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SUMMARY

Cancer is a disease governed by the underlying gene regulatory networks. The hallmarks of cancer

have been proposed to characterize the cancerization, e.g., abnormal metabolism, epithelial to

mesenchymal transition (EMT), and cancer metastasis. We constructed a metabolism-EMT-metastasis

regulatory network and quantified its underlying landscape. We identified four attractors, character-

izing epithelial, abnormal metabolic, mesenchymal, and metastatic cell states, respectively. Impor-

tantly, we identified an abnormal metabolic state. Based on the transition path theory, we quantified

the kinetic transition paths among these different cell states. Our results for landscape and paths

indicate that metastasis is a sequential process: cells tend to first change their metabolism, then acti-

vate the EMT and eventually reach the metastatic state. This demonstrates the importance of the

temporal order for different gene circuits switching on or off during metastatic progression of can-

cer cells and underlines the cascading regulation of metastasis through an abnormal metabolic inter-

mediate state.

INTRODUCTION

Cancer is a disease involving the changes in underlying gene regulatory networks. Lately, some hallmarks

of cancer have been proposed to characterize the cancerization (Hanahan and Weinberg, 2000, 2011). For

example, abnormal metabolism is a hallmark of cancer, which has been explored in recent studies (Hana-

han andWeinberg, 2011; Boroughs and Deberardinis, 2015). Metastasis has been suggested to account for

the great majority of cancer-related deaths, although its underlying mechanism remains elusive (Lambert

et al., 2017). Epithelial to mesenchymal transition (EMT) has long been shown to be related to the acquisi-

tion of malignant cell traits, such as motility, invasiveness, and tumor-initiating potential, and therefore

being associated with the progression of cancer metastasis (Brabletz et al., 2018; Lambert et al., 2017; Gib-

bons et al., 2009; Thiery et al., 2009). A critical question arises as to what the connections among these

hallmarks of cancers are. For example, what is the relationship between EMT and cancer metabolism?

And how do they contribute to the cancer metastasis, the most fatal stage of tumors?

Cancer cells have abnormal metabolism compared with normal cells. In the low oxygen and oxygen-free

conditions, metabolisms of cells are mainly in glycolysis form that produces less ATP. However, under nor-

moxic conditions, the metabolisms for cancer cells and normal cells are different. Cancer cells often use

glycolysis to generate energy, whereas normal cells use glucose for oxidative phosphorylation (OXPHOS).

This phenomenon is calledWarburg effect (Munozpinedo et al., 2012). Recently, Yu et al. proposed a math-

ematical model to study the regulations for genes and metabolites on cancer metabolism (Yu et al., 2017),

which has been extended to a more complete model in the following work (Jia et al., 2019). However, the

global stability and stochastic dynamics of cancer metabolism remain to be elucidated. More importantly,

the connection between metabolism and metastasis remains unclear. These issues are critical to the mech-

anistic understanding of tumorigenesis and have not been fully clarified from previous studies.

Here, we aim to apply the landscape approach to address the above-mentioned issues by investigating the

stochastic dynamics of underlying gene regulatory networks for cancer metastasis. The classic Waddington

landscape has been proposed as a metaphor to explain the development and differentiation of cells (Wad-

dington, 1957). Recently, the epigenetic landscapes for biological networks have been quantified from

various approaches (Wang et al., 2011; Liao and Lu, 2013; Lv et al., 2015; Li and Wang, 2014a; Lu et al.,

2014b; Ge andQian, 2012, 2016; Zhang andWolynes, 2014; Huang et al., 2005) and employed to investigate

the stochastic dynamics of embryonic development and cancer (Wang, 2015; Wang et al., 2011; Li and
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Figure 1. The Regulatory Network for the Interplay among EMT,Metabolism, and CancerMetastasis including 16

Gene or Metabolite Nodes and 51 Regulation Links (22 Activations and 29 Inhibitions)

The network from left to right corresponds to the core circuit of metabolism, EMT, and cancer metastasis, respectively.

The orange nodes, yellow nodes, and pink nodes represent metabolites, microRNAs, and genes, respectively. The arrows

represent activations, and the short bars represent inhibitions.
Wang, 2013, 2014b; Chen et al., 2014, 2015; Huang, 2013; Li, 2017). From the landscape perspective,

different cell types are described as the basins of attraction on a potential surface.

To uncover the mechanisms of the interplay among metabolism, EMT, and cancer metastasis, we con-

structed a metabolism-EMT-metastasis network by mining the experimental literature and combining

these three gene regulatory circuits (Yu et al., 2017; Li and Wang, 2015; Lu et al., 2014a; Jolly et al.,

2015b; Lee et al., 2014). The landscape for the metabolism-EMT-metastasis network displays four stable

cell types quantified by attractors, characterizing epithelial cell state (E), abnormal metabolic cell state

(A), mesenchymal cell state (M), and metastatic cell state (Met), respectively. Importantly, we identified

an abnormal metabolic state. We also calculated the minimum action paths (MAPs) to quantify the most

probable transition paths for cell fate decision processes in metastatic progression. The MAPs among

the four cell states quantify the dynamical processes for how cells switch from the epithelial state to the

metastatic state: cells need to first change their metabolism, then finish the EMT and finally enter the

metastatic state. This demonstrates the importance of the temporal order for different gene circuits switch-

ing on or off in cell fate decision process. We found that the transition path for metastatic process and the

transition path for anti-metastatic process are irreversible. The transition actions among attractors are

correlated with the potential barriers for basins but provide more accurate descriptions for kinetic switch-

ing. By the global sensitivity analysis for the metabolism-EMT-metastasis network based on the transition

actions, we identified some critical network elements governing the dynamics of cellular metabolism and

metastasis.

To further shed light on the interplay specifically betweenmetabolism and EMT, we explored a subnetwork

of the whole network, i.e., an EMT-metabolism regulatory network (blue and green boxes in Figure 1), by

neglecting the metastasis circuit (yellow box in Figure 1) and further quantified its potential landscape. The

landscape for the EMT-metabolism network displays three stable states (attractors) including epithelial (E)

state, mesenchymal (M) state and abnormal metabolic (A) state. To further verify our modeling results, we

compared the gene expression data of three types of cancers (one for single-cell RNA sequencing [RNA-

seq] data and two for population data) and the landscape, which supports the consistency between the

gene expression data and the landscape results (Pastushenko et al., 2018; Cancer Genome Atlas Research

Network et al., 2013; Agrawal et al., 2014).

Previously we have developed a partial self-consistent approximation (PSCA) approach to calculate the po-

tential landscape for high-dimensional gene regulatory systems (Li and Wang, 2013, 2014a). One limitation

of the PSCA approach is that it assumes weak correlations among gene variables (gene expression levels).

This approach may not be accurate for the cases in which variables have strong correlations. Here, to
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resolve this issue, we developed a truncated moment equations (TME) approach. This approach does not

rely on assumptions of weak correlations between variables. By comparing the results of both the TME

method and PSCA method with the simulation results, we showed that the TME approach provides a

more precise description for the probability distribution of the system than that of the PSCA approach.

In summary, the TME approach offers a new method to quantify the potential landscape for a high-dimen-

sional gene regulatory system, and the results of landscape and kinetic paths provide new insights into the

mechanistic understanding of the interplay amongmetabolism, EMT, and cancer metastasis in the process

of cancer progression.

RESULTS

Regulatory Network Models for Metabolism, EMT, and Cancer Metastasis

Recently, Yu et al. constructed a computational model for cancer metabolism using ordinary differential

equations (ODEs), which includes two genes (AMPK and HIF-1) and two metabolites (noxROS and mtROS)

(Yu et al., 2017). The EMT has been suggested to be related to metastatic progression (Brabletz et al., 2018;

Lambert et al., 2017; Gibbons et al., 2009). So, a critical question would be, are there any connections

among EMT, metabolism, and cancer metastasis? To uncover the mechanisms underlying the interplay be-

tween EMT, metabolism, and metastasis, we established a metabolism-EMT-metastasis gene regulatory

network by incorporating the core components for each process through mining the experimental litera-

ture (Figure 1). The metabolism-EMT-metastasis network involves 16 components, including ten genes,

two metabolites, and four microRNAs. AMPK, HIF-1, mtROS, and noxROS are the core components con-

trolling cellular metabolism (Figure 1, blue box). SNAIL, ZEB, OCT4, MDM2, miR-145, miR-200, miR-34, and

P53 are the core components governing the EMT (Figure 1, green box). RKIP, BACH1, LIN28, and Let7 are

the core components governing the metastasis (Figure 1, yellow box) (Lee et al., 2014). The experimental

evidences for the interactions among different components are shown in Table S1.

Based on the network structure, we wrote down the ODEs describing the time evolution of relative expres-

sion levels for each of the 16 genes or metabolites. The ODEs depicting the dynamic evolution of the meta-

bolism-EMT-metastasis system are shown in Equation 1:

dX

dt
= gX,G� kX,K,X (Equation 1)

Here, X represents the level of the gene expression or the metabolite. gX and kX denote the basal

synthesis rate and degradation rate of X, respectively. G and K denote the regulation of other genes

or metabolites on the synthesis and the degradation of X, respectively. The activation or inhibition regula-

tions among different components are described by the product of the shifted Hill function HsðY ; S; l;nÞ=
1+ ðl�1Þ Yn

Sn +Yn (representing the regulation of component Y on component X). Here, l represents the fold

change for the regulations (l>1 for activation and 0<l<1 for inhibition). S represents the threshold of

the sigmoidal function, and n is the Hill coefficient, which determines the steepness of the sigmoidal

function (Li and Wang, 2013; Li, 2017) (see Supplemental Information Section S1 for more details on how

to determine the parameters). The specific ODEs of the metabolism-EMT-metastasis model are shown

in Supplemental Information Section S2 and corresponding parameter values are shown in Tables S2

and S3.

Landscape Reveals the Cascade for Metabolism, EMT, and Metastasis

Yu’s work provides a basis for understanding the cancer metabolism from a deterministic ODE model (Yu

et al., 2017). However, the stochastic dynamics and global properties of cancer metabolism remain to be

elucidated, as the fluctuations have been suggested to play critical roles in biological systems, including

intrinsic fluctuations from a finite number of molecules and external fluctuations from highly inhomoge-

neous environments (Swain et al., 2002; Kaern et al., 2005; Thattai and Van, 2001). Also, it is crucial to un-

cover the dynamical mechanisms for the interplay among metabolism, EMT, and cancer metastasis.

Previously, we have developed a partial self-consistent approximation approach to study the stochastic dy-

namics for high-dimensional systems by the potential landscape theory (Li and Wang, 2013, 2014a). One

limitation of the PSCA approach is that it assumes the weak correlation between variables, which in

some cases may not be accurate. Here, we improved previous methods and developed a Truncated

Moment Equations (TME) approach (see Supplemental Information Section S3 and Section S4) to calculate

the probability distribution of gene expression levels and obtain the potential landscape. By comparing the
756 iScience 21, 754–772, November 22, 2019



Figure 2. Landscape and Path for the Metabolism-EMT-Metastasis Model Shown in ZEB, HIF-1, and BACH1

Coordinates

(A) Landscape is shown in a four-dimensional picture. The blue regions represent higher probability or lower potential,

and the yellow regions indicate lower probability or higher potential. Solid magenta lines represent transition paths from

the E to A, M, and Met states. Solid cyan lines represent transition paths from the Met to M, A, and E states.

(B) Two-dimensional landscape and kinetic paths are displayed in HIF-1/ZEB coordinates.

(C) Two-dimensional landscape and kinetic paths are displayed in HIF-1/BACH1 coordinates.

(D) Two-dimensional landscape and kinetic paths are displayed in ZEB/BACH1 coordinates. E, epithelial state; A,

abnormal metabolic state; M, mesenchymal state; Met, metastasis state.

See also Figure S4 and Table S4.
two approaches, we showed that the TME approach provides amore precise description for calculating the

probability distribution of the systems (see Supplemental Information Section S5, Section S6, Figures S1

and S2 for details).

Based on the metabolism-EMT-metastasis regulatory network model (Figure 1), we calculated the steady

state probability distribution of the system employing the TME approach and acquired the potential land-

scape by U = � ln Pss (Wang et al., 2008, 2011; Li, 2017; Li and Wang, 2014a). Here Pss represents the steady

state probability distribution and U represents the dimensionless potential. Because we are dealing with a

16-dimensional potential landscape, it is hard for visualization. Here we pick three representative marker

genes, HIF-1, ZEB, and BACH1, as three coordinates and project the 16-dimensional landscape into the

three dimensional space (see Figure S3 and Section S7 for another way to show landscape). In this way,

we have a four-dimensional landscape, as displayed in Figure 2A. It is worth noting that our major conclu-

sions do not depend on the specific choice of the coordinates (see Figure S4 for landscapes with other pairs

of variables as coordinates) because we also calculated the transition actions among different attractors,

based on the 16-dimensional state space. On the landscape the blue region represents high probability

or low potential and the yellow region represents low probability or high potential.We identified four stable

states on the landscape, which characterize epithelial (E), abnormal metabolism (A), mesenchymal (M), and

metastatic (Met) cell states, respectively (Figure 2, see Table S4 for stable state gene expression levels for

the quadrastable landscape). Importantly, we identified a new intermediate state, which we defined as

the abnormal metabolism (A) state, since it has an increased expression of the glycolysis marker geneHIF-1.

From the network structure of our metabolism-EMT-metastasis regulatory network, each of these three cir-

cuits studied here can be multistable, e.g., three states in EMT, three states in metabolism, and two states
iScience 21, 754–772, November 22, 2019 757



Figure 3. Transition Paths among Different Cell States

(A) Fixed points and kinetic transition paths between different cell states. Solid magenta lines represent transition paths between nearby states (from E to A,

A toM, andM toMet state) in metastatic progression direction. Solid cyan lines represent transition paths between nearby states (fromMet toM,M to A, and

A to E state) in de-metastasis direction. The dashed lines represent the direct transition path from E to Met state and from Met to E state, respectively.

(B and C) Discrete transition paths from E state to Met state (B) and from Met state to E state (C) in terms of expression levels of 16 genes and metabolites.

Relative gene expression levels are discretized to 0 or 1; 1 represents that the corresponding genes are in the activated state and 0 represents that the

corresponding genes are in the repressed state. X axis shows the time points along the transition path. E, epithelial state; A, abnormal metabolic state; M,

mesenchymal state; Met, metastasis state.

See also Table S4.
in metastatic circuit. Therefore, if there is no coupling between these three circuits, there are a total of 33

332= 18 possible states. However, the coupling among these circuits can introduce correlations and thus

lead to a much smaller number of stable states, as discussed in previous work (Jolly et al., 2015b; Bocci

et al., 2018). We need to stress that, although we identified four stable states in our model, it is possible

to discover more cell states (e.g., partial EMT state) by fine-tuning parameters, owing to the complexity

involved in EMT and cancer metastasis.

Here, the E state has a low HIF-1, low ZEB, and low BACH1 expression. So, the marker genes for the

abnormal metabolism, the EMT, and the metastasis are all off. The A state has a high HIF-1, low ZEB,

and low BACH1 expression and therefore corresponds to an abnormal aggressive metabolic phenotype

(i.e., aerobic glycolysis state) whereby cancer cells change their metabolism to produce energy more

quickly. Besides, we have a mesenchymal state with a high HIF-1, high ZEB, and low BACH1 expression

and a metastatic state with a high HIF-1, high ZEB, and high BACH1 expression. Previous work has shown

experimentally that the metastatic state has high expression level of BACH1, low expression level of RKIP,

and Let7 for breast cancer (Lee et al., 2014). Our metastatic attractor from the model is consistent with this

experimental observation (see Table S4). To quantify the kinetic transitions among these states, we calcu-

late the kinetic transition paths among different cell states by minimizing the transition actions S, which are

also called minimum action paths (MAPs) (see Table S5 for results of transition actions among four states

and Supplemental Information Section S8 for how to obtain the transition paths). Figures 2A and 2B show

the landscape and transition paths for the quadrastable system in four-dimensional and three-dimensional

space, respectively. The magenta paths denote the transitions from the epithelial state to the metastatic

state (metastatic progression process), whereas the cyan paths denote the transitions from the metastatic

state to epithelial state (de-metastasis process). The transition paths for the E to metastasis state transition

and the backward transition paths frommetastasis to the E state are not identical, reflected by the disparity

between the forward and backward kinetic transition paths. This irreversibility of MAPs is a consequence of

non-gradient force, i.e., curl flux (Wang et al., 2008; Li and Wang, 2014a).

To see the transition path more clearly, we showed both the direct transition path (from E to Met attractor,

dashed lines) and indirect transition path (for nearby attractors, solid lines) from minimizing corresponding

transition actions (Figure 3A). We found that, for the E to Met transition, the direct transition path (dashed

magenta line) is inclined to follow the similar mode as the indirect transition path is (solid magenta line), i.e.,

the E to Met transition is inclined to go through the attractor states in the middle of the transition. Here, the

landscape and the transition paths are both from three-dimensional projection for the whole system (Fig-

ures 2 and 3A). To see the paths for more components, we visualized the 16-dimensional transition paths
758 iScience 21, 754–772, November 22, 2019



between the E and the Met states by discretizing the gene expression levels of all 16 genes or metabolites

(Figures 3B and 3C). For the metastatic progression process, different genes switch on or off in different

orders. For example, microRNAs and tumor repressor P53 are first down-regulated. Then the HIF-1 level

is increased, indicating a transition to the abnormal metabolic state, which is followed by the ZEB activation

indicating the EMT occurs. Finally, the BACH1 is activated, indicating that cells enter the metastatic state.

Therefore, both the continuous and discrete kinetic paths suggest that metastasis is a sequential process,

i.e., abnormal metabolism precedes EMT, which precedes metastasis. Interestingly, we found that for both

metastatic progression and de-metastasis process (Figures 3B and 3C), both mtROS and noxROS switch in

the very early stage in the whole cell fate transition process. This suggests that reactive oxygen species

(ROS) plays critical roles in regulating cancer metastasis (Ishikawa et al., 2008), presumably because of

its prominent influence on the cellular metabolism.

The quadrastable landscape for metastasis and the kinetic transition paths between attractors demon-

strate that the transitions from epithelial state to metastatic state follow a specific order, i.e., first increasing

the expression level of HIF-1, then increasing the expression level of ZEB, and finally increasing the expres-

sion level of BACH1. These results suggest that the temporal order for different genes switching on or off is

critical for the process of metastatic progression in cancer cells. In the first stage, the cells change their

metabolism to an abnormal aggressive form (e.g., aerobic glycolysis). In the second stage, cells finish

the EMT process where cells obtain mesenchymal features in numerous different settings (Kalluri, 2009).

In the last stage, cells improve their metastatic ability by activating metastasis marker genes, such as

BACH1. These results agree well with the observations that EMT induction in cancer cells results in the

acquisition of invasive and metastatic properties (Singh and Settleman, 2010).
Global Sensitivity Analysis Identifies the Key Players for the Interplay among Metabolism,

EMT, and Metastasis

To quantify the topography of landscape, we define the barrier height as the potential difference between

the local minimum and the corresponding saddle point. To evaluate the relationship between the transition

action and the barrier height, we change the lhh (the fold change for the self-activation of HIF-1) to see how

the transition action changes with the potential barrier. For simplicity, we use the metabolism-EMT-metas-

tasis network but constrain the parameter choices within the bistable regime (the E state and M state

coexist) to calculate both barrier heights and transition actions. From the results (Figure 4), the barrier

height and the corresponding transition action both increase as lhh increases (Figures 4A and 4B). Howev-

er, the transition action from theM to E state increases faster than the transition action from the E toM state

(Figure 4C, red line). This is because lhh quantifies the self-activation of HIF-1, which promotes the glycol-

ysis state and M state. A faster increase of transition action from the M to E state means a more stable M

state, which is consistent with the role of lhh for promoting HIF-1. This result is not reflected by the barrier

height results (Figure 4C, blue line), although there is a statistical correlation between barrier height and

transition action (Figure 4D). This suggests that the transition action provides a more precise description

for the dynamics of the system than the barrier height, since the barrier heights are calculated from two-

dimensional approximation, whereas the transition actions are calculated directly from the high-dimen-

sional system.

To further study the effects of parameters on the dynamics of the whole network, we performed a global

sensitivity analysis on parameters for the metabolism-EMT-metastasis model. For simplicity, we con-

strained the parameter values in the bistable regime (the E state and M state coexist). We calculated the

transition actions between the E state and M state to quantify the feasibility in transitions for EMT and

mesenchymal to epithelial transition (MET). We assume that the transition actions for EMT andMET should

be critical tometastasis or de-metastasis progress because the EMT is a critical step for metastasis progres-

sion. We increase or decrease each parameter (here we focus on the parameters for the synthesis rate and

regulatory strengths) individually by 10% to modulate the situations for gene over-expression or knock-

down and for the change of regulatory strengths among genes or metabolites. Then we calculate how

the transition actions between the E state and M state change after these perturbations. We also per-

formed a global sensitivity analysis for the metabolic model to uncover the critical factors specifically for

the metabolic model (see Supplemental Information Section S9 and Section S10).

From the results of sensitivity analysis, we picked top 25 parameters based on their sensitivity for detailed

analysis (see Figure S5 for the complete sensitivity analysis of 61 parameters), which are shown in Figure 5.
iScience 21, 754–772, November 22, 2019 759



Figure 4. The Relation between Transition Action and Barrier Height Based on the Bistable Landscape of the

Metabolism-EMT-Metastasis Model as lhh Increases (the Fold Change for the Self-Activation of HIF-1)

(A) The relation between lhh and the transition action (S).

(B) The relation between lhh and the barrier height (U).

(C) Relative changes for the transition action S (red line) and barrier heights U (blue line) as lhh increases.

(D) The barrier height changes as the transition action changes.
Among these top 25 paramount parameters, a few of the regulations are related with P53, for example, the

activation of AMPK on P53 and the activation of P53 on miR-145. The increase of regulatory strengths for

either of these two links will increase the transition actions from the E to M state (or the transition barrier

from the E to M state), making the E state more stable. This embodies the critical roles of P53 in preventing

cancer metastasis (Powell et al., 2014). This is consistent with our expectations from the network diagram

because P53 activates multiple miRNAs and inhibits EMT-promoting factor OCT4, therefore playing a crit-

ical role in preventing cancer metastasis. Another prominent factor is the synthesis rate of mtROS, whose

increase will greatly enhance the transition action from the E to M state, making the E state more stable.

This indicates that mtROS could be a useful target for the cancer therapeutic strategy, probably because

of its key influence on metabolism.

Additionally, increasing the fold change of inhibitory regulation of miR-145 on MDM2 (as well as on ZEB),

i.e., reducing the inhibitory effects, results in the decrease of transition action from the E state to M state,

promoting EMT (Figure 5A). This is because MDM2 inhibits P53 by promoting its degradation. Reducing

the inhibition on MDM2 will promote MDM2 and inactivate P53, which will promote EMT owing to the

inhibitory roles of P53 on EMT. Similarly, reducing the inhibition of miR-145 on ZEB will promote ZEB

and further promote EMT. These predictions from our modeling are consistent with the experimental ob-

servations showing that miR-145 blocks the EMT (Zhao et al., 2016).

Another prediction from the sensitivity analysis is that the increase of the strength of the self-activation of

ZEB lZZ (or the increase of the synthesis rate of ZEB gZ or the increase of the fold change for the activation

regulation of HIF-1 on ZEB lhZ ) can enhance the transition action from the M state to E state SM/E , making

the transition from theM to E state less probable and theM state more stable (Figure 5A). This prediction is

consistent with previous finding, showing that ZEB1 levels drive the dynamics of EMT (Jolly et al., 2018).

Recently, Jia et al. demonstrated that miR-200/ZEB1 behaves as a three-way decision-making switch

enabling transitions among the E, intermediate E/M, and M cell states by theoretical and experimental

studies (Jia et al., 2017). Our prediction here is consistent with this previous work (Jia et al., 2017), by
760 iScience 21, 754–772, November 22, 2019



Figure 5. Global Sensitivity Analysis for Parameters Based on the Transition Action for the Metabolism-EMT-

Metastasis Model

Y axis represents the 25 parameters. X axis represents the percentage of the change of the transition action (S) relative to

S with default parameters. Here, SE/M represents the transition action from attractor E to attractor M (magenta bars) and

SM/E represents the transition action from attractor M to attractor E (cyan bars). The top 25 parameters are picked, in

which the first 15 parameters represent the regulatory strength (l) and the last 10 parameters represent the synthesis rate

(g) for 10 proteins or metabolites. See Supplemental Information for the complete sensitivity analysis of 61 parameters.

(A) Each parameter is increased by 10%, individually.

(B) Each parameter is decreased by 10%, individually.
emphasizing the role of ZEB as a mesenchymal state promoter. From the network diagram, this is because

the increase of the synthesis rate of ZEB or the activation strength of HIF-1 on ZEB will make ZEB activated,

which further promotes EMT or the stability of M state. This also agrees with previous studies showing that

the ZEB family of transcription factors are inducers of EMT, and P53, miR-200, and miR-139 affect the EMT

through ZEB transcription factors (Ohashi et al., 2010; Korpal et al., 2008; Qiu et al., 2015; Sánchez-Tilló

et al., 2011).

We also found that the over-expression of HIF-1 will increase the stability of the M state, reflected by the

increase of transition action from the M to E state (Figure 5A). From the network topology, the over-expres-

sion of HIF-1 will promote ZEB and therefore make the M state more stable. This is consistent with the

experimental study showing that the HIF-1 is a significant positive factor for regulating tumor progression

and metastatic potential (Liao et al., 2007). Additionally, the inhibition of AMPK will promote EMT and

metastasis, indicated by the decrease of transition action from the E to M state (Figure 5B). This is because

AMPK promotes the expression of P53, which plays a critical role in inhibiting EMT. Therefore, the inhibition

of AMPK will down-regulate P53 and promote EMT. This is also consistent with previous investigations

showing that the loss of AMPK activation promotes the invasion and metastasis of pancreatic cancer

(Chen et al., 2017).
Model Predictions Based on Landscape and Paths for Cancer Metastasis

Our computational results provide some guidance for experimental studies on the relationships among

EMT, metabolism, and cancer metastasis. We summarized the experimental evidences that are consistent

with our modeling results, as well as some predictions that could be tested from experimental studies

(Table 1). First, we proposed a quadrastable landscape for the interplay among EMT, metabolism, and

metastasis. Among the four stable states on the landscape, the epithelial state and mesenchymal state

have been suggested from previous studies (Zhang et al., 2014; Lu et al., 2013; Hong et al., 2015). The met-

astatic state with high BACH1 expression was consistent with a previous study (Lee et al., 2014). Also, a
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Model Predictions Supporting References

In metastatic progression, there exists an abnormal metabolic state. Prediction

Forward and reverse paths for EMT and metastasis are not identical. (Zhang et al., 2014)

Metastasis is a stepwise progress, i.e., abnormal metabolism, EMT,

and metastasis should be activated in a cascade.

Prediction

ROS changes the levels in the very early stage of the cell fate decision

process toward EMT or metastasis.

Prediction

Over-expression of P53 attenuates EMT and metastasis progression. (Powell et al., 2014)

Over-expression of ZEB promotes EMT. (Sánchez-Tilló et al., 2011;

Korpal et al., 2008)

Over-expression of miR-145 attenuates EMT. (Wang et al., 2017)

Over-expression of HIF-1 promotes EMT and metastasis. (Liao et al., 2007)

Inhibition of ROS promotes EMT and metastasis. (Piskounova et al., 2015;

Gill et al., 2016)

Inhibition of AMPK promotes EMT and metastasis. (Chen et al., 2017)

Table 1. Major Model Predictions and Experimental Supports
recent work suggested that a combination therapy by targeting BACH1 and mitochondrial metabolism

suppressed tumor growth and metastasis in triple-negative breast cancer (Lee et al., 2019), which provides

another support that BACH1 could be a marker gene for cancer metastasis. However, the intermediate

abnormal metabolic state we identified here has not been explicitly reported from experiments. Therefore,

detailed molecular experiments and steady state measurements on cancer metastasis systems might be

needed to test if this abnormal metabolic state, along with the multistability, exists.

Second, our results for kinetic transition path suggest that cancer metastatic progression is an irreversible

process, which is indicated by the fact that the forward transition paths and the backward transition paths

are not identical. We also found that the cancer metastatic progression is a sequential progress, i.e., the

HIF-1 is first activated, and then the ZEB (characterizing EMT marker genes) is switched on followed by

the activation of BACH1 (characterizing metastatic marker genes). These predictions can be tested

experimentally.

Third, the discrete path results suggest that ROS changes the levels in the very early stage of the cell fate

decision process toward metastasis (Figures 3B and 3C). Our results for the sensitivity analysis show that

ROS significantly influences the transition actions for the E to M transition (Figure 5). This suggests that

ROSmight be a critical factor in the cancer metastatic progression by regulatingmetabolism. This is consis-

tent with previous findings showing that antioxidants promote metastasis in melanoma (Piskounova et al.,

2015; Gill et al., 2016). Previous studies showed that mtROS can also promote metastasis (Ishikawa et al.,

2008; Porporato et al., 2014). These controversial conclusions might be related with the fact that cancer

cells can use different ways of metabolism, e.g., use glycolysis or OXPHOS metabolism to activate metas-

tasis (Yu et al., 2017).

Of note, the metastatic state identified in our model should represent a state with high expression level of

HIF-1 (representing abnormal metabolism), high expression level of ZEB and other EMTmarker genes (rep-

resenting that EMT is activated), and high expression level of BACH1 (representing certain metastatic

markers activated). This notion is consistent with the idea of hallmarks of cancer (Hanahan and Weinberg,

2000, 2011), i.e., the cancer metastasis should be a state in which cells have acquired different hallmarks of

cancer. To test this type of cells experimentally, one should measure the expression level of relevant genes

in the regulatory network and look for the states, for example, with a high level of HIF-1, ZEB, and SNAIL;

low level of miR145, RKIP, and Let7; and high level of LIN28 and BACH1 (Table S4). We need to stress that, in

our work, we focus on the interplay between metabolism, EMT, and metastasis, and have not explicitly

considered the tristability properties of LIN28/Let7 circuit or the interplay between metabolism and
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Figure 6. The Tristable Landscape for EMT-metabolism Model and Comparisons with Experimental Data

The EMT-metabolism model corresponds to the subnetwork of the whole network without consideration of metastasis

circuit in Figure 1.

(A) Three dimensional landscape and transition paths. Solid magenta lines represent transition paths from the E to A, and

M state. Solid white lines represent transition paths from the M to A and to E state. The dashed lines represent the direct

transition path from E to M state and from M to E state, respectively.

(B) Two dimensional landscape and transition paths.

(C and D) Landscapes are compared with the gene expression data of single-cell RNA-seq data for a genetic mouse

model of skin squamous cell carcinoma (SCC) undergoing EMT including 383 single cells (C) and clinically annotated adult

cases of de novo AML from TCGA including 173 samples (D). The gene expression data have been rescaled to fit the

landscape. Each point represents a gene expression pattern in ZEB and HIF-1 coordinates for one sample from

experiments.
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Figure 6. Continued

(E-G) PCA plots for the SCC data with respect to HIF-1 (E), ZEB (F), and SNAI1 (G).

(H-J) PCA plots for the AML data with respect to HIF-1 (H), ZEB (I), and SNAI1 (J).

(K-M) PCA plots for the PTC data with respect to HIF-1 (K), ZEB (L), and SNAI1 (M). Three clusters have been marked in the

PCA coordinates, which correspond to E state (purple ovals, with low HIF-1/low ZEB expression), A state (green ovals, with

high HIF-1/low ZEB expression), andM state (orange ovals, with high HIF-1/high ZEB expression), respectively. The colors

in the PCA plots represent the expression levels of key marker genes (e.g., HIF-1, ZEB, and SNAIL) for E, A, and M

phenotypes. E, epithelial state; M, mesenchymal state; A, abnormal metabolic state.
stemness. As proposed in previous work (Jolly et al., 2015b), the stemness and EMT can be coupled in a

flexible way. So, our metastatic state with high expression level of LIN28 and low expression level of

Let7 might be corresponding to the state with stemness and the ability for the tumor initiation (Jolly

et al., 2015b). Future work can study how ROS influences the coupling among metabolism, EMT, metas-

tasis, and stemness, which might help to resolve the controversial conclusions for the roles of ROS in

metastasis.

Finally, from our sensitivity analysis, the over-expression of P53 will significantly increase the transition ac-

tion for the transition from the E to M state. This is consistent with the key roles of P53 as a tumor repressor

(Powell et al., 2014). However, we found that the over-expression of P53 will also increase the transition

action for the transition from the M to E state, which means that it is not very effective to make an M cell

switched back to an E cell. This indicates that P53 alone might not be enough to induce the transition of

an M state cell back to an E state cell, whereas a better strategy could be targeting multiple genes

simultaneously. Of note, recent studies have suggested a computational approach to identify the optimal

combination of multiple anti-cancer targets (Li, 2017; Li and Balazsi, 2018).

Landscape and Kinetic Paths for EMT and Cancer Metabolism

To further reveal the relationship specifically between EMT and metabolism, we quantified the potential

landscape of a subnetwork of the whole network by neglecting the metastasis circuit (yellow box in Fig-

ure 1), i.e., we consider only the coupling between EMT and metabolism (see Figures S6–S8 and Table

S6 for the landscape analysis specifically for the metabolic model). Here we picked ZEB and HIF-1 as the

marker genes of EMT and metabolism, respectively, and obtained the potential landscape (Figures 6A

and 6B). On the landscape, the blue region denotes lower potential or higher probability and the yellow

region denotes higher potential or lower probability. From the landscape of EMT-metabolism, we identi-

fied three attractors (cell states), which characterize the epithelial (E), the mesenchymal (M), and an inter-

mediate abnormal metabolic (A) state, respectively. The multistability and the existence of intermediate

states of EMT have been suggested from previous work (Lu et al., 2013; Zhang et al., 2014; Li et al.,

2016). However, these previous works focus on small circuits and have not considered the influence of

cellular metabolism on the EMT. By coupling the EMT circuit and metabolism circuit, here we are able

to study the dynamics of the interplay between EMT and metabolism.

To investigate the transition dynamics for the EMT-metabolism system, we calculated the MAPs among

different attractors by minimizing the transition actions S. The MAPs for different transitions are shown

on the landscape (Figures 6A and 6B). The MAPs from the epithelial state to the mesenchymal state are

shown in magenta lines, and the reverse paths are shown in white lines.

The landscape and transition path results indicate that the transition process from the epithelial state to the

mesenchymal state can be divided into two steps: the epithelial cells first switch to the intermediate state

(or abnormal metabolic state A) with the increase of HIF-1 level and then are transformed to mesenchymal

cells with the increase of ZEB level. These results demonstrate that, before cells are transformed to the

mesenchymal state, they need to first change their metabolism. Of note, the intermediate abnormal meta-

bolic state we identified here is different from the hybrid state suggested in EMT modeling (Lu et al., 2013)

or the hybrid state proposed on cancer metabolism (Yu et al., 2017). The hybrid or intermediate state in

EMT models (Lu et al., 2013) was defined as a state with half-epithelial and half-mesenchymal cell proper-

ties, and the hybrid or intermediate state in cancer metabolism model (Yu et al., 2017) was defined as a cell

state that can use both glycolysis and OXPHOSmetabolism. Neither of these two previous models has dis-

cussed the interplay between EMT and metabolism. Differently, our intermediate state suggested here

corresponds to a state with abnormal metabolism (increased HIF-1 expression) but is still similar to an

epithelial cell state (with the similar expression levels of epithelial marker genes as the epithelial cells).
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Therefore, this builds a connection between EMT and cancer metabolism. As a matter of fact, different

studies have suggested that aberrant metabolism plays a key role in developing EMT and cancer metas-

tasis (Huang and Zong, 2017; Sciacovelli and Frezza, 2017; Jiang et al., 2015). We need to stress that our

intermediate metabolic state identified here is not in conflict with the previous hybrid state in EMT (Lu

et al., 2013; Pastushenko et al., 2018). This difference is due to the disparate resolution of the two models

because our models here focus on the interplay between metabolism, EMT, and metastasis, which is more

complicated and inclusive than previous models only focusing on EMT. In principle, it is possible to

discover both the hybrid EMT state and the abnormal metabolic state by fine-tuning parameters in our

models.
Landscape Results Are Supported by Experimental Data

To further validate our modeling results, we compare our EMT-metabolism model with the experimental

data (see Supplemental Information Section S11 for a detailed approach of data analysis). Since our model

can be considered as a representative EMT-metabolism network (not for some specific types of cancer), we

collected three different types of gene expression data from experiments. The first dataset we acquired is

the single-cell RNA-seq data for a genetic mouse model of skin squamous cell carcinoma (SCC) undergo-

ing EMT (383 single cells, available from the NCBI Gene Expression Omnibus under accession number

GSE110357) (Pastushenko et al., 2018). We also collected another dataset of gene expression data (acute

myeloid leukemia [AML]) from The Cancer GenomeAtlas (TCGA) (173 samples for clinically annotated adult

cases of de novo AML) (Cancer Genome Atlas Research Network et al., 2013). AML is the secondmost com-

mon leukemia diagnosed in both adults and children, and it has been proposed that leukemia cells are

inherently metastatic compared with solid tumors (Trendowski, 2015). The regulation of EMT has been sug-

gested to play critical roles in AML development (Meyer, 2017; Carmichael et al., 2016; Stavropoulou et al.,

2016). The third dataset we collected is for papillary thyroid carcinoma (PTC) from TCGA including 496 PTC

samples (Agrawal et al., 2014). All of these three types of data are time independent and therefore should

correspond to the steady-state data. We extracted the expression data for the relevant genes that appear

in our network (Figure 1) from these datasets and neglected the miRNAs andmetabolites that are not avail-

able from the data.

To see if our modeling results agree with these data, we rescaled the expression data to the range of

the basins obtained from our models by linearly transforming the expression values, so that they match

the landscape basins approximately. We believe that this normalization of the data is reasonable

because some corresponding gene expression values from different datasets differ from each other by

many folds and they represent different types of cancer in different conditions. By mapping these gene

expression data (the gene expression data of HIF-1 and ZEB after normalization) on the landscape

(Figures 6C and 6D), we found reasonable consistency between experimental data and our landscape re-

sults, i.e., the experimental data also display some clusters, which could correspond to the three stable

states (cell types) on the landscape. Here, each point represents a gene expression pattern in the ZEB

and HIF-1 coordinates for one sample from experiments (Figures 6C and 6D). The experimental data points

can be classified into three different cell states (the E state represented by magenta points, the M state

represented by orange points, and the A state represented by green points), which is consistent with

our modeling results.

We also compared our modeling results with the experimental data in another way. We performed the

principal component analysis (PCA) of the three types of experimental data, which are shown in Figures

6E–6G (SCC data), Figures 6H–6J (AML data), and Figures 6K–6M (PTC data), respectively. In the PCA

plots of the SCC data, we can identify three clusters, which are consistent with our landscape results.

These three clusters have been marked in the PCA coordinates that correspond to the E state (purple

ovals, with low HIF-1/low ZEB expression), A state (green ovals, with high HIF-1/low ZEB expression),

and M state (orange ovals, with high HIF-1/high ZEB expression). Here, the colors in the PCA plots repre-

sent the expression levels of key marker genes (e.g., HIF-1, ZEB, and SNAIL) for the E, A, and M pheno-

types. Importantly, we found that, from the cluster E to cluster A, the HIF1 expression increases (from

blue to yellow), whereas the ZEB (and SNAIL) expression does not increase (keeping blue) (Figures

6E–6G). Also, from the cluster A to cluster M, the ZEB (and SNAIL) expression increases significantly

(from blue to yellow) (Figures 6E–6G). These experimental data provide a support to the landscape at-

tractors we identified, which is that the E, A, and M states coexist. For the PCA plots of AML and PTC

data, we also find similar modes for the three attractor states (E, A, and M) in terms of HIF-1 and ZEB
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(Figures 6H–6M). Both these ways of validations show good consistency between modeling results and

experimental data. It is worth noting that our metabolism-EMT regulatory network is constructed purely

by mining the experimental literature and the gene expression data are obtained from a different data-

base, separately. So, the consistency between our modeling results and the experimental data is

inspiring, which also confirms the predictive power of our models.

Here, for metabolism and EMT circuit, we found certain consistency between experimental data and our

models. But we have not found significant consistency for the metastatic circuit in the SCC dataset we

used. This is probably because our metastatic circuit is only a simplified module to represent metastasis

(e.g., only one metastasis marker gene BACH1 is involved). To resolve this issue, a more inclusive metas-

tasis model involvingmore genes is needed. Nevertheless, for the cascading regulation of EMT andmetas-

tasis, our previous work by combiningmodeling and single cell data provides support for this conclusion (Li

and Balazsi, 2018).
Modeling Anti-Cancer Therapeutic Strategies

Targeting cellular metabolism has been shown to be a promising route against cancer. Several metabolic

drugs have been uncovered and shown to be effective against cancers in certain cases, e.g., 3-bromopyr-

uvate (3BP) (Ganapathy-Kanniappan et al., 2010) and metformin (Dowling et al., 2011). It has also been sug-

gested that the combined drugs may be more effective than single drugs (Cheong et al., 2011). However,

the underlying mechanisms for why the designed drugs work in certain cases but not in others have yet to

be clarified. Here, we propose that these drugs take effects by changing the underlying landscape topog-

raphy of the metabolism-EMT-metastasis gene regulatory network. We model the drug effects by making

perturbations to the key nodes in the network and trace the changes on the landscape shape. Here, the

green nodes (Figure 7A) represent the hypothetical drugs, and by changing the levels of drugs we can study

how the landscape is influenced (see Supplemental Information Section S12 for detailed ODEs describing

the drug influences and Table S7 for parameter values). In Figures 7B–7D, we showed how the landscape

shape changes as the drug doses increase for 3BP (Figure 7B), metformin (Figure 7C), and the combined

3BP and metformin therapy (Figure 7D), respectively. We can see that all three therapies are effective on

destabilizing the metastatic state, as indicated by the changes in the landscape topograph where the met-

astatic attractor gradually disappears as the drug doses increase. We found that the combined 3BP and

metformin therapy is more effective than either of 3BP or metformin acting alone. This is because, when

the drug doses increase to certain level, the combined 3BP and metformin therapy will lead to the disap-

pearance of the A, M, and Met attractors. This does not happen for the single 3BP or metformin therapy

(Figures 7B–7D). Therefore, these results are consistent with the experimental studies showing that the

combinations of metformin and 2DG (whose effect is similar to 3BP) are more effective than each drug

in action alone (Cheong et al., 2011).

We also found that even very large doses of any of these drugs (last column in Figures 7B–7D) alone cannot

induce the cells to the E state completely because there are always other abnormal cell states present (Met2

in Figures 7B and 7D, M in Figure 7C). The Met2 state here corresponds to a state with low HIF-1, low ZEB,

and highBACH1expression level, which should be thought of as ametastasis-like state. This can explainwhy

designed drugs work in certain cases but not in the others. It is because cells after drug treatments can still

transform to the M state (Figure 7C) or the Met2 state (Figures 7B and 7D), which should preserve certain

features of metastasis cells. Therefore, based on these changes in landscape topography, we suggest

another therapeutic strategy, which is the combination of 3BP (or metformin) and certain types of BACH1

inhibitor (Figure 7E). Thepurpose of addingBACH1 inhibitor is to destabilize theMet2 state, so that the cells

will be more prone to switch to the E state. As indicated in Figure 7E, the new combination of drugs sug-

gested here can induce the change in landscape topography from four states coexistence to monostable

E state alone. The new combination strategy suggests a better treatment for cancer metastasis. In fact,

the BACH1 as one of the new targets for suggested combination drugs mentioned earlier has been sug-

gested as a novel individual candidate target for cancer therapy (Davudian et al., 2016). More interestingly,

a recent work suggested that a combination therapy by targeting BACH1 and mitochondrial metabolism

suppressed tumor growth and metastasis in triple-negative breast cancer (TNBC) (Lee et al., 2019). These

experiments provide a strong support for our predictions on the combination drugs.

Recently, an integrated computational and experimental approach was designed to identify effective

therapeutic strategies based on temporal sequencing of multiple drugs from deterministic models
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Figure 7. Landscape in Terms of HIF-1 and BACH1 in Response to Different Drugs in Different Levels

(A–E) (A) The metabolism-EMT-metastasis network with new added green nodes representing the hypothetical drugs.

The simulated drugs include 3BP (B), metformin (C), combined 3BP and metformin therapy (D), and combined 3BP and

BACH1-inhibitor therapy (E). In B–E, the hypothetical drug levels increase from left to right, which represent the drug level

of 0, 100, 130, and 250, respectively. E, epithelial state; M, mesenchymal state; A, abnormal metabolic state; Met,

metastasis state; Met2, metastasis-like state; BI, BACH1 inhibitor.
(Goldman et al., 2015, 2019). Of note, our current landscape approach is based on the steady-state distri-

bution, where we explored multiple initial conditions from the ODEs. From the landscape perspective,

drugs play roles by reshaping the landscape (steady states) and changing the relative stability of different

cell states. To see the effects of temporal sequencing of multiple drugs, an approach for calculating tem-

poral landscape (landscape at different time points) has yet to be developed.
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DISCUSSION

Abnormal metabolism, EMT, and cancer metastasis are three important processes in the progression of

cancer. These processes have been extensively explored individually both from experiments and

modeling. However, the underlying mechanisms connecting these processes remain elusive. In this

work, we aim to establish a theoretical framework for modeling the interplay among metabolism, EMT,

and metastasis to reveal the possible principles for cancer metastasis. We develop a TME approach to

quantify the potential landscape. We constructed a metabolism-EMT-metastasis regulatory network and

identified four stable states from the landscape: epithelial (E), abnormal metabolic (A), mesenchymal

(M), and metastatic (Met) cell states. Importantly, we identified a new abnormal metabolic cell state. We

further calculate the MAPs to quantify the most probable transition paths for cell fate decision processes

in metastatic progression. The results of landscape andMAPs indicate that the epithelial cells prefer to first

change their metabolism, then finish EMT, and eventually enter the metastatic state. By performing a

global sensitivity analysis from the transition actions, we identified some key parameters for the metastatic

progression, which agree well with experimental observations.

Our landscape results have a few indications for cancer metastasis. First, for metastatic progression, cells

prefer to follow a specific sequential order: change their metabolism, finish EMT, and proceed into themet-

astatic state. This feature indicates that there are interplays among these three processes to generate a

temporal order. Second, the intermediate states identified from our models may account for the heteroge-

neity observed in experiments for tumors. Third, the landscape view considers metastasis state as an attrac-

tor. This means that, in principle, metastatic cancer cells can be destroyed by altering the underlying

landscape such that the metastasis state is no longer a stable state. To achieve this, a possible effective

way should be either intervening genes or regulatory interactions among genes in cancer gene regulatory

networks. In fact, recent experimental work showed that EMT-derived breast cancer cells can be induced to

differentiate into post-mitotic adipocytes through a combination therapy (Ishay-Ronen et al., 2019). Also,

the reverse transitions from M cells to E cells or from hybrid E/M cells to E cells have been observed in

experiments (Zhang et al., 2014; Hong et al., 2015). These experiments indicate the possibility for inducing

the conversion of metastatic cancer cells to non-invasive cells (e.g., E cells or intermediate state cells)

in vivo. On the contrary, the traditional strategy for killing metastatic cells does not change the stability

of metastasis attractor. This might be one reason why we often see clinically that after the chemotherapy

or radiotherapy the cancer relapses.

Recent studies have identified intermediate hybrid phenotypes both at the single-cell level and population

levels across different cancer types (Pastushenko et al., 2018; Jolly et al., 2015a). Our models for the inter-

play among metabolism, EMT, and metastasis give rise to a quadrastable landscape. This supports the

existence of intermediate states in EMT. Additionally, a critical prediction from our model is that the cancer

metastatic progression might be a sequential process. Specifically, cancer cells tend to first change their

metabolism. Then, with the abnormal metabolism (possibly providing energymore quickly), the EMT circuit

is activated. This further leads to the cancer metastasis. This conclusion is partially supported by multiple

types of gene expression data (Figures 6C–6H), although gene expression data with dynamical information

are needed to further test this prediction. This sequential procedure resembles previous studies suggest-

ing that metastasis appears mainly by a sequential, multi-step process that can be viewed as a cascade of

the invasion-metastasis (Lambert et al., 2017). These results indicate that the temporal order is critical for

different genes (characterizing different functions or hallmarks of cancer) switching on or off in metastatic

progression process and different hallmarks of cancer can interact with each other and cooperate. Our

landscape results also indicate that the multistable landscape and the existence of intermediate states

play critical roles in metastatic progression. For example, the existence of intermediate states or sequential

progression can increase cellular plasticity. As a matter of fact, the epigenetic landscape governing the sta-

bility of epithelial-mesenchymal plasticity has been proposed as an illustration (Tam and Weinberg, 2013).

Our results offer quantitative supports for the epigenetic landscape of EMT and metastasis.

Our work has certain implications on the origins of cancer. Genetic mutations, metabolic dysfunction, and

environmental factors are commonly considered to play distinct roles in the development of tumors. Our

work suggests that these factors may be connected to each other intimately, and the debate on which one

is dominant can be reconciled in a quantitative way. In fact, different circuits are intertwined with feedbacks

to each other, as shown in Figure 1. First, the metabolic disorder undoubtedly plays critical roles in tumor

development because from our models the E to A state transition (Figure 2) is a crucial step for tumor
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development. The metabolic disorder can be caused by the environmental stress (e.g., hypoxia) or the ge-

netic mutations (e.g., oncogene RAS, MYC) (Hanahan and Weinberg, 2011), or combinations of both.

However, the abnormal metabolic state does not necessarily lead to cancer, if the system stays at the A

state stably. To become tumor cells or obtain the invasive ability, the cells need to activate other circuits

(such as EMT circuit) to induce the A to M state transition (Figure 2). In a similar way, the genetic mutations

(inherited or acquired) and the environmental stress (such as UV radiation) can contribute to this step. In

fact, this can be considered as a process of accumulations of mutations (e.g., the mutations related to

EMT marker genes ZEB and SNAIL). Finally, even in the M state, the cells still have the opportunity of

not becoming malignant tumor cells if no M to metastasis state transition is induced. In principle, an M

cell can transform back to an A or E cell in certain conditions. However, with the further accumulations

of mutations (related with metastasis circuit), the M state cells can be further transformed to metastatic

cells. This completes the journey of the cascade for the progression of cancer metastasis. Therefore, the

quantitative landscape models offer a possible explanation for the origin of cancer, which supports the

notion that cancer originates from the combined effects of accumulated mutations and environmental

stress.

The sequential cascade in metastatic progression also suggests that a more effective therapeutic strategy

might be targeting multiple circuits (representing different functions) of the cancer network, e.g., targeting

metabolism, EMT, andmetastasis simultaneously. In fact, many studies have suggested that EMT activation

can cause tumor relapse and enhanced tumorigenesis in different human cancer cell lines (Moody et al.,

2005; Creighton et al., 2010; Ye and Weinberg, 2015). By modeling the landscape changes with several de-

signed drugs (such as 3BP and metformin), we found that these drugs can weaken the metastatic state in

certain circumstances, but they also induce newmetastasis-like states. This can explain why some drugs can

work in certain cases against cancer but not in others. Our results suggest that the combinations of different

drugs should be more effective than single drugs (Cheong et al., 2011). Based on the changes of landscape

topography upon drug treatment, we suggest a new therapeutic strategy (combining 3BP/metformin and

BACH1 inhibitor), which can lead to a better treatment. Remarkably, our predictions on the combination

drugs are partially supported by a recent work showing that a combination therapy by targeting BACH1

and mitochondrial metabolism suppressed tumor growth and metastasis in TNBC (Lee et al., 2019).

Yu et al. proposed that cancer cells use both glycolysis and OXPHOS for metabolism (Yu et al., 2017). In our

work, the abnormal metabolic state is more related to glycolysis state marked by higher expression of

HIF-1. Our modeling results indicate that the abnormal metabolism (such as aerobic glycolysis) is critical

for activating metastasis. This is supported by previous work, e.g., cancer metastasis has long been related

to the switch from OXPHOS to glycolysis metabolism, i.e., the Warburg effects (Han et al., 2013; Gatenby

and Gillies, 2004; Kamarajugadda et al., 2012). Additionally, both our modeling results and gene expres-

sion data from experiments show that HIF-1 is activated in metastatic cancer cells (Figure 6). In fact,

previous work has suggested that HIF-1 activation is critical for EMT and HIF-1 activation by acidic

microenvironment contributes to tumorigenesis and metastasis (Han et al., 2013). This is consistent with

our conclusion that glycolysis metabolism (HIF-1 activation) promotes EMT and then activates metastasis.

However, we cannot rule out the possibility that cancer cells could also use OXPHOS metabolism to acti-

vate metastasis, which warrants further computational and experimental explorations.

In summary, the TME approach developed in this work provides an effective approach to quantify the sto-

chastic dynamics of high-dimensional gene regulatory systems, and our results provide new insights into

the mechanistic understanding of the interplay amongmetabolism, EMT, and cancer metastasis in the pro-

gression of cancer. The landscape and path approach can be used to explore the interplay among other

hallmarks of cancer and to study the stochastic dynamics of other biological networks.
Limitations of the Study

One limitation of the current work is that we compare our modeling results only with a few types of cancer

data. These data partially support the existence of an abnormal metabolic state. To our best knowledge, it

remains challenging to integrate ‘‘model driven’’ approach (such as our gene network models) and ‘‘data

driven’’ approach (such as single cell data analysis) in systems biology (Cho et al., 2017). Therefore, we still

lack effective ways to compare modeling results and single cell data of cancer, especially for different types

of cancer owing to the heterogeneity in many tumors. In this work, we performed some initial attempts for
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this task. Another limitation is that we considered only certain genes, microRNAs, and metabolites that are

important for the processes of metabolism, EMT, and cancer metastasis. In reality, other gene circuits or

metabolites can also be important to the whole-cell fate decision processes in cancer metastasis. Third,

cancer is a complex disease, which involves many hallmarks (Hanahan and Weinberg, 2000, 2011). Owing

to the complexity, in this work we modeled a few hallmarks of cancer, including abnormal metabolism,

EMT, and metastasis. Future work can incorporate other critical genes or metabolic circuits (and/or other

hallmarks of cancer) into the models of underlying cancer gene regulatory networks, which may lead to the

larger complexity but will provide more insights into underlying regulatory mechanisms for cancer

metastasis.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2019.10.060.
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Supplemental Figures

Figure S1: Comparisons of different methods for calculating the probability distribution (P) of the metabolic model (related to Figure
2). The distributions calculated from PSCA, TME and simulation methods are shown in 2-dimensional (A-C) and 3-dimensional (D-F) pictures.
The relative distance and relative entropy between PSCA and simulations are σ = 0.0140 and DKL = 0.1636; the relative distance and relative
entropy between TME and simulations are σ = 0.0109 andDKL = 0.0990. The relative distance between TME and simulations is 22.1% less than
that between PSCA and simulations, and the relative entropy between TME and simulation is 39.5% less than that between PSCA and simulations.
G: Glycolysis state, O: OXPHOS state.



Figure S2: Comparisons of different methods for calculating the probability distribution (P) of EMT-metabolism model (related to Figure
2). The distributions calculated from PSCA, TME and simulation methods are shown in 2-dimensional (A-C) and 3-dimensional (D-F) pictures.
The relative distance and relative entropy between PSCA and simulations are σ = 0.3350 and DKL = 1.7706; the relative distance and relative
entropy between TME and simulations are σ = 0.3240 and DKL = 0.6348. The relative distance between TME and simulations is 3.40% less
than that between PSCA and simulations, and the relative entropy between TME and simulation is 64.15% less than that between PSCA and
simulations. E: Epithelial state; A: Abnormal metabolic state; M: Mesenchymal state.



Figure S3: The landscape in metabolism-EMT-metastasis model for four stable states using R1 and R2 as coordinates (related to Figure
2). R1: the square of the distance between the independent variable X and Met state, R2: the square of the distance between the independent
variable X and E state. E: Epithelial state; A: Abnormal metabolic state; M: Mesenchymal state; Met: Metastasis state.



Figure S4: Landscape using different pairs of variables in metabolism-EMT-metastasis model (related to Figure 2). A: Landscape using
AMPK and ZEB as the coordinates; B: Landscape using HIF-1 and BACH1 as the coordinates; C: Landscape using HIF-1 and OCT4 as the
coordinates; D: Landscape using AMPK and SNAIL as the coordinates. E: Epithelial state; A: Abnormal metabolic state; M: Mesenchymal state;
Met: Metastasis state.
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Figure S5: Sensitivity analysis for the 61 key parameters in metabolism-EMT-metastasis model (16 production rate constants, 45 fold
changes for different components including 18 activation constants and 27 inhibition constants) on the transition action (related to
Figure 5). Y-axis represents the 61 key parameters. X-axis represents the percentage of the relative change of the transition action S. Here,
SE−>M represents the transition action from Epithelial state to Mesenchymal state (magenta bars), and SM−>E represents the transition action
from Mesenchymal state to Epithelial state (cyan bars). ’− >’ represents activation and ’−|’ represents inhibition. (A) Each parameter is increased
by 10%, individually. (B) Each parameter is decreased by 10%, individually.



Figure S6: Landscape and corresponding minimum action paths (MAP) when d = 15 for metabolic model are shown in 3-dimensional (A
and B) and 2-dimensional figures (C and D) (related to Figure 2). A and C: The metabolic model has 3 stable states (γ = 8, kH = 0.25). B
and D: The metabolic model has 2 stable states (γ = 3, kH = 0.3). Magenta solid lines represent the MAP from O state to H states, and from H
state to G state, and the white solid lines represent the MAP from G state to H state, and from H state to O state. The dashed lines represent the
direct MAP from O to G and from G to O states, respectively. O: Oxidative Phosphorylation, G: Glycolysis, H: Hybrid phenotype.



Figure S7: Landscape of metabolic model changes as γ and kH change when d = 15, which are shown in 3-dimensional space (related
to Figure 2). O: Oxidative Phosphorylation, G: Glycolysis, H: Hybrid phenotype.
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Figure S8: Sensitivity analysis for the 39 parameters based on the transition action for the metabolic model (related to Figure 5). Here,
SG−>O represents the transition action from Glycolysis state to Oxidative Phosphorylation state (magenta bars), and SO−>G represents the
transition action from Oxidative Phosphorylation state to Glycolysis state (cyan bars). Y-axis represents the 39 parameters. X-axis represents the
percentage of the relative change of the transition action S. A: Each parameter is increased by 10%, individually. B: Each parameter is decreased
by 10%, individually.



Supplemental Tables

Table S1: Connections and corresponding evidences for the whole network (related to Figure 1). There are 22
activation regulations and 29 inhibition regulations. For the column of interaction type, 1 represents activation, and -1
represents inhibition.

Source Node Target Node Interaction Type References
AMPK noxROS -1 (Yu et al., 2017)
HIF-1 noxROS 1 (Yu et al., 2017)
AMPK mtROS 1 (Yu et al., 2017)
AMPK mtROS -1 (Yu et al., 2017)
HIF-1 mtROS -1 (Yu et al., 2017)

noxROS AMPK 1 (Yu et al., 2017)
mtROS AMPK 1 (Yu et al., 2017)
AMPK AMPK -1 (Yu et al., 2017)
HIF-1 AMPK -1 (Yu et al., 2017)

noxROS HIF-1 1 (Yu et al., 2017)
mtROS HIF-1 1 (Yu et al., 2017)
AMPK HIF-1 -1 (Yu et al., 2017)
HIF-1 HIF-1 1 (Yu et al., 2017)
P53 HIF-1 -1 (Zhou et al., 2015; Sermeus and

Michiels, 2011)
AMPK P53 1 (Seppet et al., 2009)
HIF-1 P53 1 (Zhou et al., 2015; Sermeus and

Michiels, 2011)
MDM2 P53 -1 (Abida et al., 2007)

P53 MDM2 1 (Robbins and Zhao, 2012)
miR-145 MDM2 -1 (Zhang et al., 2013)
miR-145 OCT4 -1 (Xu et al., 2009; Lu et al., 2014)

P53 OCT4 -1 (Li et al., 2012)
OCT4 OCT4 1 (Lu et al., 2014)
LIN28 OCT4 1 (Lu et al., 2014)
HIF-1 ZEB 1 (Zhang et al., 2015)
ZEB ZEB 1 (Lu et al., 2014)

miR-145 ZEB -1 (Ren et al., 2014; Lu et al., 2014)
miR-200 ZEB -1 (Kim et al., 2011; Kong et al., 2010;

Lu et al., 2014)
SNAIL ZEB 1 (Lu et al., 2014)
P53 miR-145 1 (Zhang et al., 2013)

OCT4 miR-145 -1 (Xu et al., 2009; Lu et al., 2014)
ZEB miR-145 -1 (Ren et al., 2014; Lu et al., 2014)
ZEB miR-200 -1 (Brabletz and Brabletz, 2010; Lu

et al., 2014)
P53 miR-200 1 (Kim et al., 2011)

OCT4 miR-200 1 (Lu et al., 2014; Wang et al., 2013)
SNAIL miR-200 -1 (Lu et al., 2014)
SNAIL SNAIL -1 (Lu et al., 2014)
miR-34 SNAIL -1 (Lu et al., 2014)

Let7 SNAIL -1 (Lu et al., 2014)



P53 miR-34 1 (Liang et al., 2009)
ZEB miR-34 -1 (Lu et al., 2014)

SNAIL miR-34 -1 (Lu et al., 2014)
Let7 Let7 1 (Lu et al., 2014; Zisoulis et al., 2012)
RKIP Let7 1 (Lee et al., 2014)
LIN28 Let7 -1 (Zisoulis et al., 2012; Lu et al., 2014)
SNAIL RKIP -1 (Lu et al., 2014)
BACH1 RKIP -1 (Lee et al., 2014)
miR-200 LIN28 -1 (Kong et al., 2010)

Let7 LIN28 -1 (Lu et al., 2014)
LIN28 LIN28 1 (Lu et al., 2014)
Let7 BACH1 -1 (Lee et al., 2014)

BACH1 BACH1 -1 (Lee et al., 2014)

Table S2: Parameters for the metabolic model(Yu et al., 2017) (related to Figure 1). The parameters kH (degra-
dation rate of HIF-1) and γ (fold change for mtROS activation) are different for normal cells and cancer cells. When
the values of these two parameters change from{0.25, 8} to {0.3, 3}, the system will change from a tristable state
(G, H and O state, cancer cells) to a bistable state (G and O state, normal cells).

Parameters Value Unit Description Reference(s)
AMPK

gA 30 nM/h Production rate of AMPK (Yu et al., 2017)
kA 0.2 /h Degradation rate of AMPK (Yu et al., 2017)
SAA 350 nM Threshold for self-inhibition (Yu et al., 2017)
SAH 250 nM Threshold for HIF-1 inhibition (Yu et al., 2017)
SAR 350 nM Threshold for mtROS inhibition (Yu et al., 2017)
SARmt

150 nM Threshold for mtROS activation (Yu et al., 2017)
SARnox 150 nM Threshold for noxROS inhibition (Yu et al., 2017)
λAA 0.2 - Fold change for self-inhibition (Yu et al., 2017)
λAH 0.1 - Fold change for HIF-1 inhibition (Yu et al., 2017)
λAH 0.25 - Fold change for mtROS inhibition (Yu et al., 2017)
γ 0.3 - Fold change for mtROS inhibition (Yu et al., 2017)

gARnox
0.2 - Fold change for noxROS inhibition (Yu et al., 2017)

nAA 2 - Hill coefficient for self-inhibition (Yu et al., 2017)
nAH 1 - Hill coefficient for HIF-1 inhibition (Yu et al., 2017)
nAR 2 - Hill coefficient for mtROS inhibition (Yu et al., 2017)
nARmt 4 - Hill coefficient for mtROS activation (Yu et al., 2017)
nARnox

2 - Hill coefficient for noxROS inhibition (Yu et al., 2017)
HIF-1

gH 15 nM/h Production rate of HIF-1 (Yu et al., 2017)
SHH 80 nM Threshold for HIF-1 self-activation (Yu et al., 2017)
SHA 250 nM Threshold for AMPK inhibition (Yu et al., 2017)
SHRmt 200 nM Threshold for mtROS inhibition (Yu et al., 2017)
SHRnox

250 nM Threshold for noxROS activation (Yu et al., 2017)
λHH 10 - Fold change for HIF-1 self-activation (Yu et al., 2017)
λHA 0.1 - Fold change for AMPK inhibition (Yu et al., 2017)
gHRnox

5 - Fold change for noxROS activation (Yu et al., 2017)



nHH 4 - Hill coefficient for HIF-1 self-activation (Yu et al., 2017)
nHA 0.1 - Hill coefficient for AMPK inhibition (Yu et al., 2017)
nHRmt

2 - Hill coefficient for mtROS inhibition (Yu et al., 2017)
nHRnox

2 - Hill coefficient for noxROS inhibition (Yu et al., 2017)
kH 0.3 - Degradation rate of HIF-1 (Yu et al., 2017)

ROS
gRmt

150 µM/min Production rate of mitochondrial ROS (Yu et al., 2017)
gRnox 40 µM/min Production rate of NOX derived ROS (Yu et al., 2017)
gn 0.2 - Basal cytosol ROS (Yu et al., 2017)
kRmt

5.0 /min Degradation rate of mitochondrial ROS (Yu et al., 2017)
kRnox 5.0 /min Degradation rate of NOX derived ROS (Yu et al., 2017)
SRA 100 µM Threshold for AMPK activation (Yu et al., 2017)
SRH 300 µM Threshold for HIF-1 activation (Yu et al., 2017)
λRA 8 - Fold change for AMPK activation (Yu et al., 2017)
λRH 5 - Fold change for HIF-1 activation (Yu et al., 2017)
nRA 4 - Hill coefficient for AMPK activation (Yu et al., 2017)
nRH 4 - Hill coefficient for HIF-1 activation (Yu et al., 2017)
g0 1 -

Table S3: Parameters for the metabolism-EMT-metastasis model (related to Figure 1). The system has a
quadrastable state (E, A, M and Met State).

Parameter Value Unit Description Reference(s)
AMPK

SAP 200 nM Threshold for P53 activation
nAP 300 nM Hill coefficient for P53 activation
λAP 3 - Fold change for P53 activation

HIF-1
SHZ 200 nM Threshold for ZEB activation
SHP 300 nM Threshold for P53 activation
λHZ 3 - Fold change for ZEB activation
λHP 10/7 - Fold change for P53 activation
nHZ 4 - Hill coefficient for ZEB activation
nHP 4 - Hill coefficient for P53 activation

ZEB
SZZ 200 nM Threshold for ZEB self-activation
SZm1 100 nM Threshold for miR-145 inhibition
SZm2 300 nM Threshold for miR-200 inhibition
SZm3 200 nM Threshold for miR-34 inhibition
λZm2 0.2 - Fold change for miR-200 inhibition
λZZ 3 - Fold change for ZEB self-activation
λZm1 0.2 - Fold change for miR-145 inhibition
λZm3 0.3 - Fold change for miR-34 inhibition
nZZ 2 - Hill coefficient for ZEB self-activation (Lu et al., 2014)
nZm1 3 - Hill coefficient for miR-145 inhibition
nZm2 3 - Hill coefficient for miR-200 (Lu et al., 2014)
nZm3 2 - Hill coefficient for miR-34 inhibition



gZ 10 nM/h Production rate of ZEB
kZ 0.1 /h Degradation rate of ZEB

P53
SPm1 250 nM Threshold for miR-145 inhibition
SPH 200 nM Threshold for HIF-1 inhibition
SPM 500 nM Threshold for MDM2 activation
SPO 100 nM Threshold for OCT4 inhibition
SPm2 200 nM Threshold for miR-200 activation
λPm2 3 - Fold change for miR-200 activation
λPO 0.3 - Fold change for OCT4 inhibition
λPm1 3 - Fold change for miR-145 activation
λPM 2 - Fold change for MDM2 activation
λPH 0.5 - Fold change for HIF-1 inhibition
nPm2 3 - Hill coefficient for miR-200 activation
nPH 4 - Hill coefficient for HIF-1 inhibition
nPm1 4 - Hill coefficient for miR-145 activation
nPM 4 - Hill coefficient for MDM2 activation
nPO 3 - Hill coefficient for OCT4 inhibition
gP 30 nM/h Production rate of P53
kP 0.1 /h Degradation rate of P53

miR-200
Sm2Z 300 nM Threshold for ZEB inhibition
Sm2Li 400 nM Threshold for LIN28 inhibition
λm2Z 1/3 - Fold change for ZEB inhibition
λm2Li 0.5 - Fold change for LIN28 inhibition
nm2Z 6 - Hill coefficient for ZEB inhibition (Lu et al., 2014)
nm2Li 4 - Hill coefficient for LIN28 inhibition
gm2 10 nM/h Production rate of miR-200
km2 0.1 /h Degradation rate of miR-200

miR-145
Sm1Z 200 nM Threshold for ZEB inhibition
Sm1O 200 nM Threshold for OCT4 inhibition
Sm1M 200 nM Threshold for MDM2 inhibition
λm1O 0.25 - Fold change for OCT4 inhibition
λm1M 0.2 - Fold change for MDM2 inhibition
λm1Z 0.2 - Fold change for ZEB inhibition
nm1M 4 - Hill coefficient for MDM2 inhibition
nm1Z 2 - Hill coefficient for ZEB inhibition
nm1O 3 - Hill coefficient for OCT4 inhibition
gm1 20 nM/h Production rate of miR-145
km1 0.1 /h Degradation rate of miR-145

MDM2
SMP 400 nM Threshold for P53 inhibition
λMP 1/6 - Fold change for P53 inhibition
nMP 2 - Hill coefficient for P53 inhibition
kM 0.1 /h Degradation rate of MDM2
gM 20 nM/h Production rate of MDM2



OCT4
SOm1 200 nM Threshold for miR-145 inhibition
SOm2 300 nM Threshold for miR-200 activation
SOO 200 nM Threshold for OCT4 self-activation
SOLi 200 nM Threshold for LIN28 activation
λOm1 0.2 - Fold change for miR-145 inhibition
λOO 3 - Fold change for OCT4 self-activation
λOm2 2 - Fold change for miR-200 activation
λOLi 4 - Fold change for LIN28 activation
nOO 3 - Hill coefficient for OCT4 self-activation
nOm2 3 - Hill coefficient for miR-200 activation
nOm1 2 - Hill coefficient for miR-145 inhibition
nOLi 4 - Hill coefficient for LIN28 activation
gO 20 nM/h Production rate of OCT4
kO 0.1 /h Degradation rate of OCT4

Let7
SLeLe 450 nM Threshold for Let7 self-activation
SLeLi 200 nM Threshold for LIN28 inhibition
SLeS 200 nM Threshold for SNAIL inhibition
SLeB 300 nM Threshold for BACH1 inhibition
nLeLi 4 - Fold change for LIN28 inhibition
nLeLe 4 - Fold change for Let7 self-activation
nLeB 4 - Hill coefficient for BACH1 inhibition
nLeS 4 - Hill coefficient for SNAIL inhibition
kLe 0.1 /h Degradation rate of Let7
gLe 20 nM/h Production rate of Let7
λLeLi 0.25 - Fold change for LIN28 inhibition
λLeLe 4 - Fold change for Let7 self-activation
λLeB 0.25 - Fold change for BACH1 inhibition
λLeS 0.25 - Fold change for SNAIL inhibition

LIN28
SLiLi 200 nM Fold change for LIN28 self-activation
SLiLe 200 nM Fold change for Let7 inhibition
SLiO 400 nM Fold change for OCT4 activation
nLiLi 4 - Hill coefficient for LIN28 self-activation
nLiO 4 - FHill coefficient for OCT4 activation
nLiLe 4 - Hill coefficient for Let7 inhibition
gLi 20 Mn/h Production rate of LIN28
kLi 0.1 /h Degradation rate of LIN28
λLiLe 0.3 - Fold change for Let7 inhibition
λLiO 1.4 - Fold change for OCT4 activation
λLiLi 5 - Fold change for LIN28 self-activation

BACH1
SBB 200 nM Fold change for BACH1 self-inhibition
SBRK 200 nM Fold change for PRKIP inhibition
nBRK 4 - Hill coefficient for RKIP inhibition
nBB 3 - Hill coefficient for BACH1 self-inhibition



kB 0.1 /h Degradation rate of BACH1
gB 20 nM/h Production rate of BACH1
λBB 0.7 - Fold change for BACH1 self-inhibition
λBRK 0.2 - Fold change for RKIP inhibition

RKIP
SRKLe 200 nM Threshold for Let7 activation
nRKLe 5 - Hill coefficient for Let7 activation
kRK 0.1 /h Degradation rate of RKIP
gRK 20 nM/h Production rate of RKIP
λRKLe 4 - Fold change for Let7 activation

SNAIL
SSZ 400 nM Threshold for ZEB activation
SSm2 400 nM Threshold for miR-200 inhibition
SSm3 200 nM Threshold for miR-34 inhibition
SSS 100 nM Threshold for SNAIL self-inhibition
SSR 200 nM Threshold for RKIP inhibition
nSR 4 - Hill coefficient for RKIP inhibition
nSm2 1 - Hill coefficient for miR-200 inhibition
nSm3 1 - Hill coefficient for miR-34 inhibition
nSZ 1 - Hill coefficient for ZEB activation
nSS 1 - Hill coefficient for SNAIL self-inhibition
kS 0.1 /h Degradation rate of SNAIL
gS 20 nM/h Production rate of SNAIL
λSm2 0.8 - Fold change for miR-200 inhibition
λSm3 0.7 - Fold change for miR-34 inhibition
λSR 0.3 - Fold change for RKIP inhibition
λSS 0.3 - Fold change for SNAIL self-inhibition
λSZ 1.5 - Fold change for ZEB activation

miR-34
Sm3S 200 nM Threshold for SNAIL inhibition
nm3S 2 nM Hill coefficient for SNAIL inhibition
km3 0.1 /h Degradation rate of miR-34
gm3 15 nM/h Production rate of miR-34
λm3S 0.2 - Fold change for SNAIL inhibition



Table S4: The gene expression levels of the stable steady states for the quadrastable landscape (related to Figure 2). E: Epithelial state;
A: Abnormal metabolic state; M: Mesenchymal state; Met: Metastasis state.

Gene E A M Met
mtROS 60.70 9.31 5.87 5.86
noxROS 3.70 21.39 26.42 26.44
AMPK 219.96 83.08 75.22 75.17
HIF-1 19.45 255.68 336.83 337.37
ZEB 19.44 73.24 710.26 837.88
OCT4 19.44 23.87 121.91 333.22
MDM2 33.48 39.03 150.38 151.19
SNAIL 10.56 10.99 24.68 82.66
miR-145 373.05 260.53 39.30 20.53
miR-200 223.55 206.91 43.31 57.55
miR-34 535.46 443.52 101.98 92.03
P53 236.61 214.32 151.99 151.53
RKIP 199.39 199.39 199.36 139.85
Let7 1982.80 1982.43 1980.57 86.61
LIN28 46.46 47.47 50.83 905.40
BACH1 49.79 49.79 49.79 172.88

Table S5: Transition actions for the transitions among 4 states for the metabolism-EMT-metastasis model (related to Figure 2). The
transition actions are represented by a 4 × 4 matrix S, with Sij representing the transition action for the transition from i state to j state. N
denotes not applicable.
Sij E state A state M state Met state
E state N 11780(SE−>A) 118676(SE−>M ) 389111(SE−>Met)
A state 6788(SA−>E) N 49365(SA−>M ) 323344(SA−>Met)
M state 54160(SM−>E) 31300(SM−>A) N 267886(SM−>Met)
Met state 294393(SMet−>E) 272921(SMet−>A) 246635(SMet−>M ) N



Table S6: The evidences for the conclusion in the sensitivity analysis for metabolic model (related to Figure
5).

Gene Model predictions Experimental phenotype Reference(s)
mtROS The increasing of production rate of

mtROS grmt (or the decreasing in the
degradation rate of mtROS krmt

or the
decreasing in threshold for the regu-
lation from AMPK to mtROS) can in-
crease the transition action from O s-
tate to G state, which means cells tend
to stay in O state.

Generation of mtROS mainly takes
place at the ETC (mitochondrial elec-
tron transport chain) located on the
inner mitochondrial membrane during
the process of oxidative phosphoryla-
tion (OXPHOS).

(Li et al., 2013)

AMPK Increasing in production rate of AMP-
K gA, decreasing in degradation rate
of AMPK or decreasing threshold for
the effect from mtROS and noxROS to
AMPK lead to the changes of transi-
tion action: the transition action from
O state to G state increases, while the
transition action from G state to O s-
tate decreases, making the O state
more stable.

Loss of AMPKα promotes a glycolyt-
ic signature and increases the expres-
sion of HIF-1α.

(Faubert et al.,
2013)

HIF-1 Increasing in production rate of HIF-1
gH can increase the transition action
from G state to O state, making G state
more stable.

Experiment data indicates that HIF-1
is both necessary and sufficient for
reducing mitochondrial oxygen con-
sumption in hypoxia.

(Papandreou
et al., 2006) (Kim
et al., 2006)

Table S7: Parameters for modeling anti-cancer therapeutic strategies (related to Figure 7).

Parameters Value Unit Description Reference(s)
λMA 2 - Fold change for AMPK activation (Yu et al., 2017)
λHA 0.5 - Fold change for HIF-1 inhibition (Yu et al., 2017)
nMA 2 - Hill coefficient for AMPK activation (Yu et al., 2017)
nHA 2 - Hill coefficient for HIF-1 inhibition (Yu et al., 2017)
SMA 300 µM Threshold for AMPK activation (Yu et al., 2017)
SMH 300 µM Threshold for HIF-1 inhibition (Yu et al., 2017)

αmetformin 0.025 /µM Influence on mtROS maximum fold change (Yu et al., 2017)
α3BP 0.0005 /µM Influence on HIF-1 fold change due to self-activation (Yu et al., 2017)
αBI 0.04 /µM Influence on BACH1 maximum fold change



Transparent Methods

Section S1: Parameter setting for the models
We construct a metabolism-EMT-metastasis gene regulatory network by mining literatures (Figure 1 in main text,

the connections and corresponding evidences are shown in Table S1), which includes 16 components and 51 regu-
lations. The network consists of three circuits: metabolic circuit, EMT circuit and metastasis circuit. In this study, we
analyze the dynamical behavior of the metabolism-EMT-metastasis regulatory network by solving ordinary differential
equations (ODEs). Typically, the deterministic rate equation for each component has a general form:

dX

dt
= gX ·G− kX ·X ·K,

where X represents the expression level of a gene or a metabolite. gX and kX denote the basal production rate
and degradation rate of X(t), respectively. G and K denote regulations of other components on the production and
degradation of X. The regulation of component Y on component X can be described by a nonlinear function, namely
the shifted Hill function: Hs(Y, S, λ, n) = 1 + (λ − 1) Y n

Sn+Y n (Yu et al., 2017). Here, λ represents the fold change for
regulation, S represents the threshold of a sigmoidal function, and n is the Hill coefficient, which determines the
steepness of the sigmoidal function. Therefore, the Hill function has the following property:

Hs(Y, S, λ, n)

 < 1 0 < λ < 1,
= 1 λ = 1,
> 1 λ > 1.

When Y regulates the production rate of X, we use Hs(Y, S, λ, n) to denote this regulation. When Y regulates
the degradation rate of X, we use Hs(Y, S, 1/λ, n) to express this regulation. By doing so, λ in the function has the
consistent meaning, i.e., λ decides whether the regulation is activation or inhibition (λ > 1 for activation and 0 < λ < 1
for inhibition).

When the production (or degradation) of X is regulated by two components Y and Z simultaneously, G (or K)
can be expressed as(Yu et al., 2017):

G(or K) =

{
Hs(Y, SY X , λY X , nY X)Hs(Z, SZX , λZX , nZX) Y and Z are independent,

Ccomp(γ, Y, SY X , λY X , nY X , Z, SZX , λZX , nZX) Y and Z are competitive.

The specific form of Ccomp can be found in Section S2.
We determine the ODEs and the parameter values based on the following:

1. We choose parameter values according to some previous works on gene regulatory networks (Li and Wang,
2013; Lu et al., 2013; Huang et al., 2007). The ODEs and parameters for the metabolic model (Figure 1 in main
text, blue box) are based on the model in (Yu et al., 2017). The specific ODEs are shown in section S2 and the
parameter values for this model are shown in Table S2.

2. To reduce the complexity of the model, we set most of the parameters uniformly, since so far for the metabolism-
EMT-metastasis regulatory network there are little information about the regulatory strengths among different
components. For example, we set the same degradation rate for most of gene variables, and we set basal
production rate for different genes in similar range.

3. The value of Hill coefficient n is determined based on experimental data for certain regulations, e.g. the self-
activation of ZEB, the inhibition of miR-200 on ZEB and the inhibition of ZEB on miR-200 (Lu et al., 2014). For
the cases without experimental data, we choose Hill coefficient n ∈ {2, 3, 4} to represent high nonlinearity of
gene regulations following previous works (Lu et al., 2013; Li and Wang, 2013).

4. We carefully choose the parameter values in the metabolism-EMT-metastasis model to satisfy certain biological
constraints, such as generating multistability, which are consistent with biological observations. We perform
the sensitivity analysis to the parameters, which supports the robustness of current parameter values for our
models.



5. Most of the parameters in the current model have not been determined by experiments. In this work, we
focus on the dynamical implications of the regulatory structure of the metabolism-EMT-metastasis model, i.e.
the topology of the network. We believe that the topology of the network determines operating principles of
networks, as suggested by previous work (Huang et al., 2017; Gérard and Goldbeter, 2009).

Section S2: ODEs of the model
Metabolic model

In metabolic model, AMPK and HIF-1 competitively regulate the production of ROS (both mitochondria ROS and
cytosol ROS). ROS and oxygen competitively regulate the degradation of HIF-1(Yu et al., 2017). The specific ODEs
of the metabolic model (Figure 1 in main text, blue box) are shown as follows(Yu et al., 2017):

Ṙmt = gRmt
∗Hs−(A,SAR, λAR, nAR) ∗ Ccomp

Rmt
(γ, gn, H, SHRmt

, nHRmt
, A, SARmt

, nARmt
)− kRmt

∗Rmt, (S1)

Ṙnox = gRnox ∗ C
comp
Rnox

(g0, H, SHRnox , nHRnox , g
H
Rnox

, A, SARnox , g
A
Rnox

, nARnox)− kRnox ∗Rnox, (S2)

R = Rmt +Rnox, (S3)

Ȧ = gA ∗Hs+(R,SRA, λRA, nRA) ∗Hs−(H,SHA, λHA, nHA) ∗Hs−(A,SAA, λAA, nAA)− kA ∗A, (S4)

Ḣ = gH ∗Hs−(A,SAH , λAH , nAH)− kH ∗H ∗Hs−(H,SHH , 1/λHH , nHH) ∗Hs−(R,SRH , 1/λRH , nRH).

Here, Rmt, Rnox, A, and H represent the levels of mtROS, noxROS, AMPK and HIF-1 respectively. The concrete
form of competitive regulations Ccomp are expressed as(Yu et al., 2017):

Ccomp
Rmt

(γ, gn, H, SRmt , nHRmt , A, SARmt , nARmt) =
γ(gn + ( A

SARmt
)nARmt )

1 + ( H
SHRmt

)nHRmt + ( A
SARmt

)nARmt

,

Ccomp
Rnox

(g0, H, SHRnox
, nHRnox

, gHRnox
, A, SARnox

, gARnox
, nARnox

) =
g0 + gHRnox

( H
SHRnox

)nHRnox + gARnox
( A
SARnox

)nARnox

1 + ( H
SHRnox

)nHRnox + ( A
SARnox

)nARnox

,

where Hs+ and Hs− denote the λ > 1 and 0 < λ < 1 in Hs correspondingly, which indicates the activation and the
inhibition regulation of Y on X, respectively.

Metabolism-EMT-metastasis model
To uncover the underlying mechanisms of the interplay among metabolism, EMT and metastasis, we combine

these three circuits, including EMT (marked by ZEB, OCT4, MDM2, miR-145, miR-200 miR-34, SNAIL and P53),
metastasis (marked by BACH1, RKIP, Let7 and LIN28) and the metabolic model, and construct a metabolism-EMT-
metastasis regulatory network (Figure 1 in main text, whole diagram). We use the generic form of deterministic
rate equation in (Yu et al., 2017) to construct the metabolism-EMT-metastasis model. The ODEs of AMPK, mtROS
and noxROS are the same as Eq. (S1)-(S4), and the modified equations for HIF-1 and the equations for the other
components in the whole network are shown as follows:

Ḣ = gH ∗Hs−(A,SAH , λAH , nAH) ∗Hs−(P, SPH , λPH , nPH)− kH ∗H ∗Hs−(H,SHH , 1/λHH , nHH)

∗Hs−(R,SRH , 1/λRH , nRH),



Ż = gZ ∗Hs+(S, SSZ , λSZ , nSZ) ∗Hs+(H,SHZ , λHZ , nHZ) ∗Hs+(Z, SZZ , λZZ , nZZ)− kZ ∗ Z
∗Hs+(m2, Sm2Z , 1/λm2Z , nm2Z) ∗Hs+(m1, Sm1Z , 1/λm1Z , nm1Z),

Ȯ = gO ∗Hs−(P, SPO, λPO, nPO) ∗Hs+(O,SOO, λOO, nOO)− kO ∗O ∗Hs+(m1, Sm1O, 1/λm1O, nm1O),

Ṁ = gM ∗Hs+(P, SPM , λPM , nPM )− kM ∗M ∗Hs+(m1, Sm1M , 1/λm1M , nm1M ),

ṁ1 = gm1 ∗Hs−(O,SOm1, λOm1, nOm1) ∗Hs−(Z, SZm1, λZm1, nZm1) ∗Hs+(P, SPm1, λPm1, nPm1)− km1 ∗m1,

ṁ2 = gm2 ∗Hs+(O,SOm2, λOm2, nOm2) ∗Hs+(P, SPm2, λPm2, nPm2) ∗Hs−(Z, SZm2, λZm2, nZm2)

∗Hs−(S, SSm2, λSm2, nSm2)− km2 ∗m2,

Ṗ = gP ∗Hs+(A,SAP , λAP , nAP )− kP ∗ P ∗Hs+(M,SMP , 1/λMP , nMP ) ∗Hs−(H,SHP , 1/λHP , nHP ),

L̇i = gLi ∗Hs+(O,SOLi, λOLi, nOLi) ∗Hs+(Li, SLiLi, λLiLi, nLiLi)− kLi ∗ Li ∗Hs+(Le, SLeLi, 1/λLeLi, nLeLi)

∗Hs+(m2, Sm2Li, 1/λm2Li, nm2Li),

L̇e = gLe ∗Hs+(RK,SRKLe, λRKLe, nRKLe) ∗Hs−(Li, SLiLe, λLiLe, nLiLe) ∗Hs+(Le, SLeLe, λLeLe, nLeLe)

−kLe ∗ Le,

Ḃ = gB ∗Hs+(B,SBB , λBB , nBB)− kB ∗B ∗Hs+(Le, SLeB , 1/λLeB , nLeB),

˙RK = gRK ∗Hs−(B,SBRK , λBRK , nBRK) ∗Hs−(S, SSRK , λSRK , nSRK)− kRK ∗RK,

Ṡ = gS ∗Hs−(S, SSS , λSS , nSS)− kS ∗ S ∗Hs+(m3, Sm3S , 1/λm3S , nm3S) ∗Hs+(Le, SLeS , 1/λLeS , nLeS),

ṁ3 = gm3 ∗Hs−(S, SSm3, λSm3, nSm3) ∗Hs−(Z, SZm3, λZm3, nZm3) ∗Hs+(P, SPm3, λPm3, nPm3)− km3 ∗m3,

where H, Z, O, M , m1, m2, P , Li, Le, B, RK, S, m3 represent the expression levels of HIF-1, ZEB, OCT4, MDM2,
miR-145, miR-200, P53, Lin28, Let7, Bach1, RKIP, SNAIL and miR-34, respectively.

Section S3: Truncated Moment Equations (TME)
The time evolution of the gene expression level can be studied as a complex dynamical system. The gene

expression level x(t) = (x1(t), x2(t), · · · , xn(t))T can be regarded as a stochastic process, and f(x(t)) represents
the driving force of the system. Then the Langevin equations describing the dynamics of gene expression levels take
the form:

ẋ(t) = f(x(t)) + g(x(t))Γ(t), (S5)

where g(x(t))Γ(t) is the noise term, and Γ(t) = (Γ1(t),Γ2(t),· · · , Γn(t))T is n-dimensional independent Gaussian
white noise (the generalized mean-square derivative of Brownian motion), which means:

E[Γi(t)] = 0,



E[Γi(t)Γj(t
′)] = 2Dδijδ0(t− t′),

where D is a constant diffusion coefficient and

δij =

{
1 i = j,
0 i 6= j.

Furthermore, g(x) is a matrix function defined on Rn:

g(x) =


g11(x) g12(x) · · · g1n(x)
g21(x) g22(x) · · · g2n(x)

...
...

. . .
...

gn1(x) gn2(x) · · · gnn(x)

 .

It indicates that the noise in the system depends on the state of the system. The corresponding Fokker-Planck
equation (FPE) describing the time evolution of the density function of this system has the form:

∂ρ(x, t)

∂t
= −

∑
i

∂

∂xi
[Wi(x, t)ρ(x, t)] +D

∑
i

∑
j

∂2

∂xi∂xj
[Qij(x, t)ρ(x, t)],

where
Wi(x, t) = fi(x) +D

∑
k

∑
j

gkj(x)
∂

∂xk
gij(x),

Qij(x, t) =
∑
k

gik(x)gjk(x).

When the drift part Wi(x, t) is linear to x and the diffusion part Qij(x, t) is constant, the FPE diffusion equation
has an exact solution(Hu, 1994). Generally, when the drift part Wi(x, t) is nonlinear, it’s hard to solve the diffusion
equation directly. Nonetheless, the solution of nonlinear system and linear system have similar forms when the
diffusion coefficient D << 1. Therefore, when the diffusion coefficient D << 1, the solution can be approximated by
a Gaussian distribution (Hu, 1994; Van Kampen, 1981):

ρ(x, t) =
1

(2π)n/2|σ(t)|1/2
exp{−1

2
(x− x̄(t))Tσ−1(t)(x− x̄(t))}, (S6)

where, x(t) and σ(t) are the first two moments of the Gaussian distribution, the mean and the covariance. They can
be approximated to (Hu, 1994; Van Kampen, 1981):

˙̄x(t) = f(x̄(t)),

σ̇(t) = σ(t)AT (t) + A(t)σ(t) + 2D(x̄(t)). (S7)

Here, σ(t) denotes the covariance matrix in time t, and A(t) is the jacobian matrix of f(x) when x is equal to x̄(t),
i.e., Aij(t) = ∂fi(x)

∂xj
|x=x̄(t). Furthermore, D(x̄(t)) is a n× n matrix, which is equal to D · g(x̄(t))g(x̄(t))T .

In this work, we assume that the noise is homogeneous, and only consider the external noise. Therefore, g(x) is
equal to I, which is an identity matrix in n-dimensional space. Then the FPE reduces to:

∂ρ(x, t)

∂t
= −

∑
i

∂

∂xi
[fi(x, t)ρ(x, t)] +D

∑
i

∑
j

∂2

∂xi∂xj
[ρ(x, t)],

and then Eq. (S7) is modified to:
σ̇(t) = σ(t)AT (t) + A(t)σ(t) + 2D · I.



In the previous method of partial self-consistent approximation (PSCA), xi(t), i = 1, 2, · · · , n are assumed to be
weakly correlated, and only the diagonal elements in covariance matrix are calculated. In this study, the correlations
between xi(t) and xj(t), i, j = 1, 2, · · · , n are taken into account to obtain a more accurate landscape for the system.
To obtain the steady-state solution of FPE, we need to let t → +∞ in Eq. (S6). Then the mean x̄ = lim

t→+∞
x̄(t) and

the covariance σ = lim
t→+∞

σ(t) in steady states can be solved through numerical methods (see Section S4 for another

way to calculate σ). Then we can acquire the steady state density function ρ(x) for the system.
The probability distribution acquired above corresponds to one stable steady state. If the system has multiple

steady states, there should be several probability distributions localized at each basin with different covariance. To
address this problem, we choose multiple random initial conditions to obtain different stable states, and use the
frequency of each stable state to approximate the weight. The total probability is the weighted sum of all these
probability distributions. For example, when the system has n stable states xsi , i = 1, · · · , n, the frequency of xsi
is bi, and the corresponding density function is ρi(x), we can obtain the stable density function of the system by
p(x) =

∑
biρi(x).

If we only focus on the distribution of two variables such as x1 and x2, we can get the marginal distribution by
integrating the other variables in p(x). Then the steady state density function in x1 and x2 becomes:

p(x1, x2) =

∫ ∫
· · ·
∫
p(x)dx3dx4 · · · dxn.

Finally, with the steady state density function p(x), we can get the steady state probability distribution Pss(x) after
normalizing the density function, and further map out the potential landscape by U(x) = −lnPss(x) (Li, 2017; Li and
Wang, 2013, 2014). Here, U(x) is dimensionless potential.

Section S4: Method of calculating σ
For the numerical calculation of ODEs, we can use Euler method by selecting the random initial conditions to

obtain the stable states of x̄ and σ. However, the number of the variable σij is equal to the square of n (the dimension
of x). Therefore, instead of solving σ(t), we can solve σ in steady states analytically. This will dramatically reduce
the computational cost. This method is feasible under the situation that the coefficient matrix in calculation of σ is
nonsingular.

When the system reaches the steady state, ˙̄x(t) and σ̇(t) must equal zero. It can be easily concluded that under
the stable point x0 = (x0

1, x0
2, · · · , x0

n)T , the following equations need to be satisfied:

σ0 · (A0)T + A0 · σ0 + 2D · I = 0,

here, σ0 represents the matrix of σ at stable point x0, and A0 = A|x0 . Note

A0 =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 . . . ann

 ,

we can write these equations into the form of linear equations

Lσ = B,

where σ and B are σ0 and −2D in row-major order form, which means:

σ = (σ0
11, σ

0
12, · · · , σ0

1n, σ
0
21, σ

0
22, · · · , σ0

2n, · · · , σ0
nn)T ,

B = −2D(1, 0, · · · , 0, 0, 1, · · · , 0, · · · , 1)T ,



L can be seen as the sum of two block matrices,

L =


A0 0 · · · 0
0 A0 · · · 0
...

...
. . .

...
0 0 · · · A0

+


a11In a12In · · · a1nIn
a21In a22In · · · a2nIn

...
...

. . .
...

an1In an2In · · · annIn

 ,

where In is an identity matrix in n-dimensional space:

In =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 .

When the coefficient matrix L is nonsingular (in most cases this condition is satisfied), the only value of σ = L−1B
can be obtained.

Section S5: Comparisons between TME and PSCA methods
Previously, a partial self-consistent mean field approximation (PSCA) method has been developed to calculate

the probability distribution for multi-dimensional network systems (Li and Wang, 2013, 2014; Wang et al., 2010). With
PSCA, we can split the probability into the products of the individual probabilities: P (X1, X2, ..., XN , t) ∼

∏n
i Pi(Xi, t)

and solve the probability self-consistently. In this way, we effectively reduce the dimensionality of the system fromMN

to MN , and thus make the computation of the problem tractable. To verify the TME method we developed in this work
is more accurate than PSCA, we perform simulations by Langevin dynamics method (see Section S6 for simulation
method) and obtain the probability distribution calculated from the simulations. Then we calculate the distribution
using PSCA and TME, separately. Therefore, we can obtain the corresponding deviations between the distribution
calculated from PSCA (or TME) and that from simulations. This deviation measures the accuracy of corresponding
methods for calculating probability distributions.

In the simulation of metabolic model, we choose h = 0.1, D = d = 300 and make the comparisons among PSCA,
TME and Langevin simulations (Figure S1). It can be seen that the result of TME method is closer to the simulation
result than the PSCA method.

To quantitatively compare the deviation of distributions, we applied relative distance and relative entropy(Cover
and Thomas, 2012) to measure the deviation of the distributions. These two measures are respectively defined as:

1. Relative distance:

σ =

√∑
ij(P

simulation
ij − P a

ij)
2

(
∑

ij P
simulation)2

,

2. Relative entropy:

DKL =
∑
ij

P simulation
ij log(

P simulation
ij

P a
ij

),

where P a represents the probability distribution calculated from PSCA or TME method. Relative distance is a dis-
tance, which measures the distance between two distributions using Euclidean distance. Relative entropy is derived
from information theory, which represents the information loss when we use an estimated distribution to fit the real
distribution. When the deviation of two distribution increases, the relative entropy will also increase, and the relative
entropy is zero when the two distributions are equal.

The comparison results (Figure S1) show that the relative distance for the results between TME method and
simulations is 22.1% less than that between PSCA method and simulations, and the relative entropy for the result be-
tween TME method and simulations is 39.5% less than that between PSCA method and simulations. Both measures
demonstrate that the distribution calculated from TME method fits the distribution from simulation better than the one
of PSCA (Also see the comparisons for EMT-metabolism model in Figure S2).



Section S6: Simulation method based on Langevin dynamics
The Langevin equations (Eq. (S5)) can be written into the following form when g(x) = I:

dx(t)

dt
= f(x(t)) + Γ(t),

where Γ(t) = (Γ1(t),Γ2(t), · · · ,Γn(t))T is Langevin force. It follows that E[Γi(t)] = 0 and E[Γi(t)Γj(t
′)] = 2D ·δijδ(t−

t′) (i, j = 1, 2, · · · , n) for arbitrary t and t′. Here, x(t) denotes the stochastic variables in n-dimensional space Rn at
time t, and f(x(t)) represents the driving force of the system.

Under the general assumption that the stochastic process Γ(t) obeys a Gaussian probability distribution (Gaus-
sian white noise), the Langevin force can be seen as a constant multiple distribution derivative of the n-dimensional
standard Brownian motion in time t. Then the Langevin equations can be transformed into

dx(t) = f(x(t))dt+
√

2DdB(t),

and B(t) = (B1(t),B2(t), · · · ,Bn(t))T denotes n-dimensional standard Brownian motion, which meansB1(t),· · · ,Bn(t)
are independent and satisfy the following several properties:

1. Bi(t) is a stochastic process, which can be seen as a map from (Ω,F ,P)×([0,+∞),B) to (R,B), where (Ω,F ,P)
is probability space with a filtration {F}t≥0 and B is borel set.

2. Bi(t) is independent increment process for 1 ≤ i ≤ n. That is to say, for any time series 0 ≤ t1 < t2 < · · · < tm,
random variables B(t1), B(t2)−B(t1), · · · , B(tm)−B(tm−1) are independent.

3. For any t > s ≥ 0, random variable Bi(t)−Bi(s) follows normal distribution N(0, t− s) for 1 ≤ i ≤ n.
4. The sample path of Bi(t) is continuous almost surely in Ω.

The boundedness of fold change for self-inhibition λ and the value of Hill coefficient for inhibition or activation result
in the Lipschitz continuity and the uniform boundedness of the function f(x(t)). Then the solution x(t) of these s-
tochastic differential equations exists and is unique in theM2([0, T ], Rn) = {x(·)|x(t) ∈ Ft,∀t ∈ (0, T ) and

∫ T

0
|x(t)|2 <

+∞} for any finite T . However, since the complexity of f(x(t)) leads to the difficulty to show the analytical solution of
these stochastic differential equations in a specific space, we apply Euler-Maruyama method to solve it:

x(t+ h) = x(t) + f(x(t))h+
√

2D(B(t+ h)−B(t)).

From the property of Brownian motion, the equations can be simplify as follows:

x(t+ h) = x(t) + f(x(t))h+
√

2Dξ,

where h is time step and ξ = (ξ1, · · · , ξn)T , which satisfies that ξ1, · · · , ξn are independent and follow N(0, h) for
1 ≤ i ≤ n. In this way, after a long enough time T , x(t) will reach a steady state. Therefore, We can approximate the
probability of x(t) with the frequency of x(t) in Rn

+.

Section S7: Extended method to get potential landscape
In the main text, we choose two key variables as coordinates to obtain the landscape because it is hard to visualize

the landscape in the high-dimensional space. An alternative way is to calculate the joint distribution of R1 and R2,
where R1 and R2 are the square of the distance between the independent variable X and two chosen stable points.
We first choose two stable fixed points of the system, and define them as µ1 and µ2, respectively. So we have

R1 = (X − µ1)T (X − µ1),

R2 = (X − µ2)T (X − µ2),

where, X is the random variable following the distribution calculated by TME method, which is the weighted sum
of two Gaussian distributions. So we can firstly deal with the situation that X follows the Gaussian distribution.
Therefore, we have the following claim.



Claim: Assume that the random vector X = (x1, x2, · · · , xn) follows multi-dimensional normal distribution with
expectation vector µ and invertible covariance matrix Σ. Let a, b ∈ Rn be two arbitrary n-dimensional vectors and
Ri = (X − i)T (X − i), i = a, b. When the dimension n tends to infinity, we have

E(Ra, Rb)
T = µ̃,

Cov(Ra, Rb) = Σ̃,

where,

µ̃ =

(
µ̃a

µ̃b

)
=

(
tr(Λ) + (µ− a)T (µ− a)
tr(Λ) + (µ− b)T (µ− b)

)
,

Σ̃ =

(
σ̃aa σ̃ab
σ̃ab σ̃bb

)
=

(
2tr(ΛT Λ) + 4(µ− a)T Σ(µ− a) 2tr(ΛT Λ) + 4(µ− a)T Σ(µ− b)
2tr(ΛT Λ) + 4(µ− a)T Σ(µ− b) 2tr(ΛT Λ) + 4(µ− b)T Σ(µ− b)

)
,

and Λ is a diagonal matrix whose diagonal elements are the eigenvalues of Σ.
Proof: Define Ya = X − a, ã = µ− a, and Z = Σ−1/2(X − µ), which follows Gaussian distribution N(0, In). Then

we obtain that Z = Σ−1/2(Ya − ã). Hence, Ya = Σ1/2(Z + Σ−1/2ã).
Now,

Ra = Y T
a Ya = (Z + Σ−1/2ã)T Σ(Z + Σ−1/2ã).

Since the Σ is symmetric matrix, we can write that Σ = HT ΛH where H is an orthogonal matrix (HTH = In) and Λ
is a diagonal matrix with diagonal elements λ1, λ2, · · · , λn. Write U = HZ so that U = (u1, u2, · · · , un) also follows
Gaussian distribution N(0, In). Then we have

Ra = (Z + Σ−1/2ã)THT ΛH(Z + Σ−1/2ã)

= (HZ +HΣ−1/2ã)T Λ(HZ +HΣ−1/2ã)

= (U + α)T Λ(U + α)

=

n∑
i=1

λi(ui + αi)
2,

where α = HΣ−1/2ã. Therefore, Ra can be represented by the sum of independent random variables based on the
independence of u1, u2, · · · , un. Then we can calculate the expectation vector µ̃ and covariance matrix Σ̃.

µ̃ = ERa = E(

n∑
i=1

λi(ui + αi)
2) =

n∑
i=1

λiE(ui + αi)
2

=

n∑
i=1

λiE(u2
i + 2αiui + α2

i ) =

n∑
i=1

λi(1 + α2
i )

= tr(Λ) + (µ− a)T (µ− a),

Similarly, we have ERb = tr(Λ) + (µ− b)T (µ− b). Since ui, uj are independent for i 6= j, we also obtain

Σ̃ = Cov(Ra, Rb) = E(RaRb)− ERaERb

= E(

n∑
i=1

λi(ui + αi)
2

n∑
i=1

λi(ui + βi)
2)− E(

n∑
i=1

λi(ui + αi)
2)E(

n∑
i=1

λi(ui + βi)
2)

=

n∑
i=1

λ2
i (2 + 4αiβi) = 2tr[ΛT Λ] + 4(µ− a)T Σ(µ− b).



Then the claim is proved.
Based on the above claim and central limit theorem, as the dimension n tends to infinity, both limit distribution

of Ra and Rb are normal distribution under some general conditions. Therefore, the joint distribution of Ra and Rb

also follows multi-dimension normal distribution N(µ̃, Σ̃). In the case of multiple stable states, we can estimate the
distribution of Ra and Rb for different stable point µ and the weight average of all distribution can be seen as the
approximate joint distribution of Ra and Rb.

Figure S3 shows the landscape using R1 (the square of distance between the independent variable X and Met
state) and R2 (the square of distance between the independent variable X and E state) as the coordinates when the
network has four stable states (Epithelial state, Abnormal metabolic state, Mesenchymal state and Metastasis state).

Section S8: Minimum Action Paths
In cells, there are external noise from highly dynamical and inhomogeneous environments, and intrinsic noise from

statistical fluctuations of the finite number of molecules, which can be critical to the dynamics of the system(Swain
et al., 2002; Kaern et al., 2005; Thattai and Van Oudenaarden, 2001). A dynamical system under fluctuations can be
addressed by: ẋ = F(x) + ζ, where x = (x1(t), x2(t), ..., x10(t)) represents the vector of gene expression levels, and
F(x) is the vector for the driving force of chemical reactions. ζ is Gaussian noise term whose autocorrelation function
is < ζi(x, t)ζj(x, 0) >= 2Dδ(t), and D is diffusion coefficient matrix, quantifying the magnitude of fluctuations.

Assuming that the initial time is 0 and the terminal time is T , we define the path between ith attractor xi and jth
attractor xj as xij(t) = (xij1 (t), xij2 (t), · · · , xijn (t))T for t ∈ [0, T ], where the path xij(t) is satisfied with:{

(xij1 (0), xij2 (0), · · · , xijn (0))T = xi,

(xij1 (T ), xij2 (T ), · · · , xijn (T ))T = xj .

We also define transition action Sij as integral of the Lagrangian Lij between time 0 and T , where Lij is the distance
between the driving force F and the velocity along the path. Then we can obtain the minimum action paths (MAPs)
between ith point and jth point by solving this optimal problem. Following the approaches (E et al., 2004; Zhou et al.,
2008; Heymann and Vanden-Eijnden, 2008) based on the Wentzell-Freidlin theory (Freidlin and Weber, 2004), the
most probable transition path from ith attractor at time 0 to jth attractor at time T, can be acquired through minimizing
the transition action functional over all possible paths:

min
xij(·)

Sij(xij(·)) = min
xij(·)

∫ T

0

Lij(t,xij(t),
dxij(t)

dt
)dt,

where

Lij(t,xij(t),
dxij(t)

dt
) =

∣∣∣∣∣
∣∣∣∣∣(dxij1 (t)

dt
,
dxij2 (t)

dt
, · · · , dx

ij
n (t)

dt
)T − F(xij(t))

∣∣∣∣∣
∣∣∣∣∣
2

.

We calculated MAPs numerically by applying minimum action methods used in (Zhou et al., 2008; Li, 2017), and
treated the MAPs as the biological paths in our models. In this work, T is set to be 10 and we verified that larger
values of T would not improve accuracy of simulations significantly.

Section S9: Landscape and kinetic path for cancer metabolism
Yu’s work provides a basis for understanding the cancer metabolism from a deterministic ODE model. However,

the stochastic dynamics and global properties of cancer metabolism remain to be elucidated, as the fluctuations
have been suggested to play critical roles in biological systems, including intrinsic fluctuations from the finite number
of molecules, and external fluctuations from highly inhomogeneous environments (Swain et al., 2002; Kaern et al.,
2005; Thattai and Van Oudenaarden, 2001). Therefore, it is important to investigate the effects of fluctuations on the
dynamics of the cancer metabolism system. Previously, we have developed a partial self-consistent approximation
method to study the stochastic dynamics for high-dimensional systems by the energy landscape theory based on



U = − lnPss (Wang et al., 2008, 2010, 2011; Li, 2017; Li and Wang, 2014). One limitation of PSCA method is that
it assumes the weak correlation between variables, which in some cases may not be accurate. Here, we improved
previous methods and developed a Truncated Moment Equations (TME) method to calculate the probability distribu-
tion of gene expression level and obtain the potential landscape. We use the TME method to quantify the potential
landscape for the metabolic model. For the purpose of visualization, we chose AMPK and HIF-1 as the two coordi-
nates to display the landscape, since AMPK and HIF-1 are the two primary regulators of OXPHOS and glycolysis,
respectively (Yu et al., 2017). By comparing the two methods, we showed that the TME method provides a more
precise description for calculating the probability distribution of the systems (see Section S5).

Figure S6 shows the tristable potential landscape for cancer cell (Figure S6A and C) and bistable potential land-
scape for normal cell (Figure S6B and D). On the landscape, the blue region denotes the low potential and high
probability, and the yellow region denotes the high potential and low probability. The three stable states (attractors)
on the landscape respectively characterize three different states of cellular metabolism based on the relative ex-
pression level of AMPK and HIF-1, i.e. oxidative phosphorylation (O) state, hybrid (H) state and glycolysis (G) state
(Figure S6A and C). Of note, the tristable landscape is consistent with previous metabolic model (Yu et al., 2017),
where three stable states for O, G and H are obtained based on a deterministic model. Beyond the tristability results,
here we quantified the stochastic properties and global stability from landscape perspective, i.e. the relative stabilities
for different basins (states) are quantified by the potential barrier heights from the landscape of cancer metabolis-
m. Furthermore, due to reprogrammed mitochondria, cancer cells have higher mtROS production(Porporato et al.,
2014); and due to abnormally rapid proliferation, there are less available oxygen for each cell, so cancer cells have
more stable HIF-1. Thus, cancer cells produce more mtROS (represented by γ, mtROS maximum fold change by
the AMPK activation) and have a lower HIF-1 degradation rate (expressed as Kh) compared to normal cells(Yu et al.,
2017). We investigate the influences of γ and kH on cancer metabolism, we obtained the landscapes at different γ
and kH (Figure S7). As can be seen, for fixed kH (the first row or the second row of Figure S7), the landscape topog-
raphy changes and the system changes gradually from a tristable landscape to a bistable landscape as γ decreases.
This indicates that the increase of γ promotes the transition from normal cells to cancer cells.

To study how cell transforms between different metabolic states, we calculated the kinetic transition paths among
different attractors by minimizing the transition actions (see Methods in main text for how to obtain the transition path),
which are also called minimum action paths (MAPs). The MAPs for different transitions are shown on the landscape
(Figure S6). The magenta paths represent the MAPs from the O state to the H state and then to the G state and the
white paths represent the MAPs from the G state to the H state and then to the O state, with the arrows denoting the
directions of the transitions. The MAP for the transition process from O to G and the MAP from G to O are irreversible,
reflected by the disparity between the forward and backward kinetic transition paths. This irreversibility of MAPs is
a consequence of non-gradient force, i.e. curl flux (Wang et al., 2008, 2010; Li and Wang, 2014). Additionally, the
dashed lines on the landscape represent the direct transition paths by minimizing the transition actions from O to G
states. We found that the direct transition path from O to G and the backward transition path from G to O are inclined
to go through the Hybrid (H) state. This indicates the critical roles of the Hybrid state in the process for cancer cells
to change their metabolism. This also suggests that when a cancer cell change its metabolism from OXPHOS to
glycolysis, it needs to go through a Hybrid state. The hybrid state can play a role of promoting plasticity and speeding
the cancer metabolism.

Section S10: Global sensitivity analysis identifies the key players for cellular metabolism
To evaluate the degree of the influence of different factors on the transition actions between O state and G state,

we performed the global sensitivity analysis for metabolism system. To reduce the complexity, we constrained the
model parameters within the bistable state region (γ = 3 and kH = 0.3). We changed each parameter individually
and kept the other parameters unchanged. Here each parameter was increased 10% (Figure S8A) or decreased
10% (Figure S8B). Then sensitivity analysis identifies some critical parameters in the metabolic model including gRmt

,
SARmt

, gH , SRA, kRmt
, λHH , kA and gA.

We can classify these parameters into three groups based on their different roles affecting the expression level
of mtROS, AMPK or HIF-1, respectively. From sensitivity analysis (Figure S8), we see some consistent changes in



transition action. For example, enhancing gRmt
, reducing kRmt

or SARmt
(all these changes increase the expression

level of mtROS (Rmt)) will increase the transition action from O state to G state (SOG) and decrease the transition
action from G state to O state (SGO). This indicates that the cell tends to stay in O state rather than G state, i.e.
O state becomes more stable. These results are consistent with the experimental observations that the generation
of mtROS mainly takes place at the ETC (mitochondrial electron transport chain) located on the inner mitochondrial
membrane during the process of OXPHOS (Li et al., 2013). Similarly, increasing gA, or decreasing kA or SRA (these
changes will result in an enhancement of the expression level of AMPK) will lead to the increase of transition action
from O state to G state and the decrease of transition action from G state to O state decreased, i.e., lead O state
to be more stable. These results agree with the fact that the loss of AMPK promotes a glycolytic signature(Faubert
et al., 2013). As for the parameters which affect HIF-1 (λHH and gH ), their influences on transition action are also
consistent with the experimental observations, which indicates that HIF-1 is both necessary and sufficient for reducing
mitochondrial oxygen consumption in hypoxia (Papandreou et al., 2006; Kim et al., 2006) (see Table S6 for details on
the experimental evidences).

Section S11: Method of comparing modelling results with experimental data
To validate our models, we compare our modelling results to the experimental data. Since our model can be

considered as a representative metabolism-EMT-metastasis model (not only for some specific types of cancer), we
collect three different types of gene expression data from experiments. The first dataset is the single cell RNAseq
data for a genetic mouse model of skin squamous cell carcinoma (SCC) undergoing EMT (383 single cells, available
from the NCBI Gene Expression Omnibus under accession number GSE110357) (Pastushenko et al., 2018). We
also collect another dataset of gene expression data of acute myeloid leukemia (AML) from the TCGA (173 samples
for clinically annotated adult cases of de novo AML) (Ley et al., 2013). The third dataset we collect is for papillary
thyroid carcinoma (PTC) from TCGA including 496 PTC samples (Agrawal et al., 2014). All of these three types of
data are time independent, and therefore should correspond to the steady state data.

First, we extracted the gene expression data for the relevant genes that appear in our network (Figure 1) from
these datasets, and neglected the mirRNAs and metabolites that are not available from the data. Then we perform the
normalization by taking logarithmic transformation for the data. To match the landscape basins approximately, a linear
transformation is performed to the normalized expression level of HIF1 and ZEB. We believe that this normalization
of the data is reasonable because some corresponding gene expression values from these datasets differ from each
other by folds and they represent different types of cancer in different conditions. In this way, we map the normalized
data on the landscape in the coordinates of ZEB and HIF-1 (Figure 6C and D).

To see how the expression data for other genes match the modelling results, we also adopted another way to
make comparisons. For each dataset (SCC, AML and PTC), we perform PCA to the normalized data and project
the normalized data onto the first two PCA components (Figure 6E-M). The colors in the PCA plots represent the
expression levels of HIF1, ZEB and SNAI1, individually. Then we cluster these data points into three groups by
visualization based on the expression level of these three marker genes, which are denoted by purple, green and
orange ovals, respectively. The points in the purple ovals have low HIF1 and Low ZEB expression level, the points in
the green ovals have high HIF1 and low ZEB expression level, and the points in the orange ovals have high HIF1 and
ZEB expression level. These three clusters from PCA plots are qualitatively similar to the three attractor states (E,
A and M) identified from our models. Therefore, these three types of cancer data support the existence of abnormal
metabolic state (A) identified from our landscape model.

Section S12: Modeling anti-cancer therapeutic strategies
Metformin-based therapy

Metformin not only activates AMPK but also inhibits HIF-1 in an AMPK-independent way (Kalender et al., 2010).
Thus, we used shifted Hill functions to model the influences of metformin on HIF-1 and AMPK (Yu et al., 2017). The
modified equations for HIF-1 and AMPK under the influence of metformin are shown as follows:

Ḣ = gH ∗Hs−(A,SAH , λAH , nAH) ∗Hs−(Metformin, SMH , λMH , nMH) ∗Hs−(P, SPH , λPH , nPH)− kH ∗H
∗Hs−(H,SHH , 1/λHH , nHH) ∗Hs−(R,SRH , 1/λRH , nRH),



Ȧ = gA ∗Hs+(R,SRA, λRA, nRA) ∗Hs+(Metformin, SMA, λMA, nMA) ∗Hs−(H,SHA, λHA, nHA)

∗Hs−(A,SAA, λAA, nAA)− kA ∗A.

Additionally, metformin can also induce high mtROS production through altering the mitochondrial potential (Cheong
et al., 2011). So the increase in the mtROS production rate is modeled to be proportional to the level of metformin:

(gRmt
)metformin = gRmt

+ αmetformin ∗Metformin

Here, (gRmt)metformin is the generation rate of mtROS under the influence of metformin, and αmetformin is a weighting
factor for the mtROS production.

3BP therapy
3BP inhibits glycolysis and decreases the self-activation strength of HIF-1 (Yu et al., 2017). Therefore, the influ-

ence of 3BP is modelled as:
1/(λHH)3BP = 1/λHH + α3BP ∗ 3BP

Here, (λHH)3BP is the maximum fold change due to HIF-1 self-activation under the influence of 3BP, and α3BP is a
constant denoting the extent of the glycolysis reduction.

BACH1-inhibitor therapy
Based on the landscape results with different drug effects (Figure 7B-D in main text), we suggest a new therapeutic

strategy against cancer metastasis, which is the combination of 3BP (or metformin) and certain type of BACH1
inhibitor. The purpose of adding BACH1 inhibitor is to eliminate the Met2 state (metastasis-like state with high
expression of BACH1). Here, the specific influence of BACH1 inhibitor (BI) decreases the production rate of BACH1.
Then the modified gB takes the form as:

(gB)BI = gB − αBI ∗BI

Here, (gB)BI is the production rate of BACH1 under the influence of BI, and αBI is a weighting factor for the BACH1
production.
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