
When submitted to acidic pH or high temperature, the 
polymer undergoes breakdown of the ester bonds and 

BPA can be released from the matrix, contaminating food, 
beverages and environment (2, 3).

BPA is an endocrine disruptor, being considered 
a selective estrogen receptor modulator (SERM) (4, 5), 
with important effects on reproductive function (4, 6). 
Besides that, BPA was shown to have positive association 
with serum TSH (7) and negative association with free T4 
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levels (8), thus suggesting an impact also in thyroid axis. 
Furthermore, BPA has been shown to increase oxidative 
stress, leading to oxidative damage of proteins, lipids and 
nucleic acids in liver, central nervous system, reproductive 
system and kidney (9, 10).

For thyroid hormone (TH) synthesis, thyrocytes 
require iodide, which is transported through the 
basolateral plasma membrane by Na+/I− symporter (NIS) 
(11, 12, 13). Thyroperoxidase (TPO), the key enzyme in 
TH biosynthesis, oxidizes iodide in the presence of H2O2, 
produced by dual oxidases (DUOX1 and DUOX2) (14, 15, 
16, 17). However, an excessive production of hydrogen 
peroxide could lead to oxidative stress, since H2O2 is a 
reactive oxygen species (ROS) and thyroid gland damage 
(18, 19, 20).

Since BPA has been shown to increase oxidative 
damage in several tissues and since thyrocytes are exposed 
to high levels of ROS due to TH biosynthesis, herein we 
hypothesized that BPA exposure could lead to an increased 
ROS production in thyrocytes thus affecting thyroid 
function. Therefore, our aim was to investigate the effect 
of BPA exposure on thyroid H2O2 production both in vivo 
and in vitro, besides the effect of BPA treatment on two 
proteins essential for TH synthesis: NIS and TPO.

Materials and methods

Animals

In all experiments, adult (4–5 months old) female Wistar 
rats were kept in controlled temperature (22–25°C) 
animal room, with a 12-h light:12-h darkness cycle. We 
have chosen to study female rats since the prevalence of 
thyroid diseases is higher in women than in men (20, 21). 
Pelleted commercial chow (Paulinea, São Paulo, Brazil) 
and water were available ad libitum. The Institutional 
Committee for Use of Animals in Research approved the 
study (number: IBCCF167), and the procedures were in 
compliance with the International Guiding Principles for 
Biomedical Research Involving Animals of the Council 
for International Organizations of Medical Sciences 
(Geneva, Switzerland), and the guiding principles for 
care and use of animals from the American Physiological 
Society.

Experimental design

Animals were divided into two groups: Control (C) 
and bisphenol A (BPA). Control rats received vehicle 
(corn oil:isopropanol 20% v/v) and BPA group received 

bisphenol A in the dose of 40 mg/kg body weight (BW) 
(22, 23, 24), dissolved in vehicle. Both were administered 
daily by gavage. After 15 days of treatment, animals were 
weighed and killed. The dose of BPA was chosen based on 
the non-observable adverse effect level (NOAEL) for BPA, 
established in 50 mg/kg BW (25, 26). Thus, we decided to 
use a dose lower than NOAEL.

Histological analysis

The thyroids were collected and fixed in 10% formaldehyde 
(pH 7.4) for 48 h, followed by dehydration in ethanol 
(Vetec, Rio de Janeiro, Brazil) and clarification in xylene 
(Vetec, Rio de Janeiro, Brazil). Tissues were embedded in 
paraffin and cut at the thickness of 5 μm. Sections were 
stained with hematoxylin and eosin for topographic 
analysis according to Andrade et al. (27). High-resolution 
images (1600 × 1200 pixels) were obtained using digital 
camera (QImaging Retigar-2000R Fast 1394 Mono, Surrey 
BC, Canada) coupled to light microscope (Olympus BX50). 
High-quality images were captured with the QCapture 
Pro7 (QImaging).

Radioiodide uptake

We have previously shown that the measurement of 
radioiodide uptake 15 min after 125I–NaI administration 
(short term iodide uptake) reflects iodide transport through 
the sodium-iodide symporter without the influence of in 
vivo thyroid iodine organification activity (28). Thus, in 
order to evaluate the in vivo NIS function using thyroid 
radioiodine uptake measurements, the animals received 
Na-125I (3700 Bq i.p., Amersham, Buckinghamshire, 
England) 15 min before decapitation. Thyroids were 
removed and weighed. The radioactivity of the thyroid 
glands was measured using a gamma counter (LKB), and 
the percentage of the 125I in the gland relative to the total 
125I injected was calculated. Results were expressed as 
relative to control.

Thyroid peroxidase activity

TPO extraction and activity measurement were performed 
as previously described (28, 29). Rat thyroids were minced 
and homogenized in 0.5 mL of 50 mM Tris–HCl buffer, 
pH 7.2, containing 1 mM KI, using an Ultra-Turrax 
homogenizer (Staufen, Germany). The homogenate 
was centrifuged at 100,000 g, 4°C for 1 h. The pellet was 
suspended in 0.5 mL triton (0.1% v/v) and incubated 
at 4°C for 24 h to solubilize TPO. The suspension was 
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centrifuged at 100,000 g, 4°C for 1 h, and the supernatant 
containing solubilized TPO was used for the assays.

The assay mixture contained: 1.0 mL of freshly prepared 
50 mmol/L sodium phosphate buffer, pH 7.4, containing 
24 mmol/L KI and 11 mmol/L glucose, and increasing 
amounts of solubilized TPO. The final volume was adjusted 
to 2.0 mL with 50 mmol/L sodium phosphate buffer, pH 
7.4, and the reaction was started by the addition of 10 µL 
of 0.1% w/v glucose oxidase (Boehringer Grade I). The 
increase in absorbance at 353 nm (tri-iodide production) 
was registered for 3 min on a Hitachi spectrophotometer 
(U-3300). The ΔA353 nm/min was determined from the 
linear portion of the reaction curve and related to protein 
concentration. Protein concentration was determined by 
the Bradford assay (30). Results were expressed as relative 
to control.

Thyroid H2O2 production

H2O2 generation was quantified in thyroid particulate 
fractions by the Amplex red/horseradish peroxidase 
assay (Molecular Probes, Invitrogen), which detects 
the accumulation of a fluorescent oxidized product, as 
previously described (18, 31). To measure H2O2 production 
from particulate fraction, the excised thyroid glands 
remained at 4°C for 24 h in 50 mmol/L sodium phosphate 
buffer (pH 7.2) containing 0.25 mol/L sucrose, 0.5 mmol/L 
dithiothreitol (DTT), 1 mmol/L EGTA, 5 mg/mL  
aprotinin and 34.8 mg/mL phenylmethylsulphonyl 
fluoride (PMSF) before homogenization. Then, the 
homogenate was centrifuged at 100,000 g for 35 min 
at 4°C and suspended in 0.25 mL of 50 mmol/L sodium 
phosphate buffer (pH 7.2) containing 0.25 mol/L sucrose, 
2 mmol/L MgCl2, 5 mg/mL aprotinin and 34.8 mg/mL 
PMSF (32). This particulate fraction was incubated in 
150 mmol/L sodium phosphate buffer (pH 7.4) containing 
100 U/mL superoxide dismutase (SOD) (Sigma), 0.5 U/mL 
horseradish peroxidase (HRP) (Roche), 50 µmol/L Amplex 
red (Molecular Probes), 1 mmol/L EGTA, with or without 
1.5 mmol/L CaCl2. Then, 0.1 mg/mL NADPH was added to 
start the reaction and the fluorescence was immediately 
measured in a microplate reader (Victor X4; PerkinElmer, 
Norwalk, CT) at 30°C, using excitation wavelength 
at 530 nm and emission wavelength at 595 nm. H2O2 
production was quantified using standard calibration 
curves (31).

The specific enzymatic activity was obtained as nmol 
of H2O2 per hour per milligram of protein (nmol/h/mg 
protein) and calcium-dependent H2O2 generation was 
obtained by subtracting H2O2 generation in the absence 

of calcium from that obtained in the presence of calcium. 
Then, the results were expressed as relative to control. 
Protein concentration was determined by the Bradford 
assay (30).

Radioimmunoassays

Serum T3 and T4 were determined by specific coated 
tube RIA kits (MP Biomedicals, Orangeburg, NY, USA). 
Intra- and interassay coefficients of variation for T3 were 
4.4–5.6% and 5.3–7.5%, respectively, and sensitivity 
was 6.7 ng/dL. For T4 intra-and interassay coefficients of 
variation were 3.3–8.1% and 5.3–11.4%, respectively, and 
sensitivity was 0.76 μg/dL. All procedures were performed 
following the fabricant recommendations.

Cell culture

Rat thyroid cell line PCCL3 (donated by Prof. Roberto Di 
Lauro, Stazione Zoologica Anton Dohrn) was maintained 
in Coon’s modified Ham’s F-12 medium (HiMedia 
Laboratories, Mumbai, India), which contains 10 mM 
glucose, supplemented with 5% v/v fetal bovine serum 
and a six-hormone mixture (1 mIU/mL TSH, 10 mg/mL 
insulin, 5 mg/mL transferrin, 10 nM hydrocortisone, 
10 ng/mL somatostatin, and 10 ng/mL glycyl-l-histidyl-
l-lysine acetate) and maintained in a humidified 5% v/v 
CO2 incubator at 37°C.

Cell treatment and cell viability assay

In order to evaluate the possible toxic effect of bisphenol 
A on PCCL3 cells, we treated the cells with different 
concentrations of BPA (10−9, 10−7, 10−5 and 10−3 mol/L 
BPA) or vehicle (ethanol 0.1% v/v) for 24 h. As an index 
of cell viability, we used the commercially available MTT 
(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide) assay (Sigma–Aldrich), according to the 
manufacturer’s recommendations. This is a colorimetric 
assay to determine the number of viable cells. The assay 
is based on the cellular conversion of the tetrazolium 
salt into formazan that is soluble in tissue culture 
medium, and it is measured directly at 490 nm in 96-well 
assay plates. Absorbance is directly proportional to the 
number of living cells in culture. After treatment, cells 
were stained with MTT (0.5 mg/mL) for 3 h at 37°C in a 
humidified 5% CO2 atmosphere. Then, cells were lysed 
with DMSO (P A). All determinations were done in 
triplicates. Since we did not find reduction of cell viability 
with 10−9 mol/L BPA, suggesting that BPA is not toxic for 
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PCCL3 cells at this concentration, we decided to perform 
the next experiments using this concentration. Moreover, 
literature data suggest that the concentration of BPA in 
the serum is in nmol/L range in humans (33, 34). Results 
were expressed as relative to control.

In order to evaluate the involvement of the prooxidant 
effect of BPA on Nis and Tpo mRNA regulation, PCCL3 
cells were incubated for 24 h with or 10−9 mol/L BPA in 
association or not with 1 mmol/L N-acetylcysteine (NAC), 
which was added 30 min before BPA addition (35).

Real-time PCR

Total RNA was extracted using the RNeasy Plus Mini Kit 
(Qiagen), following the manufacturer’s instructions. After 
DNase treatment, reverse transcription was followed 
by real-time PCR, as previously described (36). Specific 
oligonucleotides, as described in Table 1, were purchased 
from Applied Biosystems (Foster City, California, USA). 
GAPDH was used as internal control. Results were 
expressed as relative to control.

H2O2 production in intact cells

Extracellular H2O2 generation was quantified by the 
Amplex red/horseradish peroxidase assay, which detects 
the accumulation of a fluorescent oxidized product, as 
previously described (18, 31). Cells (1 × 105) in Dulbecco’s PBS 
(D-PBS) containing CaCl2 and MgCl2 were incubated with 
d-glucose (1 mg/mL), superoxide dismutase (100 U/mL),  

horseradish peroxidase (0.5 U/mL), and Amplex red 
(50 μmol/L), in the presence or absence of 1 μmol/L 
ionomycin, a calcium ionophore, since DUOX, the 
enzyme responsible for H2O2 generation associated to 
TH synthesis, is a calcium-dependent NADPH oxidase 
(19). The fluorescence was immediately measured 
in a microplate reader (Victor3, Perkin Elmer) for 
30 min (excitation wavelength = 530 nm and emission 
wavelength = 595 nm). H2O2 generation was determined 
using standard calibration curves. Results were obtained 
as nmols of H2O2 per hour per 105 cells. In order to obtain 
calcium-dependent H2O2 generation, which is associated 
to DUOX activity, H2O2 generation obtained in the 
presence of ionomycin was subtracted by that found in 
the absence of ionomycin. Then, results were expressed as 
relative to control.

Statistical analyses

All the results are expressed as mean ± s.e.m. and were 
analyzed by Unpaired t-test. Experiments were performed 
at least twice and at least two animals/cell replicates per 
group per experiment were used. Results of cell viability 
assay were analyzed by One-way ANOVA followed by 
the Newman–Keuls multiple comparison test, since there 
were more than two groups. Statistical analyses were 
conducted using the software GraphPad Prism (version 5, 
GraphPad Software Inc, San Diego, California), and the 
level of significance was established at P < 0.05.

Results

Body and thyroid weight

BPA treatment led to a slight though significant increase 
in BW, as shown in Table 2. This result suggest that the 
energetic homeostasis was affected by BPA what is in 
accordance with the well-known obesogenic effect of BPA 
(37). On the other hand, absolute and relative thyroid 
weight remained unchanged (Table 2).

Histological analysis

The thyroid glands from control rats showed a normal 
tissue organization: follicles with simple cuboidal 
epithelial cells surrounding a cavity rich in eosinophilic 
material or colloid, besides a rich vascular stroma (Fig. 1). 
In BPA-treated group, we observed many hypoactive 
follicles, with squamous epithelium surrounded by 
interfollicular connective tissue.

Table 1 Primers used for real-time PCR assay.

Nis Forward 5′ GCT CAT CCT GAA CCA AGT GA 3′
Reverse 5′ ACG AGC ATT ACC ACA ACC TG 3′

Duox1 Forward 5′ ATT TCT TGG GAG GTA CAG CG 3′
Reverse 5′ GTT AGG CAG GTA GGG TTC TTT C 3′

Duoxa1 Forward 5′ TGA CCA GCT TAT TCA TCG GG 3′
Reverse 5′ CTG TGA GGG TGA TGT TGA GTC 3′

Duox2 Forward 5′ AGG AGT GGC ATA AGT TTG AGG 3′
Reverse 5′ CCT TGT CAC CCA GAT GAA GTA G 3′

Duoxa2 Forward 5′ TGG TAT TCT TGT CCT TGG CTG 3′
Reverse 5′ GGA GGT ACT GAA GGC TTT GTA G 3′

Tpo Forward 5′ GAA TGA GGA ACT GAC CGA GAG 3′
Reverse 5′ TGA CAA GCC ACA GAA CTC TC 3′

β-Tsh Forward 5′ TCT GCG CTG GGT ATT GTA TG 3′
Reverse 5′ CGG TAT TTC CAC CGT TCT GT 3′

Gapdh Forward 5′ TGA TTC TAC CCA CGG GAA GT 3′
Reverse 5′ AGC ATC ACC CCA TTT GAT GT 3′

β-Tsh, beta subunit of thyroid stimulating hormone (TSH); Duox1, dual 
oxidase 1; Duox2, dual oxidase 2; Duoxa1, dual oxidase maturation factor 
1; Duoxa2, dual oxidase maturation factor 2; Gapdh, glyceraldehyde 
3-phosphate dehydrogenase; Nis, sodium iodide symporter; Tpo, 
thyroperoxidase.
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Thyroid iodide uptake, TPO activity and H2O2 

generation in rats

Since iodide is an essential element for TH biosynthesis 
(12), we have evaluated the effect of BPA on in vivo thyroid 
radioiodide uptake. In fact, BPA treatment significantly 
decreased thyroid iodide uptake (Fig. 2A).

TH synthesis requires not only iodide uptake, but 
also iodide oxidation and organification, reactions 
catalyzed by thyroperoxidase, in the presence of H2O2 
(38). We have thus evaluated TPO activity and H2O2 
generation. BPA led to a significant reduction of TPO 
activity (Fig.  2B), similarly to that found for NIS. 
Therefore, two fundamental steps for TH biosynthesis 

Table 2 Effect of BPA treatment on body weight, absolute and relative thyroid weight of female rats.

Group Body weight (g) Absolute thyroid weight (mg) Relative thyroid weight (mg/100 g BW)

Control 218.6 ± 3.4 17.3 ± 0.9 7.8 ± 0.4
BPA 228.0 ± 3.1* 16.9 ± 0.8 7.7 ± 0.3

Female Wistar rats were treated with vehicle (Control, corn oil:isopropanol 20% v/v) or bisphenol A (BPA, 40 mg/kg BW), orally by gavage, daily for 
15 days (n = 16 per group, *P < 0.05 vs control group).

Figure 1
Photomicrographs of thyroid gland histological sections of rats exposed to BPA. Hematoxylin and eosin staining. Female Wistar rats were treated with 
vehicle (Control, corn oil:isopropanol 20%) or bisphenol A (BPA, 40 mg/kg BW), orally by gavage, daily for 15 days. (A) Control: lobe of the thyroid 
showing follicles of different size and activity status (normo, hypo and hyperactive). (B) BPA: lobe showing large number of hypoactive follicles.  
(C) Control: note the predominantly follicular structures, circled by a simple epithelium (arrow), containing eosinophilic material (colloid, asterisk), areas 
of colloid reabsorption (arrowhead) and interfollicular rich vascularized stroma (star). (D) BPA: note many hypoactive follicles with squamous epithelium 
(asterisk) and interfollicular connective tissue (star). Magnification of A and B = 20× and C and D = 200×. N = 3 per group.
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were affected by BPA treatment: iodide uptake and TPO 
activity.

Thyroid H2O2 generation in the absence of calcium 
remained unchanged (Fig.  3A), while thyroid H2O2 
generation in the presence of calcium was increased in 
BPA-treated group (Fig.  3B). Thus, calcium-dependent 
H2O2 generation was significantly increased in the thyroid 
of rats treated with BPA (Fig. 3C). Since H2O2 is a ROS, the 
increment in H2O2 levels could lead to an enhancement 
of oxidative stress in the gland, especially because TPO 
activity, which consumes H2O2, is reduced.

Serum total T4 and T3 and pituitary β-Tsh mRNA

Since thyroid iodide uptake and thyroperoxidase activity 
were reduced by BPA treatment, we next evaluated TH 
levels. Surprisingly, we have found an increment in T4 
levels in the serum of BPA-exposed rats, while T3 remained 
unchanged (Table 3). Thus, despite the reduction of TPO 
activity found in the dosage in vitro, it is possible that,  
in vivo, the greater availability of the TPO cofactor, H2O2, 

has led to the increased T4 synthesis. In accordance to the 
increased serum T4, we have found a significant reduction 
of Tsh beta chain mRNA levels in the pituitary of the rats 
treated with BPA (Table 3).

PCCL3 cell viability

Since the changes in proteins involved in TH synthesis 
observed in vivo could be due to a direct effect of BPA or 

Figure 2
Effect of BPA exposure on thyroid radioiodide uptake and 
thyroperoxidase (TPO) activity. Female Wistar rats were treated with 
vehicle (Control, corn oil:isopropanol 20%) or bisphenol A (BPA, 40 mg/kg 
BW), orally by gavage, daily for 15 days. (A) Radioiodide was 
administered to rats (i.p.) and 15 min later they were killed, thyroids were 
removed, weighed and the radioactivity was measured. (B) Thyroids were 
processed and iodide oxidation TPO activity was measured as described in 
‘Methods’ section. Results are expressed as relative to control (control, 
n = 10 and BPA, n = 9; **P < 0.01 vs control and ***P < 0.001 vs control).

Figure 3
Effect of BPA exposure on thyroid H2O2 generation. Female Wistar rats 
were treated with vehicle (Control, corn oil:isopropanol 20%) or 
bisphenol A (BPA, 40 mg/kg BW), orally by gavage, daily for 15 days. 
Thyroid H2O2 generation was measured by Amplex red method, as 
described in methods. Activity was measured in the absence (A) and in 
the presence (B) of calcium, since dual oxidase is a calcium-dependent 
NADPH oxidase and calcium-dependent H2O2 generation (C) was 
obtained subtracting the activity in the presence of calcium by that 
obtained in the absence of calcium. Results are expressed as relative to 
control (control, n = 10 and BPA, n = 9; *P < 0.05 vs control and ***P < 0.001 
vs control).
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could be related to hormonal changes caused by BPA, we 
next evaluated the direct effect of BPA on thyrocytes, using 
the non-tumor rat thyroid cell line PCCL3 as a model. 
However, since BPA could be toxic for PCCL3, we have 
first evaluated the effect of BPA on cell viability. In fact, 
at the concentration 10−3 mol/L, BPA seems to be toxic 
for PCCL3, significantly reducing its viability (Fig.  4A). 
Surprisingly, 10−7 mol/L BPA significantly increased cell 
viability, suggesting that this compound could increase 
cell proliferation, reduce cell death or both. Since 
10−9 mol/L BPA did not affect cell viability and since this 
concentration is in the range of BPA concentration found 

in human serum (33, 34), we decided to use 10−9 mol/L 
BPA for the next experiments.

Nis mRNA levels in PCCL3

Since in vivo data have shown an inhibitory effect of BPA 
on thyroid iodide uptake, which is mediated by NIS, 
we have next evaluated Nis mRNA levels in PCCL3 cells 
treated with BPA. We have found a reduction of Nis mRNA 
levels in BPA-treated cells (Fig.  4B). Thus, BPA seems to 
act by transcriptional mechanism to regulate Nis mRNA 
levels.

H2O2 generation and Duox and Duoxa mRNA levels 
in PCCL3

Since in vivo data found herein showed an increment of 
thyroid H2O2 generation and since it has been shown 
that ROS have an inhibitory effect on NIS (39), we have 
then evaluated the effect of BPA on H2O2 generation 
and on Duox1, Duox2, Duoxa1 and Duoxa2 mRNA levels. 
DUOX1 and DUOX2 are calcium-dependent NADPH 
oxidases responsible for H2O2 generation associated to TH 

Table 3 Effect of BPA treatment on serum total T4 and T3 concentrations and mRNA levels of TSH beta chain in pituitary of 

female rats.

Group Total T4 (µg/dL) Total T3 (ng/dL) Pituitary mRNA levels of β-TSH (relative to control)

Control 3.6 ± 0.2 50.7 ± 3.4 1.0 ± 0.2
BPA 4.8 ± 0.3* 59.0 ± 5.3 0.5 ± 0.1*

Female Wistar rats were treated with vehicle (Control, corn oil:isopropanol 20% v/v) or bisphenol A (BPA, 40 mg/kg BW), orally by gavage, daily for 
15 days (n = 10 per group for serum total T4 and total T3 and n = 4 per group for pituitary β-TSH mRNA levels, *P < 0.05 vs control group).

Figure 4
Effect of BPA on cell viability and sodium-iodide symporter (Nis) mRNA 
levels in PCCL3 cells. (A) Rat thyroid cell line PCCL3 was incubated with 
vehicle (control, 0.1% ethanol) or different BPA concentrations (10−9, 
10−7, 10−5 and 10−3 mol/L BPA) and 24 h later cell viability was assayed by 
MTT, as described in methods (n = 12 per experimental condition; *P < 0.05 
vs control and ***P < 0.001 vs control). (B) PCCL3 cells were incubated 
with vehicle (control, 0.1% ethanol) or 10−9 mol/L BPA and Nis mRNA 
levels were evaluated by qRT-PCR, as described in methods. Results are 
expressed as relative to control (control, n = 6; BPA, n = 4; *P < 0.05 vs 
control).

Figure 5
Effect of BPA on Duox1, Duox2, Duoxa1 and Duoxa2 mRNA levels in 
PCCL3 cells. PCCL3 cells were incubated with vehicle (control, 0.1% 
ethanol) or 10−9 mol/L BPA and 24 h later mRNA levels of (A) Duox1;  
(B) Duox2; (C) Duoxa1 and (D) Duoxa2 were evaluated by qRT-PCR, as 
described in ‘Methods’ section. Results are expressed as relative to control 
(control, n = 6; BPA, n = 4; *P < 0.05 vs control).
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biosynthesis (15, 16) and DUOXA1 and DUOXA2 are the 
maturation factors necessary for full DUOX1 and DUOX2 
activities, respectively (40). In fact, mutations in Duox2 
have been associated to dyshormonogenesis and goiter 
(16, 41). Duox2 mRNA levels showed a significant increase 
in BPA-treated cells, (Fig. 5B), while Duox1 mRNA levels 
remained unchanged (Fig.  5A). Moreover, mRNA levels 
of both Duoxa1 (Fig. 5C) and Duoxa2 (Fig. 5D) were not 
altered by BPA treatment.

H2O2 generation in the absence of ionomycin 
remained unchanged (Fig. 6A), while H2O2 generation in 
the presence of ionomycin was increased by BPA (Fig. 6B). 

Calcium-dependent extracellular H2O2 generation was 
significantly increased in BPA-treated cells (Fig. 6C), thus 
suggesting that the stimulatory effect of BPA on thyrocyte 
H2O2 generation occurs not only in vivo but also in vitro, 
what could be deleterious to the thyroid gland since H2O2 
is a ROS.

Effect of BPA on Nis and Tpo mRNA levels is 
reversed by NAC

Since BPA seems to have an inhibitory effect on NIS and 
TPO, besides increasing ROS production, we have next 
evaluated the involvement of oxidative stress in the 

Figure 6
Effect of BPA on extracellular H2O2 generation in PCCL3 cells. PCCL3 cells 
were incubated with vehicle (control, 0.1% ethanol) or 10−9 mol/L BPA 
and 24 h later, extracellular H2O2 generation was measured by Amplex 
red method, as described in methods. Activity was measured in the 
absence (A) and in the presence (B) of ionomycin, a calcium ionophore, 
since dual oxidase is a calcium-dependent NADPH oxidase, and calcium-
dependent H2O2 generation (C) was obtained subtracting the activity in 
the presence of calcium by that obtained in the absence of calcium. 
Results are expressed as relative to control (control, n = 9; BPA, n = 9; 
*P < 0.05 vs control).

Figure 7
Effect of BPA and NAC on Nis and Tpo mRNA levels in PCCL3 cells. PCCL3 
cells were incubated with vehicle (control, 0.1% ethanol) or 10−9 mol/L 
BPA, with or without 1 mmol/L NAC, and 24 h later mRNA levels of (A) Nis 
and (B) Tpo were evaluated by qRT-PCR, as described in methods. Results 
are expressed as relative to control (NIS: control, n = 5; BPA, n = 5; NAC, 
n = 6; NAC + BPA, n = 6; TPO: control, n = 6; BPA, n = 5; NAC, n = 6; 
NAC + BPA, n = 6; *P < 0.05 vs control).
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effect of BPA. As shown in Fig. 7A, co-incubation of BPA-
treated cells with N-acetylcysteine (NAC), an antioxidant, 
prevented the inhibitory effect of BPA on Nis expression. 
In a similar way, NAC also prevented the reduction of Tpo 
mRNA levels by BPA (Fig.  7B). Thus, our result suggests 
that the inhibitory effect of BPA on Nis and Tpo expression 
might involve increased oxidative stress.

Discussion

BPA has been shown to be a widespread environmental 
contaminant and can be found in the serum and urine 
of both wildlife (42) and humans (43). This exposition 
affects many organs and systems, including reproductive 
system (44), nervous system (45) and thyroid (46). Despite 
that, data regarding the impact of BPA on thyroid redox 
homeostasis and its consequences on proteins involved in 
TH synthesis remains elusive.

TH synthesis requires hydrogen peroxide generation, 
since H2O2 is the essential cofactor for TPO (47). In vivo, 
DUOX is the enzyme responsible for H2O2 generation 
associated to TH biosynthesis (16). Since DUOX is a 
calcium-dependent NADPH oxidase (48), herein we have 
evaluated thyroid H2O2 generation both in the presence 
and in the absence of calcium. In fact, thyroid calcium-
dependent H2O2 generation was increased in BPA-treated 
group, suggesting that the gland could be exposed to 
an increased oxidative stress. The reduction in TPO 
activity reinforces the idea of an unbalance in redox 
homeostasis, since TPO is an important consumer of the 
H2O2 generated by DUOX (49). Moreover, TPO has been 
shown to be sensitive to the oxidative stress induced in 
conditions of high DUOX activity (31). Besides, there is a 
negative correlation between DUOX and TPO in human 
thyroid nodular lesions and in experimental model of 
type 1 diabetes mellitus (18, 50). Therefore, increased 
H2O2 generation in the thyroid of rats exposed to BPA, 
due to a higher DUOX activity, might have induced a 
decrease in TPO activity through the oxidation of this 
enzyme.

In zebrafish embryo–larvae, tpo mRNA levels remained 
unchanged after BPA exposition (51), and TPO activity 
from rat thyroid microsomes was shown to be unaffected 
by incubation with BPA in vitro (52). On the other hand, 
in the rat thyroid cell line FRTL-5, BPA reduced Tpo 
mRNA levels (52). Therefore, besides the oxidation of TPO 
protein due to increased ROS production, BPA treatment 
could also reduce TPO activity due to the downregulation 
of Tpo gene expression.

Despite the reduced in vitro TPO activity found in rats 
treated with BPA, T4 levels were not reduced in this group, 
in fact T4 was increased. The greater availability of TPO 
cofactor H2O2 in the thyroid gland of BPA-treated animals 
might have contributed to the increment in serum T4 
levels in this group.

BPA has been shown to increase oxidative stress 
in some tissues, such as testis (53), liver (54) and heart 
(55). However, to our knowledge, this is the first report 
describing the effect of BPA increasing thyroid H2O2 
generation. It was previously shown that the thyroid 
gland is exposed to a higher risk of oxidative DNA damage 
when compared to other tissues, due to the necessity of 
H2O2 generation during TH biosynthesis (56). Therefore, 
the increment in ROS generation due to BPA exposure 
could predispose the gland to oxidative stress and thus to 
thyroid diseases.

NIS has been shown to be sensitive to ROS (57, 58, 
59). Since BPA induced an increment in H2O2 generation, 
we have also evaluated NIS-mediated thyroid iodide 
uptake. In fact, in vivo thyroid iodide uptake was reduced 
by BPA treatment, which could be related to an increased 
oxidative stress or could be related to a direct effect of BPA 
regulating NIS expression. Then, we have evaluated BPA 
effect on Nis mRNA levels. In fact, the treatment of the 
rat thyroid cell line PCCL3 cells with 10−9 M BPA led to a 
significant reduction of Nis expression.

In zebrafish embryo–larvae, the treatment with 
BPA did not affect nis mRNA levels (51), while in rat 
thyroid cell line FRTL5, BPA was shown to reduce iodide 
uptake, besides reducing Nis expression (52). Therefore, 
at least in rats, BPA seems to be able to reduce both NIS 
expression and function, what is in accordance to our 
data. Since BPA is a xenoestrogen (60), it is possible 
that the effect of BPA downregulating NIS is due to 
its estrogenic activity, since estrogen has been shown 
to downregulate NIS in FRTL-5 cells (61). On the other 
hand, the possible estrogenic effect of BPA regulating 
NIS expression does not exclude the possibility that 
the increased ROS production could also affect NIS 
expression and function, so we have also evaluated H2O2 
generation in PCCL3 exposed to BPA.

We have observed that, similarly to that found  
in vivo, BPA treatment has also increased calcium-
dependent extracellular H2O2 generation in vitro. This 
effect could be related to the increased Duox2 expression 
found herein, which has been shown to be the DUOX 
isoform essential to hormonogenesis, since mutation in 
this enzyme leads to hypothyroidism (41, 62). On the 
other hand, it is known that the main isoform responsible 
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for H2O2 generation in PCCL3 cells is DUOX1 (63). 
Another possibility is the regulation of DUOX activity 
at post-transcriptional level by BPA. Both DUOX1 and 
DUOX2 have been described to be regulated by cascades 
of phosphorylation (64). Even though BPA can activate 
nuclear estrogen receptor, this endocrine disruptor is 
known to be more potent acting by non-nuclear estrogen 
receptors (65). Therefore, BPA could act at membrane 
estrogen receptors, activating phosphorylation cascades 
and thus activating DUOX and increasing H2O2 
generation in PCCL3. In fact, estrogen has been shown 
to increase ROS production in PCCL3 cells, which 
express both nuclear and membrane estrogen receptors 
(66). However, future studies are needed to elucidate the 
mechanism of BPA action regulating ROS production by 
thyrocytes.

The effect of BPA downregulating Nis and Tpo requires 
increased oxidative stress, since NAC was able to prevent 
the reduction of Nis and Tpo mRNA levels induced by BPA 
in PCCL3. NAC has previously been shown to prevent 
oxidative damage induced by BPA in Sertoli cells (67) and 
rat brain (68). Thus, BPA seem to cause a redox imbalance 
in the thyrocytes, disrupting the normal functioning of 
the thyroid gland.

Conclusion

The present study showed that the exposition of thyrocytes 
to the endocrine disruptor bisphenol A can increase ROS 
production, both in vivo and in vitro. Moreover, BPA 
decreased thyroid iodide uptake and thyroperoxidase 
activity, two essential steps for TH synthesis. This effect 
might be related to an increased oxidative stress since 
NAC could prevent the reduction of Tpo and Nis mRNA 
levels induced by BPA in PCCL3. The enhancement of 
ROS production by thyrocytes related to the exposition 
to BPA could lead to oxidative damage of the gland, 
thus predisposing individuals exposed to BPA to thyroid 
diseases.
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