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Abstract

Development of the adult olfactory system of the moth Manduca sexta depends on reciprocal interactions between
olfactory receptor neuron (ORN) axons growing in from the periphery and centrally-derived glial cells. Early-arriving ORN
axons induce a subset of glial cells to proliferate and migrate to form an axon-sorting zone, in which later-arriving ORN
axons will change their axonal neighbors and change their direction of outgrowth in order to travel with like axons to their
target areas in the olfactory (antennal) lobe. These newly fasciculated axon bundles will terminate in protoglomeruli, the
formation of which induces other glial cells to migrate to surround them. Glial cells do not migrate unless ORN axons are
present, axons fail to fasciculate and target correctly without sufficient glial cells, and protoglomeruli are not maintained
without a glial surround. We have shown previously that Epidermal Growth Factor receptors and the IgCAMs Neuroglian
and Fasciclin II play a role in the ORN responses to glial cells. In the present work, we present evidence for the importance of
glial Fibroblast Growth Factor receptors in glial migration, proliferation, and survival in this developing pathway. We also
report changes in growth patterns of ORN axons and of the dendrites of olfactory (antennal lobe) neurons following
blockade of glial FGFR activation that suggest that glial FGFR activation is important in reciprocal communication between
neurons and glial cells.
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Introduction

The past decade has seen a growing appreciation of the im-

portance of neuron-glia signaling in nervous system development,

and glial cells have been shown to play numerous roles affecting

axon outgrowth or growth arrest, course changes, fasciculation,

and targeting [1–10]. In the experimentally advantageous de-

veloping primary olfactory system of the adult moth, Manduca sexta,

several interactions between neurons and glia have been well

characterized [5]. Olfactory receptor neurons (ORNs) send their

axons in the antennal nerve (AN) toward the nascent adult

antennal lobe of the brain where the first axons to arrive induce a

change in a subset of central glial cells, causing them to proliferate

and migrate outward a short distance into the nerve (Fig. 1A).

These glial cells then define an axonal sorting zone (SZ); their

presence induces subsequently arriving ORN axons to change

course and fasciculate with other ORN axons with which they

then travel to a given region of the antennal lobe (AL) (Fig. 1B).

The terminal branches of ORN axons form protoglomeruli on

which the array of mature glomeruli is built. The ORN axons

eventually form synapses with dendrites of antennal lobe neurons

(Fig. 1C). Formation of the protoglomeruli induces the remaining

antennal-lobe glial cells (termed neuropil-associated or NP glia) to

migrate to surround and stabilize the developing glomerular

structures [11,12]. In glia-deficient animals or animals in which

drug treatment blocks glial cell migration and process extension,

the glomerular organization disintegrates [12–15]. In addition,

glial deficiency in the sorting zone causes defects in axon fas-

ciculation and targeting [16].

In previous studies, we identified several molecular signals that

could underlie these neuron-glia interactions in the primary ol-

factory pathway of M. sexta. The transmembrane form of M. sexta

Fasciclin II (TM-MFas II, an immunoglobulin-superfamily cell

adhesion molecule (IgCAM) and a homolog of vertebrate NCAM)

is found on a subset of ORN axons and the GPI-linked form of M.

sexta Fasciclin II (GPI-MFas II) is expressed by antennal nerve

(AN) glial cells and in the perineurial sheath [17]. Neuroglian (also

an IgCAM and a homolog of vertebrate L1) is expressed on ORN

axons and on NP and SZ glia ([18]; Oland, unpublished), and

Epidermal Growth Factor Receptors (EGFRs) are found on ORN

axons [18]. EGFRs were found to be phosphorylated (indicative

of activation) only on ORN axons in the sorting zone and

protoglomeruli, suggesting that activation depended on interac-

tions with, or proximity to, NP and SZ glia. Blocking EGFRs

caused ORN axon stalling and loss of axon fasciculation in the

sorting zone [18].

In this paper, we pursue evidence that suggests roles for the

Fibroblast Growth Factor Receptors (FGFRs), which are present

on glial cells during critical stages of development [18]. FGFRs

represent an additional possible signaling partner linking glia and

axons reciprocally via Neuroglian and MFasII. Work by several
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groups has shown that homophilic interactions (in cis and in trans)

between IgCAMs can lead to activation of both EGFRs and FGFRs

with subsequent effects on direction and degree of neuron migration

and axon extension [19–23]. In the current study, we find that

FGFRs are present and activated (phosphorylated on kinase-

domain tyrosines) on SZ, NP, and AN glia during developmental

stages important in axon ingrowth and sorting and in the formation

of olfactory glomeruli in the antennal lobe. Pharmacologic blockade

of FGFR activation leads to the absence of migration by NP, but not

SZ or AN, glial cells. Blockade of glial FGFRs also leads to aberrant

ORN axon outgrowth. Because we find no evidence for FGFRs on

ORNs, this suggests that activation of glial FGFRs is important in

glia-to-ORN signaling. As it does in many other systems [24,25],

FGFR activation also appears to be essential for glial cell survival, as

blockade leads to widespread glial cell loss at later stages.

Materials and Methods

Animals
Manduca sexta (Lepidoptera: Sphingidae) were reared from eggs on

an artificial diet in a laboratory colony essentially as described by

Sanes and Hildebrand [26]. The adult antennal system develops

during metamorphosis, when the animal changes from larva to moth.

This phase can be divided into 18 stages, each lasting 1–4 days.

Animals were staged according to features, such as eye pigmentation

and leg development, visible through the cuticle under fiber-optic

illumination as described by Tolbert et al. [27] and Oland and

Tolbert [11].

Removal of antennal input
In some animals, the antennal lobe on one side was deprived of

ORN axon input throughout development, using surgical methods

described previously [11,18]. Briefly, animals at stage 1 of adult

development were anaesthetized by exposure to CO2. The cuticle

covering the base of one antenna was removed and the underlying

part of the antennal anlage removed with forceps. The opening was

then filled with melted wax to prevent ORN axons from surviving

distal receptor neurons from extending toward the brain, and the

animals were returned to the rearing facility and allowed to develop

under standard conditions. Because ORN axons do not project

contralaterally, the antennal lobe on the operated side received no

input from ORNs. The antenna on the opposite (control) side was

not disturbed and therefore received normal afferent input.

Primary antibodies for immunocytochemistry
When possible, antibodies developed against Manduca sexta

proteins were used. Alternatively, antibodies developed against

Figure 1. Diagram showing the basic cellular elements of an
adult antennal lobe in Manduca sexta. A: Olfactory receptor
neurons (ORNs) located in the antennae extend axons (green) to the

antennal lobes of the brain where they end in structures called
glomeruli and synapse with antennal lobe neurons. Two classes of AL
neurons, local interneurons (ln) and projection neurons (pn), have their
cell bodies in clusters called the lateral and medial groups (LG & MG),
which reside outside of the antennal lobe neuropil. B: Labeling of an
untreated female antennal lobe (AL) at stage 7 with an antibody to M.
sexta Fasciclin II (orange) and a nucleic acid dye (Syto 13, blue) makes
clear the major changes in ORN axon fasciculation and direction a short
distance into the sorting zone (SZ), with axons exiting the sorting zone
in large MFas II-positive bundles. Projection depth = 15 mm. C: A single
glomerulus, showing the relationship of ORN axon terminals and AL
neuron dendrites. ORN axons form a nerve layer around the outside of
the antennal lobe neuropil, then turn sharply and extend through the
glial layer and branch in the outer portion of a glomerulus in the
glomerular layer. The cell bodies and processes of neuropil (NP) glial
cells form a nearly complete envelope around each glomerulus. Panels
A and C adapted from [33].
doi:10.1371/journal.pone.0033828.g001

Glial FGFRs in Glia-Neuron Signaling
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proteins from vertebrate species were used if the antigenic sequence

was a close match to the corresponding amino acid sequence of

Manduca or of Bombyx mori, which we have found to exhibit very little

sequence difference from Manduca.

Manduca Fasciclin II. Mouse monoclonal antibody P1E1-

1C3 (‘‘C3’’), developed against the extracellular domain common to

all isoforms of Manduca sexta Fasciclin II (MFas II) [17,28] was the

generous gift of Dr. Philip Copenhaver, Oregon Health Sciences

University, Portland, OR.

FGFR. We used a polyclonal antibody to activated human

FGFR1 (phosphorylated on tyrosines 653 and 654) which was

developed against a phospho-peptide having amino acid identity

between human and Bombyx mori in 8 of 11 amino acids (#3471, Cell

Signaling Technology, Danvers, MA). The antigenic phospho-

peptide was used for preadsorption assays. We also used an antibody

to the extracellular domain of human FGFR1 (also known as Flag,

#05-149, Upstate Biotechnology, Lake Placid, NY) and an antibody

to heparan sulfate (#375080, Calbiochem, San Diego, CA) because

heparan sulfate proteoglycans are necessary co-receptors for FGF

and are expected to colocalize with the FGFR [29-31].

EGFR. An antibody to activated human EGFR (phosphor-

ylated at tyrosine residue 845; #2231, Cell Signaling Technology,

Beverly, MA) was chosen based on sequence homology with the

corresponding region of EGFR of Bombyx mori and Manduca sexta.

The antibody specificity has been checked with blocking peptides

and western blots, and the distribution of activated EGFRs in the

moth olfactory pathway during development has been described

[18,32].

Ankyrin B. A mouse monoclonal antibody generated against

a peptide corresponding to the spectrin-binding domain of human

Ankyrin B was purchased from Zymed Laboratories ((#33-3700,

Invitrogen). In Manduca antennal lobes, this antibody recognizes a

subset of ORN axons that terminate in a single glomerulus located

dorso-posteriorly in the antennal lobe [33]. It is used here as a

marker for this axonal subset (not as a means of monitoring

ankyrin B expression).

Phospho-histone H3. An affinity-purified rabbit polyclonal

antibody (#H0412) developed against a phospho-peptide

corresponding to amino acids 7–20 (pSer10) of human histone

H3 was purchased from Sigma, St Louis, MO. Histone-H3 in

humans and Bombyx exhibit 100% amino acid identity.

Immunocytochemistry
Animals at various stages of metamorphic adult development

were anesthetized by cooling on ice. Brains were dissected under

insect saline solution (150 mM NaCl, 4 mM KCl, 6 mM CaCl2,

10 mM HEPES, 5 mM glucose, pH 7.0, adjusted to 360 mOsm

with mannitol; [34]. The perineurial sheath covering the brain was

removed to aid in fixative and antibody penetration. All tissue,

except as noted, was vibratome-sectioned (Vibratome, Technical

Products International, St. Louis, MO) at 100 mm. The final step

in all protocols, also unless noted, was clearing the brains or

sections for 15 min each first in 50% glycerol in water, then in

80% glycerol in water, and finally mounting on slides in 80%

glycerol. For some preparations, glial cell nuclei also were labeled

with the nucleic acid stains Syto 13 or Syto 59 (Molecular Probes,

#S-7575 and #S-11341). Sections were washed in 10 mM Tris

(pH 7.4), then incubated in the Syto dye 1:10,000 in Tris (not

phosphate buffer) for 60 min, washed in Tris, and mounted in

H2O/glycerol. Glial nuclei were identified by their small size

compared to neuronal nuclei, and by their location either in the

axonal sorting zone region of the antennal nerve where they are

the only cell type present [16] or in the envelope surrounding each

glomerulus [11,35].

Specific protocols for each antibody appear in Table 1. For each

antibody, some brains were processed as shown but without addition

of primary antibodies to control for nonspecific immunolabeling. In

addition, a pre-adsorption control was carried out for the pFGFR

antibody. Two ml of the anti-pFGFR antibody and 20 ml of the

antigenic phosphopeptide were added to 5 ml TBSA containing

10% BSA and mixed on a rotator at RT for 1 hr. The mixture was

then used in immunocytochemistry of two sectioned brains prepared

as described above. Additional brains were labeled with the pFGFR

antibody and with the secondary antibody alone as controls for

methods of processing and for nonspecific labeling.

Lectin labeling
Brains that had been fixed on a shaker ON at 4uC in 4%

paraformaldehyde plus 0.1% glutaraldehyde in 0.1 M phosphate

buffer, pH 7.4, were sectioned and incubated ON at 4uC in 0.5 ml

lectin buffer (300 mM NaCl, 100 mM CaCl2 in 10 mM HEPES,

pH 7.5) containing 2 ml (10 mg) of fluorescein-labeled Artocarpus

integrifolia lectin (Jacalin) or Lycopersicon esculentum lectin (LEL)

(Vector Laboratories, Burlingame, CA).

Inhibition of FGFR activity
The highly selective, cell-permeable FGFR inhibitor PD173074

was the generous gift of Pfizer, Inc. Additional drug was purchased

from Sigma (#P2499) and from Tocris Bioscience (#3044,

Ellisville, MO). It has been used to block activation of FGFRs in

vertebrates [36–38] and in Drosophila [39]. Because relatively few

gene sequences are known for Manduca sexta, and because our

Clustal-W amino acid alignments have shown a high degree of

identity between Bombyx and known Manduca proteins, we used the

sequence for the published Bombyx mori FGFR [40] to ask if the

amino acids that contact PD173074 in the highly conserved ATP

binding pocket of the human FGFR1 [36] were also present in

Bombyx. An amino acid alignment of human FGFR1 and the Bombyx

FGFR showed that the Bombyx sequence matches the human

sequence at all the contact sites (Fig. S1). Thus there was a high

probability that PD173074 would work in an effective and selective

manner in Manduca as it has in both vertebrates and Drosophila.

Animals at early stage 3 were anaesthetized by incubation in CO2

for 20 min. PD173074 (dissolved in DMSO at 0.5 mg/

10 ml = 0.1 M, n = 84) or DMSO alone (n = 31) was injected into

the headspace at various stages of adult development. The injection

sites were sealed with melted dental wax and the animals returned to

the rearing room to continue development. Early results suggested

that higher single doses sometimes produced less effect than lower

single doses, possibly indicating that at high doses the drug, which is

dissolved in DMSO, precipitated out as it was injected into the

aqueous hemolymph. For this reason, and because we were

concerned that newly expressed FGFRs might overwhelm single

drug injections, two or three 0.5 mg injections spaced 24 hr apart

were used rather than a single, larger injection. We found no

difference in phenotype between animals receiving 2 vs 3 injections.

Labeling of dividing cells
Four control (DMSO-injected) and six experimental (0.5 mg

PD173074 in DMSO) animals at stage 3 of development were

divided into 16 and 26 (24 hr apart) injection groups. The 16
animals were injected with the drug or vehicle only on the 2nd day,

and all animals were dissected on the fifth day after injection, so

that we could observe animals at two doses and at two de-

velopmental stages, mid 5 and late5-early 6. Brains were fixed,

sectioned at 100 mm, and processed for phospho-histone H3

immunocytochemistry (a marker of cells undergoing mitosis) as

described in Table 1.

Glial FGFRs in Glia-Neuron Signaling
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Labeling of apoptotic cells
PD173074-treated (n = 9) and control (n = 7) animals were

assayed for apoptotic cells using the ApopTag Plus Fluorescein In

Situ Apoptosis Detection Kit (#S7111, Chemicon International),

which uses the TUNEL (terminal deoxynucleotidyl transferase

dUTP nick end labeling) technique. Brains were fixed in 4%

paraformaldehyde in 0.1 M phosphate buffer, pH 7.4, for 48 hr at

4uC. Fixed brains were washed in PBS, cryoprotected in 10, 20, and

30% sucrose in 0.1 M phosphate buffer, pH 7.4, at 4uC, flash-

frozen in liquid propane, and cryosectioned at 20 mm. Sections were

then processed according to the apoptosis detection kit instructions,

using propidium iodide to counterstain nuclei.

Western blot
Antennal lobes (with attached intracranial portion of antennal

nerves) of three female animals at stage 7 of adult development were

removed and solubilized in Novex lithium dodecyl sulfate sample

buffer (InVitrogen, Carlsbad, CA) containing protease-inhibitor

and phosphatase-inhibitor cocktails (#P2714 and P5726, Sigma, St

Louis, MO). Solubilized samples were run on a Novex NuPAGE 4–

12% Bis-Tris gel and transferred to a PVDF membrane as described

previously [18]. Blots were incubated for 1 hr at RT in blocking

solution (TBS + 0.1% Tween 20+5% BSA), then ON at 4uC in

blocking solution with anti-pFGFR antibody (3 ml in 5 ml). Blots

were then washed in TBS-Tween and incubated 4 hr at RT in

blocking solution plus horseradish peroxidase-conjugated goat anti-

rabbit antibody (Jackson Immunoresearch). Blots were washed

again and developed using the Opti-4CN kit (Bio-Rad, Hercules,

CA).

An additional blot to compare pFGFR labeling of antennal

lobes treated with DMSO or PD173074 (2 daily injections be-

ginning at stage mid-5, dissected at stage early-6) was done as

described above using lobes and attached nerves from two animals

for each treatment. Because immunocytochemistry suggested

residual labeling in AL neuron cell bodies following PD173074

treatment, these cell body clusters were removed from the tissue

prior to processing in order to assess solely the effect on glia.

Table 1. Immunocytochemistry Protocols.

antibody fixative solution postfix block primary wash secondary

Fibroblast growth factor receptor,
FGFR (mouse)

M/F (9:1) on ice; ON, 220uC No 0.1% T, 0.1% A, 2%
BSA in TBS; 1 hr, RT

2 ul in 500 ul in
block; ON, RT

0.1% T
in TBS

2 ul Cy3 Goat anti-mouse
IgG+IgM in 500 ul block;
ON, RT

HSPG (mouse) M/F (9:1) on ice; ON, 220uC No 0.1% A, 2% BSA in
PBS; 1 hr, RT

1 ul in 500 ul in
block; ON, RT

0.1% T
in PBS

2 ul Cy3 Goat anti-mouse
IgG+IgM in 500 ul block;
ON, RT

Activated FGFR, pFGFR (rabbit) M/F (9:1) on ice; ON, 220uC No 0.1% T, 0.1% A, 2%
BSA in TBS; 1 hr, RT

1 ul in 500 ul
block; ON, RT

0.1% T
in TBS

2 ul Cy3 Goat anti-rabbit
in 500 ul block; ON, RT

Activated Epidermal growth factor
receptor, pEGFR (rabbit)

2.5% P, 1% G, 1% SMB, in 0.1 M
cacodylate buffer, pH 7.2; ON,
4uC after microwave

NaBH4 0.1% T, 0.1% A, 2%
BSA in TBS; 1 hr, RT

1 ul in 500 ul
block; ON, RT

0.1% T
in TBS

2 ul Cy3 Goat anti-rabbit
in 500 ul block; ON, RT

Manduca Fasciclin II, C3 (mouse) 4% P or 4%P, 0.1% G, in
0.1 M PB

No 0.5% T, 0.1% A, 2%
BSA in TBS; 1 hr, RT

1:10,000 in 500 ul
block; ON, RT

0.1% T
in TBS

2 ul Cy3 Goat anti-mouse
IgG+IgM in 500 ul block;
ON, RT

Phospho-histone H3 (rabbit) 4% P in 0.1 M PB; ON, 4uC DNAse 0.5% T, 0.1% A, 2%
NGS in PBS; 1 hr, RT

1.5 ul in 500 ul
block; ON, RT

0.1% T
in PBS

2.5 ul Cy3 Goat anti-rabbit
F(ab)2 in 500 ul PBS with
0.1% A, 0.1% T; 3–4 hrs, RT

Ankyrin B (mouse) 2.5% P, 1% G, 1% SMB in 50 mM
carbonate buffer (pH 9.4), final
pH 10.8; ON, 4uC after microwave

NaBH4 0.1% T, 0.1% A, 2%
BSA in TBS; 1 hr, RT

2 ul in 500 ul
block; ON, RT

0.1% T
in TBS

2 ul Cy3 Goat anti-mouse
IgG+IgM in 500 ul block;
ON, RT, then 2 ul Alexa
564-Donkey anti-goat in
500 ul block, ON, RT

Microwave protocol: 18uC; Power level 2; 2 min on/2 min off/2 min on/2 min off.
Pella research-grade oven (# 3450, with variable power controller #3430 and cold spot).
A: sodium azide.
Alexa 564-Donkey anti-goat tertiary (Molecular Probes #A11056).
BSA: bovine serum albumin, IgG-free (Jackson Immunoresearch #001-000-161).
Cy3-Goat anti-mouse secondary (Jackson #115-165-068).
Cy3-Goat anti-rabbit secondary (Jackson # 111-165-144).
Cy3-Goat anti-rabbit F(ab)2 (Jackson # 111-166-047).
DNAse I (Sigma): 10 U DNAse, 4 mM MgCl2 in PBS; 1 hr, 37uC.
G: glutaraldehyde.
M/F: methanol/37% formalin.
NaBH4: 0.01 M NaBH4, 0.5% SMB in 0.05 M Tris HCl, pH 7.5; 30 min.
NGS: normal goal serum.
ON: overnight on a shaker.
P: paraformaldehyde.
PB: phospate buffer pH 7.4.
PBS: phosphate-buffered saline (10 mM sodium phosphate, 150 mM NaCl, pH 7.4).
RT: room temperature.
SMB: sodium metabisulfite.
T: Triton X-100.
TB: 10 mM Tris-HCl, pH 7.4.
TBS: Tris-buffered saline (20 mM Tris-HCl, 150 mM NaCl, pH 7.4).
doi:10.1371/journal.pone.0033828.t001
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Confocal microscopy and image processing
Sections were viewed on a Nikon PCM 2000 or a Zeiss 510

Meta laser scanning confocal system (equipped with argon, green

HeNe, and red HeNe lasers) using Simple 32 software (Compix

Inc., Cranberry Township, PA) or LSM software (Zeiss), re-

spectively. Optical sections were acquired at 1- to 5-mm intervals

(depending on the objective used) through the depth of the an-

tennal lobe and saved as three-dimensional stacks. To examine the

localization of FGFRs, HSPGs, and Syto dyes to cellular sub-

compartments, we used a 406, oil immersion EC PLAN-

NEOFLUAR, N.A. 1.3 lens (Zeiss). Vehicle controls were always

imaged along with experimental brains and imaging parameters

were always held constant when comparing between controls

and experimental brains or across developmental stages. Confocal

image stacks were projected and merged in false color using

Confocal Assistant (copyrighted by Todd Brelje, distributed by

Bio-Rad, Richmond, CA) or the Zeiss LSM image browser, and

then imported into Corel Photopaint, where image hue, intensity,

and contrast were adjusted for maximum clarity. The images were

then combined into figures in Corel Draw, where annotations

were added.

Results

The primary olfactory pathway of M. sexta consists of a small

number of cell types: a) ORNs, whose cell bodies are located

distally in the antennae and whose axons extend to form the

antennal nerves and antennal lobes, b) antennal-lobe neurons,

whose cell bodies are clustered (primarily in two groups, lateral

and medial) entirely outside of the antennal lobe neuropil and

whose dendrites form synapses with each other and with the

terminal arborizations of ORN axons in the glomeruli, c)

centrally-derived glial cells which populate the sorting zone (SZ

glia) and which surround the glomeruli (NP glia), and d) peripheral

glia (antennal nerve (AN) glia), which migrate toward the antennal

lobes along the antennal nerves and extend processes that

surround small groups of ORN axons [16]. AL neuron cell bodies

are much larger than those of glial cells (Fig. 1A,B), and they lie

outside of the neuropil and its glial border, making labeling with

neuronal or glial markers unnecessary for identification [11,16].

Labeling with an antibody to the activated (phosphorylated on

tyrosines 653–654) FGFR reveals that that most, if not all, SZ, NP

and antennal nerve (AN) glial cells express activated (phosphor-

ylated) FGFRs throughout adult metamorphic development

(Figs. 2,3). Cell bodies of most, if not all, AL neurons were labeled

as well (Fig. 2, ‘‘MG’’ and ‘‘LG’’), but we never detected labeling

of their dendritic arbors in the antennal lobe neuropil. Panels D–F

of Figure 2 clearly illustrates the large difference in size (both cell

body and nucleus) between AL neurons of the medial and lateral

groups (MG, LG) and all glial cells. This difference, plus the

stereotyped locations of AL neurons (cell body clusters) and glial

cells (sorting zone, surrounding glomeruli) allows for simple

identification of glia and neurons [11,16,35].

As the projections shown in Figures 2 and 3 suggested a possible

colocalization of pFGFR and cell nuclei, additional imaging

was done at higher magnification. In single optical sections, both

centrally derived (NP and SZ) and peripherally derived (AN) glia

displayed labeling of processes, cell bodies, and nuclei (Fig. 4). It is

interesting to note that the nuclear pFGFR labeling co-localized

with Syto labeling of chromatin close to the nuclear membrane

(Fig. 4B0,D0). Pre-adsorption of the antibody to phosphorylated

FGFR with its blocking phospho-peptide essentially abolished

labeling of glia and AL neuron cell-bodies (Fig. S2). Labeling with

antibodies to the extracellular region of the FGFR and to HSPG, a

necessary FGFR co-receptor [25,29–30], mirrors the labeling for

the pFGFRs in glial processes and nuclei and in AL neuron cell

bodies and nuclei (Fig. S3). As was found for the pFGFR labeling

(Fig. 2), these antibodies did not label AL neuron dendrites

Two FGFRs (Heartless, with 2 Ig domains, and Breathless, with

5) are known in Drosophila [41]. In Lepidoptera, one FGFR

sequence each is known for Bombyx mori and Spodoptera frugiperda

[40]. Analysis of the amino acid sequences reveals that the

Lepidopteran FGFRs, with calculated molecular weights of 97.3

and 96.1 kDa, respectively, possess 3 Ig domains (the pattern most

often seen in vertebrate FGFRs, [24]). To characterize the FGFRs

labeled in AL and AN glia of M. sexta, we performed western blots

of antennal lobes plus antennal nerves. The anti-pFGFR antibody,

when used on blots of tissue treated with a phosphatase-inhibitor

cocktail, produced a strong band at 98 kDa (Fig. 5), in close

agreement with predicted molecular weights of the two known

Lepidopteran FGFRs. The slightly higher value is likely due to

post-translational modification.

Effects of Blocking FGFR Activation on Glial Cells
Sorting zone glial cells respond to the arrival of ORN growth

cones by proliferating and migrating to form the sorting zone, and

NP glial cells respond to formation of protoglomeruli by ORN

axons by extending processes and migrating to form a glial

envelope around each protoglomerulus. We asked if glial FGFRs

might play a role in these events, which take place predominantly

between stages 3 and 8 of adult development. We used the FGFR-

specific tyrosine kinase inhibitor, PD173074 [36,37], to block

activation of glial FGFRs. PD173074-treated animals showed a

loss of activated FGFRs on glial cells of the primary olfactory

pathway, as measured by pFGFR immunocytochemistry at stage 7

(Fig. 6A,B) and by western blot using stage-e6 antennal lobe tissue

from which the neuronal cell body clusters had been removed

(Fig. 6C). Interestingly, although all three classes of glia examined

here (AN, SZ and NP) normally exhibit activated FGFRs (Figs. 2,

3, 4), only the NP glia (which normally migrate to surround

glomeruli) displayed a lack of migration following blockade of

FGFR activation (Fig. 6B). In contrast, the population of SZ and

AN glia appeared to have migrated normally following PD173074

treatment. Imaging of nucleic acid labeling of NP glia at higher

photomultiplier gain revealed that the NP glial cells had, in fact,

extended processes into the antennal lobe neuropil (Fig. 6D). This

suggests that FGFR activation in NP glia may be necessary to

couple glial cell-body motility to the arrival of ORN axons or to

couple glial cell-body motility to process extension, but not to

initiate process extension. Because migration of NP and SZ glia

normally requires the presence of ORN axons [11,42], we checked

for activation of FGFRs in animals deprived of ORN innervation,

in which NP glial cells fail to migrate. Labeling for the activated

FGFR was present in glial cells in both the innervated and

chronically non-innervated antennal lobes (Fig. 6E–F’’).

PD173074 has been shown to be a specific inhibitor of FGF

receptors in vertebrates [36,37]. A similar specificity has not been

demonstrated in invertebrates, so we wanted to make sure that the

drug was not acting via other receptor tyrosine kinases. We

previously have shown EGFR activation to occur transiently on

ORN axons as they traverse the sorting zone and form glomeruli

[18]. When control and PD173074-treated animals were labeled

with an antibody to the activated epidermal growth factor

receptor, EGFR (Fig. 7), they displayed the normal pattern of

labeled ORN axons in the sorting zone and glomeruli [18],

suggesting that PD173074 does not interfere with EGFR

activation in M. sexta.

Glial FGFRs in Glia-Neuron Signaling
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Effects of Blocking Glial FGFR Activation on AL Neurons
Because glial cell–neuron communication is often reciprocal [9],

we wanted to know if blocking FGF receptor activation on glial

cells might affect glia-to-neuron communication within the

antennal lobe, resulting in alteration of neuronal growth patterns.

In normally developing animals, NP glia stabilize the proto-

glomeruli, which then allows the subsequently ingrowing AL

neuron dendrites to develop their characteristically tufted arbors

and allows the neuropil to become glomerular in organization

[12]. We also have shown previously that glial processes alone, in

the absence of glial cell body migration, are sufficient to establish

boundaries within the neuropil ([15]). In the current study, we

examined general AL neuron growth patterns by labeling

dendrites with the lectin, Jacalin [43], as well as the arborization

of the sole serotonergic (5-HT) AL neuron, which extends

dendrites into all glomeruli. In control (DMSO-treated) animals

examined at stage 11–12, after the completion of axon ingrowth at

stage 9, Jacalin and 5-HT labeling was observed predominantly in

the basal (inner) portion of glomeruli, where AL neuron dendrites

are concentrated (Fig. 8A,C,E). In PD173074-treated animals

examined at the same stages, the neuropil clearly was not

glomerular, but it did have a lobular organization (Fig. 8B,D,F),

presumably maintained by glial processes that did extend (Fig. 6C),

despite the lack of glial cell body migration. Significantly, AL

neuron dendrites were not confined to the basal portion of the

lobules but extended outward to the glial borders (Fig. 8D,F). This

result suggests that activation of FGFRs on NP glia leads to

signaling that is important in defining the extent of AL neuron

arborization in the glomeruli.

Figure 2. FGF receptors are expressed and activated on antennal lobe glial cells throughout adult development. A–F: Labeling with
an antibody to activated (phosphorylated on Tyrosines 653/654) human FGFR1 (pFGFR, magenta) and with Syto 13 (green) to label cell nuclei showed
that FGFRs are present and activated on the NP and SZ glia throughout adult development. By stage 7 (panel D), NP glial cell bodies (arrows) had
migrated to surround developing glomeruli (*). Extended processes of SZ and NP glial cells were also clearly labeled (see B,D,F, arrowheads). LG,
MG = lateral and medial group of AL neuron cell bodies. Projection depths = 2 mm in A, 3 mm in B, 5 mm in C, 10 mm in D, 12.5 mm in E, 15 mm in F.
doi:10.1371/journal.pone.0033828.g002
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Effects of Blocking Glial FGFR Activation on Glial Survival
and Proliferation

Comparison of the above preparations at lower magnification

reveals a visually obvious difference in glial cell number by stage

11 (Fig. 9A,B) following blockade of FGFR activation, whereas this

decrease in cell number was not apparent at earlier stages (Fig. 6).

Because FGFR activation is known to be important in cell pro-

liferation and survival [24,25], and because the presence of

sufficient SZ and NP glia is essential for ORN axon sorting, fas-

ciculation, and targeting, and for glomerulus stabilization during

development [12,14,16], it was important to understand the time

course of the reduction in glial number. We examined both glial

proliferation via labeling for phosphorylation of histone H3 (in-

dicative of cell division, [44]) and glial death via TUNEL labeling

(an apoptosis marker) in control and treated animals at several

stages of adult development. As mentioned earlier, cell types in

the primary olfactory pathway of Manduca sexta have been well

characterized as to position and size. In discussing our results

concerning cell division and apoptosis, we therefore refer to cells as

glia or neurons based on position and size, but cannot rule out the

unlikely possibility that treatment with PD173074 may have

resulted in the presence of cells not normally found in the primary

olfactory pathway or in migration of cells to atypical locations.

Phospho-histone H3. We labeled for phospho-histone H3

(phH3), which marks cells undergoing mitosis at the time the brain

was removed and fixed. This is expected to produce a smaller

number of labeled cells than was found in our previous studies of

NP glial cell division using either BrdU [16,45] or 3[H]-thymidine

[46], which labeled the cells that were undergoing DNA re-

plication over a 6–18 hr period. Animals were injected once or

twice (24 hr apart) with DMSO alone or PD173074 (0.5 mg in

DMSO), and were allowed to develop to stage mid-5 (16 injected)

or late-5 (26 injected), then processed. Typically, the number of

phospho-histone H3-positive glial nuclei in the olfactory pathway

was small, ranging from 4 to 40 in a given 100-mm vibratome

section and from 0 to 4 in a single optical section (Fig. 9C,D), but

the total number of glial cell nuclei in a 100-mm-thick section was

sufficiently large that we chose to count cells in single optical

sections. For each animal, we imaged through the central region of

the olfactory pathway, counting numbers of positive nuclei per

optical section (2.5 mm z-step), taking care that the same glial

nuclei were not counted twice. We calculated the average number

of phH3-positive glial nuclei per optical section as well as the

average total number of glial cells (SZ, NP and nerve layer) in 2–3

non-adjacent optical sections. From the average values obtained,

we calculated the ratio of phH3-positive nuclei to total number of

nuclei. The ratios were then compared between control and

PD173074-treated animals. We found that proliferation continued

in both control and treated animals, but the PD173074-treated

animals showed fewer dividing cells compared to control for both

the 16 and 26 injection protocols, respectively (Table 2). All

dividing cells were in locations normally occupied solely by

glial cells. Antennal-lobe neurons are known to have undergone

terminal differentiation prior to the events initiating formation of

the antennal lobes [14], and thus were not expected to, and did

not, label with the phH3 antibody.

Apoptosis (TUNEL labeling). To determine the

contribution of apoptosis to the reduction in cell number,

TUNEL assays were performed on control and treated animals

at various stages of development. At stages mid-5 and early-6, we

found evidence of considerable apoptosis of NP (but not SZ or AN)

glial cells in treated but not in control animals (Figs. 10A–D, S4,

Table 3). A small number of apoptotic nuclei also were seen

among the medial group of AL neurons (arrowheads in Fig. 10B,D)

in PD174074-treated animals. Because clusters of neuronal cell

bodies also include cortical glial cells [35], apoptotic nuclei found

in the cell body clusters could be either neuronal or glial. In either

case, the number of apoptotic nuclei in these locations was very

small and the overall size of the clusters was not obviously

diminished suggesting that, if present, neuronal apoptosis was

minimal. Also, a previous study [47] showed that removal of the

medial group projection neurons from stage 4 forward had no

effect on the glomerular organization of the antennal lobe.

Interestingly, we also found no evidence for apoptosis among

SZ glial cells at stages 5–6, even though, like the NP glia, SZ glial

cells are centrally–derived. Treated animals allowed to develop to

stage 12 displayed the sparse population of NP glia seen previously

(Fig. 9B), and many apoptotic nuclei now appeared in regions

normally occupied solely by SZ and AN glial cells (Fig. 10F).

Control animals at all stages displayed a normal glial population

with few or no apoptotic nuclei (Fig. 10A,C,E, Table 3).

Considered together, the results described above indicate that

blocking of FGFR activation leads both to glial cell apoptosis and

to reduction of glial cell proliferation. The effect on cell number is

minimal at early stages (5–6), but becomes significant at later

stages.

Effects of Blocking Glial FGFR Activation on ORN Axons
We next examined ORN axon growth patterns following

blockade of glial FGFR activation. The effects described below

were not due to a non-specific effect of PD173074 on the activation

of the axonal EGFR, as shown earlier (Fig. 7).

We visualized a subset of ORN axons that are MFasII-positive to

examine the trajectories and fasciculation of these axons in the

sorting zone and their distribution in the antennal lobe. These axons

are known to target 14–21 of the 62–64 glomeruli in the antennal

lobe [17]. Normally, MFasII immunocytochemistry at stage 6

reveals a dramatic change in axon trajectory and fasciculation a

short (50–70 mm) distance into the sorting zone, clearly illustrated in

the untreated antennal lobe shown in Figure 1B. These changes are

glia-dependent [16]. In animals treated with DMSO or PD173074

and examined at stage 6–7, compact and sharply-defined axon

fascicles formed a short distance into the sorting zone in the DMSO-

treated animals (Fig. 11A), but appear not to have formed until the

axons were emerging from the sorting zone in PD173074-treated

animals (arrowheads in Fig. 11B). Fasciclin labeling in the antennal

nerve distal to the sorting zone appears similar in both panels,

Figure 3. FGF receptors are also expressed and activated on
antennal nerve glial cells throughout metamorphic adult
development. A,B: pFGFR (magenta)/Syto 13 (green) labeling of
antennal nerves at the middle (panel A) and the end (panel B) of adult
development reveals activated FGFRs on AN glia both during (A) and
after (B) the period of glial migration. Single optical sections
(objective = 406 in A, 206 in B).
doi:10.1371/journal.pone.0033828.g003
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suggesting that differences in labeling in the sorting zone are truly

due to lack of fasciculation in PD173074-treated animals rather

than to downregulation of Fas expression. Counts of SZ glial cells in

single optical sections of these stage-6–7 preparations revealed no

difference in glial number between control and treated animals

(300630). The lack of a difference in SZ glial number in this

experiment is consistent with the absence of apoptosis among SZ

glial cells at early stages (Fig. 10) and a low level of proliferation in

the total (NP, SZ, and NL) glial population (Table 2). The diameters

of the antennal nerves of control and PD173074-treated animals in

the sorting zone region are similar, as shown in Figure 11A,B,

suggesting that the number of ORN axons reaching the brain was

affected minimally, if at all, by PD173074.

Figure 4. Activated FGFRs are present on glial cell membranes and in nuclei. A,B: Labeling for pFGFRs is present on NP glial processes
(arrows) and associated with glial cell bodies (A, A0). Syto labels glial nuclei. B–B0: An enlarged view of the boxed area of A0 demonstrates co-
localization of labels for pFGFRs and DNA in glial cell nuclei. C,D: As for NP glia, AN glia label for pFGFRs both on their processes (arrows in C) and in
their nuclei (D0). In both cases colocalization appears to be confined to DNA close to the nuclear envelope (B0, D0). Images are single optical sections
(406 objective) except for C (16 mm stack).
doi:10.1371/journal.pone.0033828.g004
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Because we saw no decrease in SZ glial number through stage 6,

by which time the events important to ORN axon fasciculation

have occurred, the results above suggest that differences in ORN

axon growth patterns are attributable to reduced or altered sig-

naling from a normal complement of glia rather than to reduced

signaling due to a smaller complement of glial cells, the latter

decreasing the possibility for neuron-glial cell interaction.

Because of the dramatic effect of PD173074 treatment on ORN

axon fasciculation in the sorting zone, it was important to ensure

that the effect was due to blocking glial FGFR activation and not

to blocking FGFRs present on ORN axons. We looked closely at

ORN cell bodies in the antenna. Using imaging parameters

optimized for pFGFRs in AN glia (Fig. S5A), we scanned

longitudinal- and cross-sections of antennae. ORN cell bodies

were negative for pFGFRs (Fig. S5B,B9). Similarly, the antennal

nerve distal to the sorting zone exhibited no pFGFR labeling of the

ORN axons (Fig. S5C,C9). Thus the immunocytochemical

evidence argues against expression of FGFRs by ORNs and

suggests that effects of PD173074 treatment on ORNs is mediated

indirectly via effects on glia.

Effects of Blocking Glial FGFR Activation on Targeting
and Termination of ORN Axons

During embryonic development, glial cells have been shown to

play major roles as guidepost cells, causing abrupt changes in axon

trajectories via molecules such as slit, netrin, and commissureless

[1–10,48,49]. To determine whether the glial FGFR might be

involved in the process by which ORN axons correctly sort together

and target a given glomerulus, we blocked FGFR activation and

used the subset of axons targeting a uniquely identifiable glomerulus

as an assay. The axons targeting this glomerulus, referred to as

‘‘glomerulus X,’’ label with an antibody to human Ankyrin B [33].

The stereotypical location of glomerulus X adjacent to the primary

neurite tract of the medial group of AL neurons allows us to ask if a

particular intervention can perturb the convergence of anti-ankyrin-

immunoreactive ORN axons to a glomerulus in this location. The

labeled ORN axons in untreated (n = 11), vehicle control (n = 3),

and PD173074-treated (n = 7) animals always targeted a single

location (Fig. 12). As expected (Figs. 6, 7, 8, 9, 10), the treated

antennal lobes showed minimal NP glial cell body migration along

glomerular boundaries, but the labeled axon terminal branches

always clustered adjacent to the primary neurite tract of the medial

group of AL neurons, as they did in controls. It therefore appears

that, at least for this subset of axons, molecules needed for their

correct targeting are produced independently of glial FGFR

activation, or are produced at a time prior to stage 3, when the

animals were injected with PD173074.

The over-extended arborization of dendrites of AL neurons

in PD173074-treated animals seen in Figure 8B,D,F raised the

possibility that the dendrites were extending into glomerular ter-

ritory normally occupied mainly by terminal branches of ORN

axons. However, labeling (pEGFR antibody) of ORN axon

terminal fields in the antennal lobes of control and PD173074-

treated animals at stage 7–8 (Fig. 7C,D) reveals that ORNs in

treated animals formed and maintained terminal arborizations in

the normal apical portion of each glomerulus, constrained by the

glial processes that form an envelope despite the lack of NP glial

cell body migration (Figs. 6D, 8). We know from previous ex-

periments that without those processes, the axon terminal

branches would spread laterally into the territory of adjacent

axons and glomerular organization would be lost [12]. Thus the

overextension of AL neuron dendrites into the apical portion of

the developing glomeruli is unlikely to be due to an abnormality in

the distribution of the ORN axon terminal branches.

Discussion

The essential nature of FGFR-mediated signaling for cell

differentiation, proliferation, survival, migration, and shape has

been well documented in vertebrates and invertebrates [24,

25,37,50–54]. In insects, primary cultured Drosophila embryonic

neurons display Neuroglian- and Fasciclin II-dependent neurite

outgrowth mediated via Heartless [39]. In intact Drosophila

embryos, Heartless has been found to be necessary for directional

(but not random) migration of mesodermal cells [50–52]. In the

developing adult ocellar sensory system, Heartless works with

the EGF receptor in Neuroglian-mediated OP and BM axon

extension and guidance, in which the EGFR appears to determine

axon extension and Heartless dictates direction [22]. For glial cells

in Drosophila embryos, Heartless has been shown to be necessary

for migration of longitudinal glia and for their ability to enwrap

longitudinal axon tracts [54]. Similarly, in development of the

adult Drosophila visual system, Heartless expressed by CNS glia is

activated by glial-cell-derived Pyramus and photoreceptor-axon-

produced Thisbe to cause proliferation and migration outward

along the optic stalk followed by glial differentiation and wrapping

of axons in the optic disc [55,56].

We find that in the primary olfactory pathway of M. sexta,

glial cells of all types express FGFRs, and that these FGFRs are

activated throughout metamorphic adult development (Fig. 2).

The question addressed here is whether FGFR signaling underlies

some of the critical neuron-glial interactions that we have demon-

strated at the cellular level to be required for normal development of

the olfactory pathway. We took advantage of the fact that, as is the

case for its human homolog, activation of the M. sexta FGFR can be

blocked by the specific inhibitor, PD173074, as shown by the loss of

labeling of glia and antennal-lobe western blots using an antibody that

recognizes only the activated form of the receptor (Fig. 6B,C).

Western blot analysis suggests, based on size, that the M. sexta

FGFR has three Ig domains, as is the case for two other known

Lepidopteran FGFRs [40] and many vertebrate FGFRs [24]. The

fact that an antibody to a highly conserved region of the FGFR

tyrosine kinase domain produces a single band on western blots

(Fig. 5), in conjunction with the fact that only one FGFR has been

found in Bombyx and Spodoptera [40], suggests that Lepidopterans

express only one FGFR. This is in contrast to Drosophila, which

expresses two FGFRs: Heartless, with 2 Ig domains, important in

Figure 5. The antibody to the activated FGFR reveals a single
band on western blots. Antennal lobe tissue, probed with the anti-
pFGFR antibody, reveals a single band at ca. 98 kDa.
doi:10.1371/journal.pone.0033828.g005
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development and organization of mesodermal structures including

heart and somatic muscles in the embryo, and Breathless, with 5 Ig

domains, important in development of the tracheal system of the

embryo [41,50–52,54,57]. Heartless is expressed in longitudinal

glial cells [54] and both FGFRs are important in embryonic CNS

development. The only other evidence for involvement in the

post-embryonic CNS was reported in a brief study of 3rd instar

Drosophila in which Heartless, but not Breathless, mRNA was

found in eye-antenna imaginal discs [58]. The current work in

Manduca focuses on the developing adult, rather than embryonic or

larval stages, however, making comparison with the Drosophila

studies difficult. The important point here is that, in metamorphic

Figure 6. Blocking activation of the FGFR blocks migration of neuropil glia. A,B: Animals injected at stage 4 with DMSO or DMSO +
PD173074 and examined at stage 7. A: Control animal injected with vehicle (DMSO) and labeled with the anti-pFGFR antibody (magenta) and Syto 13
(green) to show cell nuclei. Neuropil glial cells have migrated to surround glomeruli as in untreated animals. A more anterior view than those used in
Fig. 2 was chosen to better illustrate the intense labeling of NP glial processes surrounding glomeruli. B: Animal injected with DMSO containing
0.5 mg PD173074. Labeling for activated FGFRs on glial cells is absent, and most neuropil-associated (NP) glia have failed to migrate to surround
glomeruli. Sorting zone (SZ) glia have migrated normally despite their lack of labeling for activated FGFRs. C: A western blot of control and
PD173074-treated antennal-lobe tissue from which neuronal cell bodies had been removed demonstrates a nearly complete absence of labeling for
pFGFRs for the PD173074-treated lobes. D: Another animal treated with 0.5 mg PD173074 (beginning at stage 3), dissected at stage 7, and labeled
with Syto 13. At increased gain, some NP glial processes can be seen to have extended into the neuropil (arrowheads) despite the absence of cell-
body migration. E: A stage-6 antennal lobe from an animal chronically deprived of ORN innervation on one side (antennal anlagen removed at stage
1.) Although lack of ORN innervation resulted in lack of glial migration, glial cells did exhibit activated FGFRs (magenta, arrowheads). E9: Enlarged
section from boxed area of panel E better illustrates the labeling of glial processes. E0: Opposite lobe, which was not deprived of ORN input, appears
to have the same intensity of pFGFR labeling. F9,F0: Individual cells of deafferented (F9) and control (F0) lobes both display colocalization of pFGFR
and DNA labels. LG, MG = lateral and medial group of AL neuron cell bodies. Projection depths = 10 mm in A, B, D, E, E9. F9, F0 are single optical
sections (406objective).
doi:10.1371/journal.pone.0033828.g006
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adult development in Manduca, the FGFR is expressed by CNS

and peripheral glia, and not by tracheae. High magnification

imaging of antennal-lobe and antennal-nerve glia revealed the

presence of FGFRs on glial processes but also closely associated

with nuclear DNA (Fig. 4). DNA labeled with Syto 13 appears to

be concentrated into ‘‘chromosome territories’’ [59] associated

with intranuclear pFGFRs. We are not aware of other descriptions

of nuclear localization of FGFRs in invertebrates, but this

phenomenon has been described in cultured fibroblasts [60] and

in human astrocytes and glioma cells, where nuclear localization

appears to be correlated with transcriptional regulation and

subsequent glial-cell proliferation [61,62]. Further work is needed

to determine whether or not nuclear localization of FGFRs can be

connected to specific cellular functions in invertebrates.

Heartless expression also has been reported in embryonic

Drosophila neurons grown in culture and in vivo [39]. We likewise

saw evidence of FGFRs in the AL neurons, but only in their

cell bodies, not in their dendrites (Fig. 2) or axons (not shown).

There is evidence that FGFRs can be imported directly from

endoplasmic reticulum to the nucleus without ever being expressed

on the plasma membrane [62]. This latter phenomenon, termed

‘‘integrative nuclear FGFR signaling’’ may be relevant to our

observation that FGFR labeling in the AL neurons is limited to

their cell bodies, and might help explain why AL neuron cell

bodies in PD173074-treated animals continue to label for

activated FGFRs (Fig. 6B). In this scenario, activation of signaling

pathways within AL neurons would lead to direct translocation of

FGFRs from the endoplasmic reticulum to the nucleus in order to

modulate gene transcription. The nature of the role of FGFRs in

AL neurons remains unanswered.

Heparan sulfate proteoglycans have been described as essential

co-receptors for FGFs [25,29–30]. As was the case for pFGFRs, we

found HSPGs expressed in glial cells and AL neurons (Fig. S3).

Additionally, we found HSPGs both on cell processes and in

nuclei. This, too, is in agreement with published accounts that

HSPG localization can vary [63,64].

We have shown previously that ORNs express EGFRs [18] and

find here that these EGFRs are activated normally following

treatment with PD173074 (Fig. 7). If ORN EGFR activation had

been blocked, ORN axons would have stalled in the sorting zone,

making it thicker than normal [18]. The fact that antennal lobes of

control and treated animals display sorting zones of comparable

diameter indicates that ORN axons did not stall in the sorting

zone, as they do when EGFR activation is blocked with PD168393

[18]. This supports the conclusion that PD173074 does not block

EGFR activation in M. sexta.

We lack an antibody for the activated form of the only other

Manduca receptor tyrosine kinase characterized to date, the Eph

receptor [65], so we could not check for its possible inactivation.

However, PD173074 was designed to competitively bind to the

Figure 7. A,B: Animals treated as in Figure 6A,B and examined at stage 8. Labeling with an antibody to activated Epidermal GFRs (red) reveals a
normal pattern of activation in the ORN axons demonstrating that PD173074 did not affect the Epidermal GFRs. C,D: Enlarged images from the same
animals demonstrate that the axons occupy their normal territory within the apical half of glomeruli in the control AL (arrowheads in panel 7C) and in
the outer portion of the neuropil in the PD173074-treated AL (arrowhead in panel 7D), where glomeruli are demarcated only by glial processes, not
by glial cell bodies as in normal lobes. Depth of projections was 10 mm.
doi:10.1371/journal.pone.0033828.g007
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ATP-binding pocket of the FGF receptor, and amino acid

alignments show that the Eph receptor lacks 8 of the 18 amino

acids at specific locations needed to form the binding pocket for

PD173074 (Fig. S6). Thus PD173074 appears an unlikely

candidate for binding to and blocking activation of the Eph

receptor.

Because it was important to determine whether the altered

fasciculation of ORNs traversing the sorting zone in PD173074-

treated animals was a direct result of blocking ORN FGFR

activation, we also looked for evidence of expression of FGFRs by

olfactory receptor neurons (Fig. S5). We found no evidence for

pFGFRs in ORN cell bodies, axons, or dendrites within antennal

sensilla, suggesting that the altered behavior of ORN axons in the

sorting zone is the consequence of interrupting an interaction

between the ORNs and glial cells that depends on FGFR

activation in the glial cells.

Figure 8. Blocking glial FGFR activation leads to over-extension of AL neuron dendrites. Animals were injected with DMSO or DMSO
containing 0.5 mg PD173074 beginning at stage 3. A,C: Control animals examined at stage 11 display characteristic Jacalin labeling (green) of AL
neuron dendrites in the basal region of glomeruli. Glial nuclei and AL neuron cell bodies are labeled with Syto 59 (red). B,D: Treated animals
examined at stage 11 exhibit a lobular, rather than glomerular, arborization. AL neuron dendrites extend beyond their normal, mostly basal territory
in the glomeruli, reaching almost to the glial border (compare C,D). E,F: Animals treated as in A–D and labeled for 5-HT (blue) and Syto 13 at stage
12 reveal differences in dendritic arborization of the sole serotonergic neuron similar to those seen in panels A–D (i.e. dendrites overextending in the
PD173074-treated animals). Projection depths = 25 mm in A–D, 26 mm in E,F.
doi:10.1371/journal.pone.0033828.g008
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Blocking glial FGFR activation: effects on glia
Migration. During development of the olfactory pathway,

glial migration occurs in response to the arrival of ORN axons and

leads to the formation of the sorting zone and formation of the

glial envelopes that stabilize developing glomeruli [4,5,9]. We have

observed previously that NP glia fail to migrate but do extend

processes following blockade of neuron-to-glial cell signaling

via nitric oxide [15] or disruption of sterol-rich membrane

subdomains with methyl-b-cyclodextrin [33]. We have shown

here the same phenotype in PD173074-treated animals (Fig. 6D).

Together, these several observations indicate that glial cell

migration in response to ORN axon ingrowth and coupling of

cell-body movement to process extension depends on several

signaling systems, including FGFR activation.

As background for assessing the connection between FGFR

activation and NP glial cell migration, we know the following: 1)

NP glial cells migrate only if a sufficient number of ORN axons

have arrived at the antennal lobe [11,42]. 2) NP glial migration

depends on influx of extracellular calcium through voltage-gated

calcium channels following depolarization [66]. 3) These calcium

channels are activated by the presence of ORN axons; they are not

activated until after initial contact with ORN axons (stage 5 for SZ

glia, stage 6 for NP glia) and glia in antennal lobes deprived of

ORN innervation do not exhibit functional voltage-gated calcium

channels [66]. 4) NP and SZ glia express nicotinic acetylcholine

receptors; blocking these receptors in situ eliminates calcium

transients in response to carbamylcholine, an acetylcholine re-

ceptor agonist [67]. Thus both NP and SZ glia are capable of

responding to ORN axon-derived acetylcholine via depolarization

and activation of the voltage-gated calcium channels, an essential

prerequisite for migration. 5) NP glia imaged in situ display no

calcium influx in response to 200 mM carbamylcholine at stage

m5, show maximum influx at stage 6, at the height of glial

migration, and then display an influx that declines to about half

maximum by stage 9, indicating a strong temporal correlation

between acetylcholine-induced glial calcium influx and glial cell

migration to surround protoglomeruli [67]. In the context of our

results that FGFR activation is coupled to NP glial cell migration,

Figure 9. PD173074 treatment results in reduced glial numbers at later stages. A,B: Syto 59 labeling of the same antennal lobes shown in
Figure 8A–D. At lower magnification, Syto 59 labeling of cell nuclei illustrates the significant reduction in cell number in treated animals at later stages
(stage 11 shown). The reduction occurs in regions normally occupied solely by glial cells. Blocking glial FGFR activation leads to a decrease in
proliferation. C,D: Control and PD173074-treated animals were allowed to develop to late stage 5, then dissected and their brains labeled with an
antibody to phospho-histone H3, an indicator of mitosis (yellow). Syto 13 (blue) was used to visualize all glial nuclei. Projection depths = 30 mm in A,B
and 10 mm in C,D.
doi:10.1371/journal.pone.0033828.g009

Table 2. Effect of PD173074 on SZ+NL+NP glial cell division.

Treatment
Vibratome sections
examined

Optical sections
examined

Optical sections
quantitated

Avg glia/optical
section

Avg phH3+

nuclei/op sec

phH3+ nuclei
per 1000 glia
(StdDev)

Reduction in glial
division with
PD173074

1XDMSO (n = 2) 6 107 13 210.3 0.95 4.6 (1.8)

1XPD (n = 3) 6 108 12 167.5 0.27 2.0 (1.4) 57% (p,.0005)

2XDMSO (n = 2) 8 128 16 358.0 1.85 5.3 (1.2)

2XPD (n = 3) 11 170 21 183.3 0.4 2.1 (1.2) 60% (p,.0001)

Totals 31 513 62

Total glial nuclei counted: 14,428.
p-values obtained using Student’s t-test.
doi:10.1371/journal.pone.0033828.t002
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the above observations raise the intriguing possibility for future

study that glial FGFR activation, modulated by arrival of ORN

axons, leads to expression or functionality of voltage-gated calcium

channels and/or nicotinic acetylcholine receptors on NP glial cells.

Alternatively, pathways downstream of calcium influx and FGFR

activation could intersect to produce glial cell migration via, for

example, activation of doublecortin, src-family kinases, and focal

adhesion kinases [68–71].

In contrast to the effect on NP glial cells, pharmacologic

blockade of FGFR activation did not prevent the migration of SZ

or AN glial cells (Figs. 6B, 7B). Blockade of ORN-mediated nitric

oxide signaling [15] or disruption of sterol-rich membrane

subdomains with methyl-b-cyclodextrin [33] also failed to block

SZ glial cell migration. Our inability to block SZ glial migration by

these various methods may be due to the fact that the initial

contact between ORN growth cones and the glial cells that

become SZ glia occurs late in stage 3, and thus the signaling

necessary for SZ glial migration may have occurred before the

various drug treatments could take effect. Injecting drugs at earlier

stages generally results in developmental arrest (Gibson, unpub-

Figure 10. Blocking glial FGFR activation leads to apoptosis. A–F: Control and PD173074-treated animals were allowed to develop to various
stages, then dissected and analyzed for apoptotic nuclei using the TUNEL technique. Numerous apoptotic nuclei (yellow) were seen in treated
animals (panels B,D,F), but few to no apoptotic nuclei were seen in control animals (panels A,C,E) at all stages examined. Propidium iodide (blue)
was used to visualize all cell nuclei. Arrowheads in panels B,D indicate apoptotic nuclei among the medial group of antennal lobe neurons. Inset in
panel F shows a higher magnification view of a region within the sorting zone of the antennal nerve. Projection depths = 10 mm.
doi:10.1371/journal.pone.0033828.g010

Table 3. Effect of PD173074 on Apoptosis.

Number of Apoptag-positive AL+AN nuclei per frozen section.

Stage mid-5 early-6 12

Control n = 5 n = 7 n = 6

Median 2 0 0

Avg (S.D.) 1.2 (1.1) 0.3 (0.5) 0 (0)

PD173074 n = 18 n = 16 n = 12

Median 16.5 40 12.5

Avg (S.D.) 18 (6.4) 38.9 (14.1) 14.7 (8.9)

Note: Cells undergoing apoptosis were limited to regions normally occupied
solely by NP glia at stages mid-5 and early-6. At stage 12, apoptotic nuclei were
found in the sorting zone and antennal nerve (see Fig. 10). ‘‘n’’ = number of
frozen sections examined.
doi:10.1371/journal.pone.0033828.t003
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lished). Another possibility is that redundancy in the signaling

pathways that elicit SZ glial cell migration ensures formation of

this critical region in the olfactory pathway. As for the continued

migration of AN glia in PD173074-treated animals in the Manduca

system, similar results have been reported in Drosophila antennal

nerves in which glial cells express a dominant-negative form of

Heartless [72]. We have found AN glia to express EGFRs as well

as FGFRs [18]; it is possible that they depend on EGFR activation

for migration and FGFR activation for survival.

Survival. Activation of FGFRs is known to be essential for

survival of many cell types, although this has been shown in

vertebrates to depend on the particular FGF receptor activated

[73]. In M. sexta, when PD173074-treated animals were allowed to

develop to stages later than stage 7, examination of the olfactory

pathway revealed an extensive loss of NP, SZ and AN glial cells

(Fig. 9B). This loss appears to be due to a combination of apoptosis

(Fig. 10) and a reduction in proliferation (Fig. 9, Table 2). It is

important to note that NP glial cells exhibit activated FGFRs at

stage 3, before contact with ORNs (Fig. 2A), as well as in lobes

chronically deprived of ORN innervation (Fig. 6E). This is

consistent with other reports of a basal level of receptor tyrosine

kinase (RTK) activation in the absence of ligands [74,75] and

appears necessary, in the present case, to block apoptosis.

Subsequent arrival of ORN axons could then trigger additional

glial responses via upregulation of FGFR activation and subsequent,

developmentally relevant, activation of various downstream path-

ways [76]. We were not able to differentiate levels of FGFR

activation at different stages by immunocytochemistry; future work

will focus on questions of developmental regulation of FGFR

activation and the relative localization of FGFRs to plasma mem-

brane vs nucleus as well as possible shifts in activation of different

second-messenger pathways.

Blocking glial FGFR activation: effects on neurons
In addition to the obvious effect of FGFR inactivation on NP

glial cell migration, several, more subtle, effects were noted that

suggest that loss of FGFR activation disrupts the effect of glial cells

on the growth patterns of axons in the sorting zone and dendrites

in the developing glomeruli.

First, blockade of glial cell FGFR activation led to altered

growth patterns of ORN axons as they navigated the sorting zone.

Normally, ORN axons arrive at the sorting zone as a mixed

population of MFas II-positive and MFas II–negative axons. On

entering the sorting zone ORN axons reorient and refasciculate

into MFas II-positive and MFas II–negative bundles (Fig. 1B,

11A). In PD173074-treated animals, the SZ glia had migrated

Figure 11. Blocking glial FGFR activation leads to abnormal fasciculation of ORN axons in the sorting zone. Control and PD173074-
treated animals were allowed to develop to stage 6–7, then dissected and their brains labeled with an antibody to M. sexta Fasciclin II in order to
visualize the distribution of a known subset of ORN axons. A: In control animals, ORN axons normally exhibit significant changes in fasciculation
(relative to their state in the antennal nerve) a short distance into the sorting zone. B: PD173074-treated animals exhibited unchanged fasciculation in
traveling through the sorting zone, although they did show increased fasciculation on exiting the sorting zone (arrowheads). Projection
depths = 35 mm in A, 45 mm in B.
doi:10.1371/journal.pone.0033828.g011
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outward to form a sorting zone of normal length and glial density

during the early stages of axon ingrowth, yet ORN axons did not

exhibit fasciculation changes as they traversed the sorting zone

(Fig. 11B).

The unusual axonal phenotype is not due to reduced numbers

of SZ glia, since their numbers appear to decline significantly only

after most of the ORN axons have completed their traverse

through the sorting zone. This suggests that, despite the normal

distribution and number of the SZ glia, they were unable to induce

or support a robust and early fasciculation response in ORN

axons, perhaps due to reduced FGFR-dependent production of

one or more glia-derived molecules.

It is interesting to note that although ORN axon fasciculation in

the sorting zone appears to be perturbed or delayed, fasciculation

and course changes do occur as axons leave the sorting zone, as

though axons are suddenly able to respond to some targeting cue

(arrowheads in Fig. 11B). In addition, ORNs that label with an

antibody to Ankyrin B were seen to extend and join to form a single

terminal branch cluster in approximately the correct position

(Fig. 12). Thus the signaling pathways that underlie final targeting

must be independent of the expression and activation of glial FGFRs.

Second, AL neuron dendrites extended beyond their normal

territory into the apical region of their glomerulus, which normally

is occupied predominantly by ORN axon terminals. This can not

be explained by an absence of ORN axon terminals, as they were

found to be present and to terminate in the usual, apical part of the

glomeruli (Fig. 7). One possibility is that blocking activation of glial

FGFRs prevents the glia from releasing one or more signals that

limit AL neuron dendrite outgrowth. A second possibility is that

PD173074 blocks a retrograde signaling mechanism in which

activation of glial FGFRs and subsequent downstream events

normally feed back onto ORN terminals, affecting their ability to

signal to AL neurons and thereby control arborization of AL

neuron dendrites. There is reason to consider this possibility, as we

have shown that blockade of nitric oxide release from ORN

terminals leads to a similar AL neuron dendrite overgrowth

phenotype in combination with a lack of NP glial migration [15].

We noted in that report that it was necessary to block release of

nitric oxide several days before the normal start of glial migration

and AL neuron outgrowth, raising the possibility that nitric oxide

functioned, in part, to regulate gene expression in glia and/or AL

neurons, preparing them to be able to respond to additional signals

from ORN axons at the appropriate time. We know, too, from c-

irradiation and hydroxyurea experiments in which glial cell

proliferation was blocked, that we do not see any obvious changes

in development of the architecture of the antennal lobe until

Figure 12. Blocking glial FGFR activation does not greatly perturb targeting of ORN axons to a specified glomerulus. Brains from
untreated animals (A), control (DMSO, B), and animals injected with PD173074 in DMSO beginning at stage 3 (C,D) were labeled at stage 7 with Syto
13 (red) to identify glial nuclei and AL neuron cell bodies. Axons targeting a single glomerulus were labeled with an antibody produced against
human Ankyrin B (blue), though the Manduca protein recognized by this antibody is unknown [33]. Although treated animals displayed a lack of NP
glial cell body migration in the antennal lobe, axons labeled with the Ankyrin B antibody were seen to project to a single region (C,D) adjacent to the
medial group of AL neurons, as they do in untreated and control animals (A,B). Dotted lines in A outline the antennal lobe and AL neuron cell groups
(LG & MG). Arrowhead in B points to a large fascicle which merged with the main fascicle to form a single glomerulus in the adjacent section.
Projection depths = 30 mm in A, 22.5 mm in B, 12.5 mm in C, 20 mm in D.
doi:10.1371/journal.pone.0033828.g012
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approximately 75% of the glial cells are eliminated [12–14]. Given

that the complement of glial cells is not greatly reduced in the

treated antennal lobes during the period of axon ingrowth, the

effects on dendritic outgrowth are not simply a consequence of a

severely reduced number of glial cells.

Possible mechanisms of FGFR activation
Vertebrate FGFRs can be activated by a large number of FGFs,

and two FGFs, named Pyramus and Thisbe or FGF8-like 1&2,

have been described and shown to activate Heartless in Drosophila

embryos [77–80] and in imaginal eye discs of Drosophila larvae

[55,56]. Pyramus, in particular, is an attractive candidate for

initiating the events described in the present work, as it induces

glial cell proliferation and migration in the Drosophila eye disc

[55,56]. We have searched for Lepidopteran homologs via

translated BLAST searches of Lepidopteran ESTs but have found

no matches, so the question of whether classical ligands exist for

the Manduca FGFR remains unanswered.

FGFRs and EGFRs in both vertebrates and in Drosophila have

been shown to be activated via homophilic and heterophilic

interactions in cis and in trans between the IgCAMs L1/

Neuroglian, NCAM/Fasciclin II, and N-cadherin [19–23,38,

39,81,82]. We know from our previous work [17,18] that the

transmembrane form of Manduca Fasciclin II (TM-Fas II) is

expressed by ORN axons and Neuroglian is expressed by ORN

axons and central glia. The GPI-linked isoform of MFas, GPI-Fas

II, previously was detected in what appeared to be a subset of AN

glia [17], but more recently has been found to be expressed by NP,

SZ, and AN glia (Gibson, unpublished). These results are timely in

view of recent work describing homophilic interactions between

neuronal TM-Fas II and glial GPI-Fas II in Drosophila embryos, in

which glial migration along axons is regulated by cell-surface

expression of neuronal TM-Fas II [83].

In summary, we have found evidence for activated FGFRs on

central and peripheral glia of the primary olfactory pathway of

Manduca sexta. Our results indicate that these FGFRs are not

required for ORN axon targeting, but are essential for 1) the

proliferation and survival of glial cells, 2) the ORN-induced mi-

gration of NP glial cells to surround glomeruli, 3) the glia-regulated

establishment of normal dendritic territory in the glomeruli, and 4)

the glia-induced organization of ORN axon fasciculation through

the sorting zone. Despite these important effects, ORN axons do

manage to target at least one identified glomerulus correctly when

FGFR activation is blocked, suggesting a robust targeting system

with some degree of redundancy.

Supporting Information

Figure S1 The ATP and PD173074 binding pocket of
Bombyx FGFR contains all of the amino acid residues
shown to contact PD173074 in the human FGFR1. The

relevant regions of the highly conserved tyrosine kinase domains of

human and Bombyx FGFRs were aligned using the Clustal-W

amino acid alignment program at: http://npsa-pbil.ibcp.fr/cgi-

bin/npsa_automat.pl?page = /NPSA/npsa_clustalw.html [84,85].

The amino acid residues that contact the PD173074 molecule [36]

are highlighted in yellow.

(DOC)

Figure S2 Preadsorption of the anti-pFGFR antibody
with its antigenic phospho-peptide eliminates glial
labeling. A: Stage-6 brains were labeled with the anti-pFGFR

antibody (magenta) using the standard protocol. Syto 13 (green)

was used to label nuclei. B: The anti-pFGFR antibody was

preadsorbed with the antigenic phospho-peptide. Glial labeling

was largely eliminated, as was most of the AL neuron labeling. C:
When the anti-pFGFR antibody was omitted from the protocol

(No Primary Control), weak labeling of the AL neurons was

visible, suggesting that the residual labeling in B was partly due to

non-specific labeling by the secondary antibodies. LG, MG = lat-

eral and medial group of AL neuron cell bodies. A9–C9: pFGFR

channel alone. Projection depths were 15 mm.

(TIF)

Figure S3 Labeling for FGFRs and HSPG matches that
for pFGFRs. A: An antibody to the extracellular domain of

human FGFR1 labels glial cells and AL neuron cell bodies as was

seen for pFGFRs. A9: An enlarged and deeper region of A reveals

labeled glial processes (arrowheads) and colocalization of labels for

FGFRs and DNA (arrow). B: An antibody to heparan sulfate

proteoglycans, necessary components of the FGF-FGFR-HSPG

complexes required for ligand-mediated FGFR activation, labels

glial cells and AL neuron cell bodies, but not AL neuron dendrites

or ORN axons. Arrowheads point to glial processes surrounding

glomeruli (*). C–C0: A higher magnification image of NP glia

surrounding a single stage-7 glomerulus. Glial processes were

labeled (arrowheads in C, C0) as was seen for FGFRs (A9). C0:
Merged HSPG and Syto 13 images demonstrates colocalization in

the nuclei, as was seen for pFGFRs (Fig. 4 and panel S3A9). D–
D0: AN glia also display labeling of processes (arrowheads) and

nuclei. LG, MG = lateral and medial group of AL neuron cell

bodies. Projection depths = 5 mm in A, A9. Images were single

optical sections in B–D0. 406 objective in C–D0.

(TIF)

Figure S4 Apoptag channel version of Figure 10. A–F:
Control and PD173074-treated animals were allowed to develop

to various stages, then dissected and analyzed for apoptotic nuclei

using the TUNEL technique. Numerous apoptotic nuclei were

seen in treated animals (panels B,D,F), but few to no apoptotic

nuclei were seen in control animals (panels A,C,E) at all stages

examined. Arrowheads in panels B,D indicate apoptotic nuclei

among the medial group of antennal lobe neurons. Inset in panel F
shows a higher magnification view of a region within the sorting

zone of the antennal nerve. Projection depths = 10 mm.

(TIF)

Figure S5 ORNs exhibit no evidence for FGFRs. A:
Antennal nerves of untreated stage 7 females were labeled with the

pFGFR antibody (magenta). Dark spaces between glia are filled

with ORN axons. B: Antennae from the same animals were

sectioned in longitudinal section and labeled with the pFGFR

antibody. Counterstains (green) were Syto 13 in panel A to show

nuclei and LEL-fitc in B to delineate ORN cell bodies and sensilla.

Using the collection parameters from panel A we found no

labeling of ORN cell bodies or sensillar processes (panel B,

pFGFR channel alone in B9). C: Antennal nerves of untreated

stage 7 females were labeled with both the pFGFR (C, magenta)

and Fasciclin (C9, blue) antibodies. Syto 13 labeling of nuclei

(green) serves to align the images in panels C,C9. We found no

evidence of pFGFR labeling in ORN axons. Projection depths

were 15 mm in A, 3 mm in C. Image in B was a single optical

section (406 objective).

(TIF)

Figure S6 The M. sexta Eph receptor is unlikely to be
affected by PD173074. Alignments of a section of the tyrosine

kinase domains of the human FGFR1 and the M. sexta Eph

receptor shows that many of the amino acids required for binding

PD173074 (yellow highlighting) are different in the latter case

(gray highlighting), suggesting that, as for vertebrates, PD173074
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would not affect M. sexta Eph receptors. Note, too, the large gaps

needed to achieve the alignment (compare to Figure S1).

(DOC)
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