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Abstract: The one-pot multicomponent synthetic strategy of organoselenium compounds represents
an alternative and robust protocol to the conventional multistep methods. During the last decade, a
potential advance has been made in this domain. This review discusses the latest advances in the poly-
merization, metal, and metal-free one-pot multicomponent synthesis of organoselenium compounds.
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1. Introduction

Organoselenium (OSe) compounds have recently gained considerable interest as a
potential class of organic motifs due to their outstanding applications in synthetic organic
and medicinal chemistry and their possible properties in materials science [1–4]. These
are attributed to the exceptional properties of the selenium (Se) element. The latter is a
non-metal present in almost living organisms as part of selenoproteins (e.g., thioredoxin
reductases and glutathione peroxidase antioxidants enzymes) [5–9]. Accordingly, Se is
crucial for protecting human cells from oxidative damage and the immune system’s normal
function [10–12]. Compared to sulfur (S), Se has a larger atomic radius (S: 1.02 Å vs.
Se: 1.17 Å), lower electronegativity (S: 2.58 vs. Se: 2.55), higher polarizability (S: 2.9 Å vs.
Se: 3.8 Å), and therefore Se is a likely better nucleophile than the S [5,8,13]. Accordingly, OSe
compounds are known for their ability to react with O2-free radicals and thus prevent the
progression of oxidative stress-related diseases [3,6,10,14]. Furthermore, OSe compounds
were also used in material science due to their semiconductor potential and therefore used
in sodium-ion batteries, solar cells, and H2 evolution catalysts [2,15–17]. Moreover, the Se
center is present in many naturally occurring and bioactive interesting OSe compounds
(Figure 1), such as the selenoaminoacids (e.g., selenocysteine (I), selenomethionine (II),
and selenocystine (III)) [18–20]. Furthermore, ebselen (IV) is the most investigated Se
compound with exciting GPX-like activity and has recently reached clinical phase III
trials as a possible drug for Meniere’s disease [11,21,22] (Figure 1). Moreover, ethaselen
(V) entered trial phase II for non-small lung cancer treatment [23–26]. On the other hand,
different OSe compounds have also manifested efficient catalytic activity for various organic
reactions, such as the palladium-based OSe complex VI for the Heck reaction (Figure 1) [27].
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Given the exciting activities and the diverse applications of the OSe compounds, sus-
tainable and efficient approaches for their preparation are in high demand. The synthesis 
of OSe compounds depends on their chemical structures (e.g., selenides, selenocyanates, 
diselenides) [26,28,29]. Standard methods include direct selenylation via reaction with 
proper Se reagents such as Na2Se2 and KSeCN. On the other hand, indirect selenylations 
include rearrangement of Se-containing precursors (e.g., isoselenocyanates) or multistep 
synthetic procedures using elemental Se together with organolithium or Grignard rea-
gents and [2,13,24,30–35]. Despite being efficient, these classical strategies are relatively 
limited due to the challenges associated with the complicated synthetic procedure, regi-
oselectivity, or harsh reaction conditions issues. Recently, various alternative reactions 
were developed as efficient and milder synthetic protocols within combinatorial chemis-
try (CC) [36–43]. The latter has emerged as a robust tool in medicinal chemistry [44,45]. It 
is now widely and consecutive covalent bonds formed between different building blocks 
[46]. Concurrently, drug candidates are discovered and selected by the screening of small 
molecule libraries for particular biological targets [47]. Despite the various strategies used 
in CC, multicomponent reactions (MCRs) are amongst the most investigated techniques 
for the efficient synthesis of chemical libraries [43,45]. MCRs have been known for over a 
century. They include generating skeletally diverse and complex molecular entities from 
more than two starting materials by straightforward chemical transformations employing 
comparatively mild conditions [37,48–50]. 

From an economical step and atom viewpoint, the MCR one-pot strategy would offer 
more robust access to OSe compounds. Though the MCRs have emerged as an efficient 
tool for constructing C-S bonds, similar approaches for synthesizing C-Se bonds have re-
cently attracted more attention. We here want to summarize the recent developments of 
OSe compounds using the MCR one-pot approach to pave the way for medicinal chemists 
to have more accessible synthetic access to such a biologically relevant category of com-
pounds. Specifically, we have structured this review based on the developments in metal-
catalyzed and metal-free reactions in addition to the multicomponent polymerization syn-
thesis of OSe compounds. 
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Given the exciting activities and the diverse applications of the OSe compounds,
sustainable and efficient approaches for their preparation are in high demand. The synthesis
of OSe compounds depends on their chemical structures (e.g., selenides, selenocyanates,
diselenides) [26,28,29]. Standard methods include direct selenylation via reaction with
proper Se reagents such as Na2Se2 and KSeCN. On the other hand, indirect selenylations
include rearrangement of Se-containing precursors (e.g., isoselenocyanates) or multistep
synthetic procedures using elemental Se together with organolithium or Grignard reagents
and [2,13,24,30–35]. Despite being efficient, these classical strategies are relatively limited
due to the challenges associated with the complicated synthetic procedure, regioselectivity,
or harsh reaction conditions issues. Recently, various alternative reactions were developed
as efficient and milder synthetic protocols within combinatorial chemistry (CC) [36–43].
The latter has emerged as a robust tool in medicinal chemistry [44,45]. It is now widely and
consecutive covalent bonds formed between different building blocks [46]. Concurrently,
drug candidates are discovered and selected by the screening of small molecule libraries for
particular biological targets [47]. Despite the various strategies used in CC, multicomponent
reactions (MCRs) are amongst the most investigated techniques for the efficient synthesis
of chemical libraries [43,45]. MCRs have been known for over a century. They include
generating skeletally diverse and complex molecular entities from more than two starting
materials by straightforward chemical transformations employing comparatively mild
conditions [37,48–50].

From an economical step and atom viewpoint, the MCR one-pot strategy would offer
more robust access to OSe compounds. Though the MCRs have emerged as an efficient tool
for constructing C-S bonds, similar approaches for synthesizing C-Se bonds have recently
attracted more attention. We here want to summarize the recent developments of OSe
compounds using the MCR one-pot approach to pave the way for medicinal chemists to
have more accessible synthetic access to such a biologically relevant category of compounds.
Specifically, we have structured this review based on the developments in metal-catalyzed
and metal-free reactions in addition to the multicomponent polymerization synthesis of
OSe compounds.

2. The One-Pot Multicomponent Combinatorial Synthesis of OSe Compounds
2.1. Metal-Catalyzed Synthesis of the OSe Compounds

In 2013, de Oliveira et al. reported the one-pot Cu-catalyzed (CuCl) synthesis of
OSe propargylamines in excellent yields (up to 95%) via A3-coupling of trimethylsilyl
Se-acetylene, p-methoxybenzaldehyde, and piperidine catalyzed in DCM as the solvent
and in the presence of succinic acid additive at 50 ◦C (Scheme 1) [51].
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Scheme 1. Synthesis of OSe propargylamines.

In 2017, Liu et al. reported the synthesis of highly functionalized isoselenoureas
through the Cu-catalyzed (CuI) 1,10-phenanthroline-promoted MCR of elemental Se, aryl
iodides, isocyanides, and amines using Cs2CO3 as the base and THF as the solvent at 70 ◦C
(Scheme 2) [52].
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In 2018, Aquino et al. synthesized (arylselanyl)-alkyl-1,2,3-triazolo-1,3,6-triazonines
via CuI-catalyzed MCR of 2-azidobenzaldehyde, 1,2-diaminobenzene, and various
arylchalcogenyl alkynes in dioxane at 100 ◦C. The reaction included a wide variety of
arylchalcogenyl alkynes (Scheme 3) [53].
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Zhang et al. reported the sequential multistep Cu-catalyzed (CuI) assembly of
5-selenotriazoles via the one-pot reaction of elemental Se, azide, alkyl halide, and alkyne.
The selenylating agent and Cu(I) triazolides were generated in situ, and the reaction pro-
ceeded under mild conditions using readily available substrates with broad variety scope
in high regioselectivity (Scheme 4) [54].
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In 2019, Gao et al. reported the Cu-catalyzed (Cu(OAc)2) cross-coupling oxidative
aminoarylselenation of maleimides using elemental Se, aryl iodides, and secondary amines.
This reaction enabled the bifunctionalization of alkenes via the simultaneous one-pot
construction of the C−N bond and C−Se bonds (Scheme 5) [55].
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Recently, Begini et al. developed 4-arylselanyl-1H-1,2,3-triazoles from the one-pot Cu-
catalyzed (Cu(OAc)2) reaction of selanylalkynylcarbinols and aryl azides in the presence of
sodium ascorbate (10 mol%) in H2O and THF (1:1) mixed solvent at 50 ◦C (Scheme 6) [56].
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In 2021, Rather et al. disclosed the Cu-catalyzed (CuBr) synthesis of 3-((arylethynyl)
selanyl)-1H-indoles in good yield (up to 83%) from elemental Se phenylacetylene and
indole using K2CO3 as the base and DMSO as the solvent at 100 ◦C. The strategy tolerates
different indoles and phenylacetylene motifs and can be expanded to a gram scale without
any difficulties (Scheme 7) [57].

Furthermore, Lara et al. reported the synthesis of (Z)-1,2-bis-arylselanyl alkenes by the
one-pot reaction of terminal alkynes with diaryl diselenides using KF/Al2O3 and PEG-400
as a solvent in good yields. Interestingly, the reaction time was reduced from 6 h under
conventional conditions to 30 min using microwave irradiation (Scheme 8) [58].
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De Oliveira et al. reported the ytterbium(III)-catalyzed (Yb(OTf)3) synthesis of
2,4- disubstituted Se-quinoline derivatives via Povarov MCR between ethyl glyoxylate,
p-anisidine, and ethynyl(phenyl)selane in CH3CN as the solvent at 80 ◦C and in moderate
yields (up to 69%) (Scheme 9) [59].
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Moreover, Sakai et al. reported the indium-catalyzed (InCl3/PhSiH3) one-pot synthesis
of selenolactones from elemental Se and lactones using o-dichlorobenzene as the solvent at
120 ◦C for 24 h (Scheme 10) [60].

Polymers 2022, 14, x FOR PEER REVIEW 7 of 30 
 

 

 
Scheme 9. Synthesis of 2,4- disubstituted Se-quinoline derivatives. 

Moreover, Sakai et al. reported the indium-catalyzed (InCl3/PhSiH3) one-pot synthe-
sis of selenolactones from elemental Se and lactones using o-dichlorobenzene as the sol-
vent at 120 °C for 24 h (Scheme 10) [60]. 

 
Scheme 10. Synthesis of selenolactones. 

Recently, Attia et al. reported the one-pot synthesis of seleno [2,3-b]pyridine deriva-
tives using Ag/AgCl nanoparticles under visible light irradiation. The reaction was carried 
out under mild conditions using visible light as the energy source, Ag/AgCl- nanoparti-
cles, and EtOH as the solvent. It is worth noting that the Ag/AgCl- nanoparticles showed 
high catalytic activity and reusability potential up to five cycles in 94–91% isolated yields 
(Scheme 11) [61]. 

 
Scheme 11. Synthesis of seleno [2,3-b]pyridine derivatives. 

Recently, the same group by Abdel-Hafez et al. reported the synthesis of seleno-
pyridine and quinoline derivatives in excellent yields (up to 90%) and selectivity using 

NH2

R + H SePh H
OEt

O

O

+ Yb(OTf)3 (10 mol%)
CH3CN, 80 oC

N
R

OEt

O

SePh

 (30-69%)

N
OEt

O

SePh

N
OEt

O

SePh

N
OEt

O

SePh

N
OEt

O

SePh

N
OEt

O

SePh

N
OEt

O

SePh

MeO

Me

Cl

HO

Cl

69% 35% 40%

55%30%40%

Br

O

O

Ar

+  Se

InCl3 (5 mol%)
PhSiH3 (Si-H; 2 eq.)

o-DCB (0.5 mL)
120 oC, 24 h

(0.5 mmol)

(1.1 eq.)

Se

O

Ar

(Ar = Ph; 43%)
(Ar = 4-BrC6H4; 49%)

N Cl

C
N

Visible light/ Ag/AgCl
Se / EtOH/ NaBH4

N Se

C
N

Na

SN2       
ClCH2-X

N Se

C
N

CH2
X

N Se

HC
NH

CH2
X

N Se
X

NH2

X = COOEt
    = CN
    = COPh

Scheme 10. Synthesis of selenolactones.

Recently, Attia et al. reported the one-pot synthesis of seleno [2,3-b]pyridine deriva-
tives using Ag/AgCl nanoparticles under visible light irradiation. The reaction was carried
out under mild conditions using visible light as the energy source, Ag/AgCl- nanoparticles,
and EtOH as the solvent. It is worth noting that the Ag/AgCl- nanoparticles showed
high catalytic activity and reusability potential up to five cycles in 94–91% isolated yields
(Scheme 11) [61].
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Recently, the same group by Abdel-Hafez et al. reported the synthesis of selenopyri-
dine and quinoline derivatives in excellent yields (up to 90%) and selectivity using Co3O4
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nanoparticles heterogeneous catalyst under microwave irradiation and water as the solvent
(Scheme 12) [62].
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2.2. Metal-Free Synthesis of the OSe Compounds

In 2010, Artem’ev et al. reported the MCR one-pot synthesis of alkylammonium
diselenophosphinates in excellent yield (up to 97%) via reaction of elemental Se with
amines (e.g., primary, secondary, or tertiary) and secondary phosphines in ethanol at 60 ◦C
(Scheme 13) [63].

Furthermore, Artem’ev et al. also synthesized diselenophosphinates via a three-
component reaction of secondary phosphine, Se powder, and amines in ethanol at 50–75 ◦C
for 30 min (Scheme 14) [64].

Additionally, Artem’ev et al. reported the one-pot multicomponent synthesis of
mono-, di-, and trialkylammonium thioselenophosphinates in good yields (up to 94%) from
secondary phosphanes, amines (primary, secondary, or tertiary), elemental S, and elemental
Se (Scheme 15) [65].
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Scheme 15. Synthesis of mono-, di-, and trialkylammonium thioselenophosphinates.

Despite the high yield and considerable success of the above reaction, it was limited
to certain amines such as triethyl amine, dipropyl amine, and diisopropylamine. In 2012,
Artem’ev et al. extended this reaction to natural alkaloids of different N-bases, namely,
lupinine, anabasine, and quinine [66] (Scheme 16).

De La Torre et al. reported the metal-free synthesis of new selenocysteine-based
peptoids and peptide–peptoid conjugates. The latter includes organocatalytic insertion
of phenylselenium into the backbone of the aldehyde moiety using Jørgensen’s catalyst,
followed by a subsequent Ugi reaction (Scheme 17) [67].

In 2018, Singh et al. reported the one-pot synthesis of 5-aryl-1,3-dimethyl-7-
selenoxopyrimidino [4,5-d]pyrimidine-2,4(1H,3H)-diones in good yields (up to 82%) by the
reaction of aroyl chloride, KSeCN and 6-amino-N,N′-dimethyluracil in acetone
(Scheme 18) [68].
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Liu et al. reported the multicomponent Se functionalization of indoles at the C3
under transition metal-free conditions. The reaction was carried out using elemental Se,
isocyanides, amines, and indoles. The reaction proceeded under mild conditions employing
O2 as the oxidant and TEMPO as the catalyst and encompassed a wide range of substrates
in moderate to high yields (Scheme 19) [69].
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Scheme 19. Synthesis of Se functionalization of indoles.

In 2020, Liu et al. reported the one-pot synthesis of 2-amino-1,3-selenazoles with
transition metal-free MCR of elemental Se, amines, and α,β-unsaturated isocyanides. The
reaction of the elemental Se with isocyanide affords the corresponding isoselenocyanate,
which undergoes intramolecular Michael cycloaddition followed by aromatization to
provide 2-amino-1,3-selenazole in good yields (up to 80%) (Scheme 20) [70].

In 2020, Zhao et al. reported the organocatalytic (N-fluorobenzenesulfonimide)
one-pot synthesis of 3-selenylindoles through intramolecular cyclization/selenylation of
2-vinylaniline in moderate to good yield (up to 88%). The reaction was smoothly furnished,
employing wide substrates and good functional group transformations, and could also be
tolerated to gram scale (Scheme 21) [71].

In 2022, Liu et al. reported the metal-free MCR synthesis of 3-alkylselenindole deriva-
tives from elemental Se, indoles, and unactivated alkyl halides under mild conditions using
t-BuONa as the base in CH3CN as the solvent at 40 ◦C. The reaction encompassed wide
functional group tolerance and can also be applied for a large scale (>10 g) in excellent
yield (>90% yield) (Scheme 22) [72].

In 2021, Li et al. reported the synthesis of diselenocarbamates in good yields (up to
91%) via the one-pot MCR of elemental Se, amines, diselanes, and CHCl3 using t-BuOK as
the base and NMP as the solvent at 50 ◦C for 12 h (Scheme 23) [73].
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Fang et al. developed the base promoted and metal-free cascade synthesis of
2-aminobenzo[d][1,3]selenazines via reaction of elemental Se, ortho-functionalized aryl
isocyanides, and amines. The reaction proceeded under basic conditions via the in situ
formation of isoselenocyanates from elemental Se and subsequent intramolecular Michael
addition reactions (Scheme 24) [74].
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Additionally, Fang et al. reported the metal-free preparation of 1,2,4-selenadiazol-5-
amine derivatives in moderate to excellent yields (up to 96%) through the aerobic radical-
cascade reactions of Se powder, isocyanides, and imidamides using O2 as the green oxidant.
It is worth noting that the reaction H2O was the only byproduct obtained and the reaction
encompassed good functional group tolerance and broad substrate scope. In addition, this
protocol was applied for the late-stage functionalization of biologically active candidates
(Scheme 25) [75].
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Heredia et al. synthesized alkynyl selenides in moderate to good yields under aerobic
metal-free conditions from the reaction of KSeCN, alkyl halides, and terminal alkynes using
PEG 200 as the solvent. In this reaction, dialkyl diselenides were formed in situ from the
K3PO4-assisted reaction of alkyl halides and KSeCN with terminal alkynes in the presence
of t-BuOK (Scheme 26) [76].
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In 2013, Prabhu et al. reported the metal-free one-pot synthesis of phenylseleno
N-acetyl amino acids from amino acids, chloroacetyl, and NaSePh in H2O: EtOH (2:1)
mixed solvent (Scheme 27) [77].
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Scheme 27. Synthesis of phenylseleno N-acetyl amino acids.

Armstrong et al. reported the synthesis of trisubstituted allylic selenides via an asym-
metric, organocatalytic α-selenenylation of aldehydes using N-(phenylseleno)phthalimide
followed by Horner–Wadsworth–Emmons olefination using and phosphonate anions
(Scheme 28) [78].
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Pan et al. reported the one-pot, metal-free, and solvent-free synthesis of diselenocarba-
mates from the reaction of CSe2, alkyl halides, and amines at −10 ◦C (Scheme 29) [79].
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Scheme 29. Synthesis of diselenocarbamates.

Furthermore, diselenocarbamates were synthesized from CSe2 with aliphatic amines
and alkenes as electron-deficient substrates via Michael-type addition using silica gel as
the media (Scheme 30) [79].

Ahn et al. reported the one-pot preparation of organoselanyltrifluoroborates from
Se powder, dihalobenzenes, and alkyl halides in 56–92% yields using n-BuLi and boron
isopropoxide at −78 ◦C (Scheme 31) [80].

In 2021, Sands et al. reported the one-pot synthesis of structurally diverse selenonic
acids in good yields (up to 90%) from elemental Se and aryl bromides. The reaction involves
metalation using t-Butyllithium, selenation, and oxidation using H2O2, followed by ion
exchange using Rexyn 101(H) ion-exchange resin (Scheme 32) [81].
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Scheme 32. Synthesis of structurally diverse selenonic acids.

In 2020, Wu et al. disclosed the one-pot multicomponent synthesis of unsymmetri-
cal selenoureas and cycloselenoureas from selenium powder, CHCl3, and two different
amines using t-BuOH as the base at 50 ◦C for 3 h in moderate–good yields (up to 86%)
(Scheme 33) [82].
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In 2022, Shaaban and colleagues reported the development of urea-based seleno-
cyanates and symmetrical diselenides in good yields (up to 93%) using 4-selenocyanatoaniline
and 4,4′-diselanediyldianiline, respectively, and commercially available isocyanates in
toluene (Scheme 34) [83].
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In 2021, Shaaban et al. and his group developed of peptide-like and tetrazole-based
redox-active multifunctional OSe compounds via multicomponent Ugi and azido-Ugi
reactions. The reaction included novel Se-based aniline building blocks to incorporate the
Se redox center into the backbone of the Ugi/Ugi-azide structurally diverse product’s tail.
Indeed, the reactions were carried out under mild conditions using DCM and MeOH as the
solvent for the Ugi and Azido-Ugi reactions, respectively (Scheme 35) [12].

Furthermore, Shaaban et al. reported the combinatorial one-pot synthesis of tetrazole-
based symmetrical diselenides and selenoquinones compounds via azido-Ugi and sequen-
tial nucleophilic substitution methodology (Scheme 36) [84].

Moreover, Shaaban et al. also reported the synthesis of different Se peptidomimetic
compounds employing the Ugi isocyanide-based MCR using the Se-based isonitrile
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3-isocyanopropyl(phenyl)selane. The reaction was achieved under mild conditions using
H2O as the solvent in good yields (up to 94%) (Scheme 37) [85].
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Additionally, Shaaban et al. reported the synthesis of symmetrical diselenide via
one-pot Ugi using 4-(2-(4-aminophenyl)diselanyl)benzenamine as key synthon, which in
turn allowed the access to the diselenide scaffolds (Scheme 38) [86].
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In 2021, Shaaban et al. reported the synthesis of new selenocyanate isocyanide and
diselenide diisonitrile and explored their reactivities in Passerini, Ugi, and Azido-Ugi
reactions. OSe-based pseudopeptides, peptidomimetics, and tetrazoles were obtained in
good yields (up to 94%) (Scheme 39) [87].
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Scheme 39. The synthesis of new selenocyanate isocyanide and diselenide diisonitrile and explored
their reactivities in Passerini, Ugi, and Azido-Ugi reactions.

Chang et al. reported the three components regioselective one-pot synthesis of chiral
2-iminoselenazolines by sonication from L-aminoester, isoselenocyanate, and α-bromoketone.
In this reaction, selenazoles are obtained by Hantzsch reaction of selenoureas, generated
in situ from the reaction of isoselenocyanate and L-amino esters, with α-bromoketones
proceeded smoothly under ecofriendly conditions, i.e., at room temperature and under
ultrasonication (Scheme 40) [88].

Chen et al. reported the construction of β-sulfonylvinylselane bond via the visible-
light mediated MCR cascade of diselenides, alkynes, and SO2. In this reaction, novel class
of β-sulfonylvinylselanes in high selectivity for E configuration and in moderate yields (up
to 71%) (Scheme 41) [89].
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2.3. Multicomponent Polymerization Synthesis of OSe Compounds

In 2018, Tuten et al. reported the multicomponent polymerization reaction of elemental
Se, amines, and isocyanides to form polyselenoureas in one step and at room temperature
using DCM as the solvent (Scheme 42) [90].
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In 2019, Wu et al. reported the synthesis of functionalized and structurally diverse
polyselenoureas via catalyst-free and solvent-free MC polymerizations of elemental Se,
diisocyanides, and aliphatic/aromatic diamines. It is worth noting that the obtained polyse-
lenoureas encompassed enhanced thermal stability and solubility, long-term stability, and
the potential extraction of gold ions (Au3+) from mixed-metal ion solutions (Scheme 43) [91].
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In 2021, the same group by Tang et al. reported the synthesis of alicyclic
poly(oxaselenolane)s at room temperature via metal-free multicomponent polymeriza-
tions of elemental Se dipropargyl alcohols and diisocyanides. It is worth noting that
poly(oxaselenolane)s were obtained in high yields (up to 93%), high Se contents (up to
33.7 wt %), high molecular weights (up to 15 600 g/mol), and high thermal and chemical
stability as well as excellent light refractivity, good solubility, and processability. Further-
more, the polymerization reaction encompassed a broad scope of the diisocyanides (e.g.,
benzyl and aromatic) as well as various dipropargyl alcohols (Scheme 44) [92].
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3. Conclusions

In conclusion, the direct one-pot multicomponent synthesis of OSe compounds has
emerged as a potential and atom-economic strategy. Furthermore, different metal-free, as
well as metal-catalyzed, reactions evolved during the last decade. These approaches open
new scopes for synthesizing OSe compounds, a group of compounds with attractive chem-
ical, biological, and physical activities. Without a doubt, novel and improved strategies
for synthesizing OSe compounds will also be released soon, addressing challenges such as
site-selectivity, late-stage selenylation of natural products, and complex molecules.
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