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A quantitative analysis of the interplay of
environment, neighborhood, and cell state in
3D spheroids
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Abstract

Cells react to their microenvironment by integrating external stim-
uli into phenotypic decisions via an intracellular signaling network.
To analyze the interplay of environment, local neighborhood, and
internal cell state effects on phenotypic variability, we developed
an experimental approach that enables multiplexed mass cytomet-
ric imaging analysis of up to 240 pooled spheroid microtissues. We
quantified the contributions of environment, neighborhood, and
intracellular state to marker variability in single cells of the spher-
oids. A linear model explained on average more than half of the
variability of 34 markers across four cell lines and six growth
conditions. The contributions of cell-intrinsic and environmental
factors to marker variability are hierarchically interdependent, a
finding that we propose has general implications for systems-level
studies of single-cell phenotypic variability. By the overexpression
of 51 signaling protein constructs in subsets of cells, we also iden-
tified proteins that have cell-intrinsic and cell-extrinsic effects.
Our study deconvolves factors influencing cellular phenotype in a
3D tissue and provides a scalable experimental system, analytical
principles, and rich multiplexed imaging datasets for future
studies.
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Introduction

The ability of a cell to sense and adapt to its local environment

depends on an intracellular signaling network that integrates

paracrine, juxtacrine, nutritional, and mechanical cues to drive

phenotypic decisions (Fig 1A). Genomic alterations that deregulate

environment sensing and signaling can enable cells to grow outside

their physiologically permissive tissue context, leading to diseases

such as cancer. Since even strongly deregulated cells depend on and

react to microenvironmental cues (Snijder & Pelkmans, 2011;

Battich et al, 2015), microenvironment-induced cellular plasticity

may contribute to the clinically relevant tumor cell heterogeneity

observed in cancer tissues (Marusyk et al, 2012; Bodenmiller,

2016).

Assessments of spatial heterogeneity for several types of tumors

have been performed based on protein and transcript measurements

(Shah et al, 2017; Regev et al, 2017; Moffitt et al, 2018; Keren et al,

2018; Ali et al, 2020; Jackson et al, 2020; Sch€urch et al, 2020). Miss-

ing, however, is a quantitative understanding of how the tissue

environment influences heterogeneity. Existing atlases of cancer

tissues are based on static measurements of cellular markers that

cannot reliably discriminate environment-dependent phenotypic

plasticity from phenotypic variation due to genomic or lineage dif-

ferences (Wagner et al, 2016; Regev et al, 2017). To quantify vari-

ability caused by the environment, it is necessary to identify

comparable cells that vary phenotypically only because their envi-

ronments differ.

To address this issue, we developed a system to quantitatively

study multicellular spheroids consisting of clonal cells (Kunz-

Schughart, 1999). We reasoned that this type of homogenous

system would serve as a simplified model to quantify the influence

of the global environment, local environment, and cell state on

measurable cellular phenotypes. Further, as spheroid cell culture is

compatible with 96-well microplates, this technology is suitable for

large-scale perturbation studies and can be extended to more

complex co-culture systems or heterocellular organoids (Friedrich

et al, 2009; Wenzel et al, 2014; Fu et al, 2017; Qin et al, 2020).

To efficiently quantify phenotypic and signaling states of cells in

spheroids at high throughput, we coupled metal-based barcoding
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Figure 1. Barcoded IMC assays allow efficient spatial profiling of pooled spheroids.

A Cells sense their environment and compute cellular decisions via a signaling network. Left: Depiction of spheroids at different scales: spheroid with global gradients,
for example, of nutrients and oxygen (top), cellular neighborhood (middle), and single cell (bottom). Right: A schematic graphical model highlighting how global
environment (pink box), local neighborhood (blue box), and intracellular state (gray box) can determine the levels of a given marker.

B A schematic illustration of the signaling network markers, cell state markers, and other phenotypic markers measured using IMC (green). Nodes depicted in white
were not measured.

C Diagram of the approach used for multiplexed IMC analyses of spheroids. The image quantification step involves extraction of information in the form of tabular
measurements from images. The data analysis step includes project-specific, statistical analyses of extracted measurements and their relationships to the different
perturbations used.
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with antibody-based multiplexed imaging mass cytometry (IMC)

(Bodenmiller et al, 2012; Giesen et al, 2014; Zunder et al, 2015).

This approach allowed us to process up to 240 spheroids simultane-

ously and to measure the levels of dozens of phenotypic markers in

hundreds of sphere slices containing hundreds of thousands of cell

sections. We evaluated spheroids formed by four cell lines, each

grown in six different growth conditions, quantified single-cell

marker levels, and analyzed how cell state, local neighborhood, and

global environment interact to contribute to cell-to-cell variability in

marker expression. Further, to explicitly probe cell-to-cell signaling

interactions, we developed a chimeric overexpression-based

approach to test the effects of overexpression of 51 ligand and recep-

tor components of more than a dozen different signaling pathways

on responses of neighboring cells. We observed that internal cell

state and environmental features are strongly interdependent in

their influence on marker variability, a finding that should be taken

into account in systems-level studies of more heterogenous tissues

as well. Our approach provides a blueprint for large-scale, multi-

plexed imaging studies on any 3D microtissue and for deconvoluting

microenvironmental and internal contributions to cellular pheno-

type in spatial data.

Results

Spheroid culture coupled with multiplexed imaging enables
quantification of phenotypic variability

To investigate factors that influence phenotypic variability in spher-

oids consisting of clonal cells, we developed a combined experimen-

tal and computational workflow. We grew cells as spheroids and

imaged histological sections of these 3D tissues using IMC (Giesen

et al, 2014). We used a panel of antibodies that detect 20 growth

signaling markers, nine cell-cycle or apoptosis markers, and three

markers capturing other molecular phenotypes (Fig 1B, Dataset

EV1). We characterized the internal state of each cell by quantifying

marker levels in individual cell sections; in this paper, cell state is

defined as measurements of all intracellular marker levels (Fig 1A,

gray box). We evaluated the local environment of a cell by quantify-

ing marker levels within neighboring cells (Fig 1A, blue box).

Finally, since this culture system shows radially symmetric gradi-

ents of nutrients, oxygen, and growth factors (Carlsson & Acker,

1988; Kunz-Schughart, 1999; Hirschhaeuser et al, 2010), we used an

estimate of the distance from a cell to the border of the spheroid as

a surrogate measurement of global environmental influences on

phenotype (Fig 1A, violet box, Fig EV1C “Processing”).

Histological sectioning, staining, and quantitative analysis of

individual 3D microtissues are challenging to perform at scale:

Cutting and staining spheres individually are very labor- and

resource-intensive. To improve scalability, we adapted a metal-

based barcoding approach from single-cell mass cytometry (Boden-

miller et al, 2012; Zunder et al, 2015) (Figs 1C and EV1A). This

approach enabled barcoding of up to 240 single spheroids grown in

individual wells of multi-well plates. After barcoding, spheres were

pooled into a dense cylinder for efficient embedding and cutting.

Sections from the spheroid plug were then imaged using bright-field

imaging, and sections containing dozens of spheres were selected

for staining and IMC analysis. The metal barcodes allowed us to

relate each imaged sphere section to its sphere of origin and thus to

the cell line and perturbation (Fig EV2A–C). Pooled processing of

spheres reduced the manual labor and processing variability, and

staining of spatially concentrated spheres reduced the amount of

antibody required compared with other approaches (Ivanov &

Grabowska, 2017). Finally, we improved data quality by applying

rigorous quality control steps on the cell, sphere slice, and intact

sphere data by leveraging orthogonal imaging modalities such as

bright-field and fluorescent imaging (Fig EV1B and C). Quantitative

analysis on this scale necessitates thorough quality control to avoid

technical artifacts.

We grew spheroids from four widely used epithelial cell lines that

reproducibly form smooth spheroids (Zanoni et al, 2016). T-47D cells

are derived from a breast cancer tumor (Holliday & Speirs, 2011), HT-

29 and DLD-1 lines are derived from colorectal tumors (Dexter et al,

1981; Fogh, 2013), and T-REx-293 cells are derived from human

embryonic kidney cells (Stepanenko & Dmitrenko, 2015). We chose

these cell lines with the goal of identifying cell line-specific and

general factors that influence phenotypic variability. In addition, to

examine whether our results were affected by spheroid size or growth

time, we grew each of these four cell lines at three cell seeding concen-

trations (5 replicate wells each) and for two different time periods (72

and 96 h) resulting in a total of 120 spheroids (Fig EV2D). After

cutting the pooled spheroid pellets, sections were stained with our

antibody panel (Fig 1B, Dataset EV1) and imaged using IMC. After

quality control and image processing, our data included 517 cuts from

100 spheres, corresponding to 228,740 cell sections with an average

of 19,530 cell sections per cell line and growth condition (min =
1,426, max = 28,170, Dataset EV2). This corresponded to an average

of 5 randomly selected sections per sphere.

Marker levels show strong dependence on environment and are
cell intrinsically and spatially correlated

We segmented the imaged spheroids into single-cell sections using a

combination of machine learning and computer vision algorithms

and quantified the average level of each measured marker for each

single cell. Dimensionality reduction analysis showed a near-perfect

separation into cells of the different cell lines as identified by debar-

coding (Fig EV3A). We further confirmed that there were likely no

misassignments during debarcoding with a clustering-based analysis

(Fig EV3B–D). Visual inspection of spheroid images showed clear

marker-specific spatial variation. Certain markers appeared in

patches of cells, whereas the levels of other markers were depen-

dent on distance to the spheroid border (Fig 2A and B). These

results indicate that both the local environment and global effects

influence marker expression.

To systematically investigate intracellular, local, and global rela-

tionships for the 34 markers measured, we calculated Pearson’s

correlations between intracellular levels of each marker in a given

cell (cell state) and between intracellular markers and the average

levels of markers in the immediate neighbors of the cell (local neigh-

borhood) (Fig 2C). We also calculated the distance from the cell to

the spheroid border as a proxy for the global environment and visu-

alized average marker levels relative to this distance. The results for

the HT-29 cell line are representative (see Fig EV4A–C, for example,

data on all cell lines), and analyses of this cell line in one growth

condition are discussed in this section.
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Hierarchical clustering of the intracellular marker correlation

matrix identified seven clusters (Fig 2C, left). Clusters 2, 3, 5, 6, and

7 contain markers of activated growth signaling in the EGF and

AKT/mTOR pathway, and cell-cycle markers. Mitotic markers are

found in cluster 4. Cluster 1 consists of the classical hypoxia marker

carbonic anhydrase 9 and the cell-to-cell adhesion marker CD44.

Vimentin and cleaved PARP, which were virtually absent in these

spheres, did not cluster with other markers. Markers within the

same cluster are consistently positive or negatively correlated with

distance to border (Fig 2C, top row). For instance, all markers in

cluster 3, containing EGF signaling and other markers, were posi-

tively correlated with distance to border, indicating these markers
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Figure 2. Multiplexed imaging captures spatial organization of spheroids.

A Example IMC images of a pooled spheroid plug (top row) and a HT-29 spheroid section (bottom row).
B Examples of image quantification showing log10-transformed average counts per cell section for the indicated markers.
C Correlation analysis of HT-29 spheroids (96 h growth). Left: Symmetrical Pearson’s correlation matrix of markers within each cell. Clusters (indicated by horizontal

lines and labeled with numbers) are based on hierarchical clustering of the intracellular marker correlation (distance cosine, metric average linkage). Middle:
Correlation matrix of markers in all cells (rows) and average marker levels in neighboring cells (columns). Right: Median log10 intracellular marker levels as a function
of the distance to the spheroid border. Values centered around 0. Pink arrows highlight strong spatial autocorrelations (Pearson’s r > 0.5).

4 of 21 Molecular Systems Biology 16: e9798 | 2020 ª 2020 The Authors

Molecular Systems Biology Vito RT Zanotelli et al



seem to be co-expressed predominantly in the inside of spheroids.

Conversely, all markers of cluster 6, containing cell-cycle markers

such as Ki67 and p-RB, were negatively correlated with distance to

border, indicating co-occurrence at the sphere border. These

patterns suggest that the intracellular states captured by the clusters

are linked to the spatial position within the sphere.

We next asked how these clusters mapped onto correlations

between markers in neighboring cells. We correlated intracellular

marker levels with the average marker levels of all cellular neigh-

bors and ordered the resulting correlation heat maps according to

the clustering derived from intracellular marker correlations (Fig 2C,

middle). This ordering was in agreement with correlations between

intracellular markers and average marker levels in neighboring

cells, suggesting that intracellular marker correlations also capture

correlations with the local neighborhood. Marker levels averaged

over neighboring cells were even more strongly correlated with

distance to spheroid border than were the intracellular levels, indi-

cating that the local neighborhood is strongly dependent on the

spatial position in the sphere.

We next focused on spatial autocorrelations (i.e., the correlations

between an intracellular readout and the same readout in neighbor-

ing cells) (Fig 2C, middle, entries on diagonal). Low autocorrelation

is indicative of markers being locally variable, while high autocorre-

lation suggests either that a marker occurs in cell patches or varies

smoothly in the local cell neighborhoods. Most readouts had weak-

to-medium spatial autocorrelation, but four had strong autocorrela-

tions (pink arrows; Pearson’s r > 0.5). The strongest autocorrelation

was found for the distance-to-border readout, our surrogate

measurement for the global environment; unsurprisingly, this was

almost perfectly correlated with the average distance to border of

neighboring cells. The other three strongly autocorrelated markers,

p-S6, carbonic anhydrase, and p-FAK, were also all highly correlated

with the distance-to-border measure (Pearson’s r with distance to

border > 0.5); these gradients of expression were confirmed visually

in spheroid sections (Fig 2A and B). Thus, spatial autocorrelation

can capture effects of the global environment. However, low spatial

autocorrelation of a marker does not necessarily imply a lack of

influence by the global environment. For example, p-Rb, a marker

of cells that have completed the G1/S transition, showed a strong

distance-to-border effect (Fig 2C, right), yet only a moderate auto-

correlation (Pearson’s r = 0.35). This low local autocorrelation

suggests that cells in a local neighborhood do not progress through

a cell cycle in a synchronized manner even though our data overall

show that the position of a cell in the global gradients determines its

likelihood of being in a certain cell-cycle state.

Direct visualization of average marker levels as a function of

distance to border confirmed that clusters defined by intracellular

correlations show similar marker localization patterns (Fig 2C,

right). This supports our hypothesis that intracellular marker corre-

lations capture elements of the global environment (i.e., spatial

position within the spheroid). We also observed a spatial segrega-

tion between markers of growth signaling, early cell cycle, and late

cell cycle in all cell lines: AKT/mTOR signaling peaked in the outer-

most sphere layer, early cell-cycle markers (p-RB, Ki67) were

located in the penultimate layers, and markers of the late cell cycle

(cyclin B1) were generally located in the middle layers of the sphere

(Fig EV4D). Thus, cellular states carry information about the spatial

position of a cell within a sphere. Taken together, our analysis

indicates that intracellular markers are not only correlated within

cells but that these states are also closely related to the cellular

states of neighbors and the spatial location of cells in the global

environment.

Measurements of internal cell state, local environment, and
global environment are interdependent

Given the strong and highly structured correlations observed, we

asked to what degree marker levels are predictable by environ-

ment, local neighborhood, and cell state. We used linear modeling

to predict the levels of each marker based on different predictive

modules: the global environment module (a nonlinear function of

the distance to border), the local neighborhood module (the aver-

age marker levels of direct neighbors without autocorrelation), the

local autocorrelation module (average marker levels of the

predicted marker in immediate neighbors), and the internal cell

state module (all other internal markers) (Fig 3A). In 56% of

cases, the linear model including all modules explained more than

50% of the marker variability (Fig 3B). With the exception of few

highly cell line-specific markers, total marker variability explained

was usually similar for the different cell lines. In the best cases,

the model explained about 85% of the total variation. The resid-

ual unexplained variance likely reflects a combination of technical

variability in staining, detection, and quantification, the biological

variability, and the inability of the linear model to capture nonlin-

ear marker relationships. There was a clear relationship between

average predictability and signal intensity for low-intensity mark-

ers (Fig EV5A), but not for markers expressed at medium- to

high-intensity levels (higher than 1 average count per cell pixel).

Thus, technical noise likely dominated the detection of the low-

intensity markers.

Next, we investigated the explanatory power of the individual

modules (Fig 3C–F). We expected that modules would not be inde-

pendent in their explanatory power due to properties that result

from the spatial tissue architecture: A cell and its neighbors, by

virtue of their proximity, are subject to very similar global environ-

mental cues. The global environment will thus similarly influence

marker expression in a cell and its neighbors, leading to an indirect

correlation between the two (Fig 3C). We therefore expected that

measurements of the local neighborhood should also capture

marker variability caused by the global environment. This was

strongly supported by our data: The linear model based on the

global environment module alone explained a median of 8.0% of

variation. The local neighborhood module alone explained a median

of 12.8% of variation. Adding the global environment module to a

model containing the local neighborhood module only improved the

predictive power by a factor of 1.12, an increase of only + 1.5%

additional variability explained (Fig 3F top, Fig EV5C). This indi-

cates that indeed the local neighborhood largely captures the global

environment in the ability to explain marker variation.

By similar reasoning, if the expression of a marker in a given cell

is strongly determined by the local and global environments, levels

will be similar in neighboring cells (i.e., it is likely to be spatially

autocorrelated). In this case, the local environment influences the

expression of a given marker both in the cell of interest and in its

neighbors (Fig 3D), and autocorrelation alone should explain a

substantial fraction of marker variation caused by local and global
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neighborhood effects. Supporting this hypothesis, local autocorrela-

tion alone explained a median of 12% of marker variability in our

data. The global environment and local neighborhood features

together explained a median of 15% of marker variability. Adding

these features to a model based on local autocorrelation improved

the predictive power by 1.38-fold (+4.1%). This indicates that local

A B
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D

E

F

Figure 3.
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autocorrelation alone captures around two thirds of the variability

explained by spatial effects (Fig 3F middle, Fig EV5B).

Finally, since cells convert external stimuli into an intracellular

response via a highly interconnected intracellular signaling

network, we expected that environmental effects would not only

influence the expression of markers determined directly by the

environment, but also influence the expression of related internal

markers (Fig 3E). Thus, a comprehensively measured internal cell

state should capture much of the marker variability caused by the

environment and neighborhood. This effect was indeed seen in

our dataset: The internal cell state markers alone explained a

median of 47% of variability, whereas all environmental terms

together explained 17% of variability. Adding the environmental

modules to the internal cell state module (to yield the full model)

explained a median of only 1.05-fold more variability (+1.9%)

than did the internal cell state module alone. Further, a model

based solely on the internal cell state module captured more vari-

ability than a model with all neighborhood terms in 97% of cases

(Fig 3F, bottom, Fig EV5C).

Analyses of three markers illustrate these patterns of increasing

explanatory power as different modules are added to the model for

HT-29 cells (Fig EV5B). Carbonic anhydrase IX (CA9) is a hypoxia

marker, and its expression is known to depend on environmental

conditions (Lal et al, 2001). Consistent with its role as a hypoxia

marker, CA9 expression was observed in the sphere center (Fig 2).

Although 31% of CA9 variation was explained by the global envi-

ronment, the local neighborhood alone and spatial autocorrelation

alone explained more variability (39% and 43%, respectively; Figs 3

F and EV5B). Adding the global environment module to a model

containing these local readouts barely improved the predictive

power (+0.1%). The internal state module alone predicted 61% of

CA9 variation, whereas all environmental features together only

predicted 58%. One might naively interpret these data on the basis

of explanatory power to conclude that, since cell state alone

explains more variability than all the spatial readouts, CA9 is largely

dependent on internal cell state. Or, since spatial autocorrelation

explains more variability than local neighborhood or global environ-

ment, one could conclude that autocorrelation is the most important

spatial effect. However, we independently know that CA9 is envi-

ronmentally determined (Lal et al, 2001). Thus, interpretations

solely based on the explanatory power of features and that do not

take into account their interdependence would miss the key biologi-

cal dependence of this marker on the environment.

Similarly pS6, a growth marker, is dependent on the global envi-

ronment since it is present at the highest levels in the outermost rim

of the sphere consistent with its role in nutrient signaling (Fig 4C)

(Manning & Toker, 2017). The explanatory powers of independent

features suggest that pS6 depends more strongly on the local neigh-

borhood than the global environment and even more strongly on

the intracellular cell state (Fig 3F). However, accounting for the

interdependencies between these factors, it becomes clear that the

expression of pS6 is largely determined by the environment (Fig

EV5B).

Finally, we found that also cell-cycle markers such as p-Rb are

spatially segregated in the spheroids (Fig EV4D) and that 10% of

the variability is explained by the global environment. This effect

was largely captured by the local neighborhood and by internal cell

state (Fig 3F). It is not surprising that a cell-cycle marker is

predicted by internal cell state markers; however, treating the

predictive factors as independent entirely masked the environmental

contributions to marker variation. Had we not accounted for the

interdependency between these factors, the spatial dependence of

cell cycle in spheroids would have been missed (Fig EV5B).

In summary, a linear model based on measured global, local,

and internal cell state features predicted a substantial fraction (an

average of 50% and up to 85%) of single-cell marker variance in

homogenous 3D spheroids. Our data strongly support our concep-

tual model-derived hypothesis that global environmental features,

local environmental features, and intracellular features are interde-

pendent in their ability to predict marker variation.

Step-wise regression captures hierarchy of environmental
marker dependencies

The interdependencies we identified in the ability of different

modules to predict marker variation appear to follow a hierarchy,

with the explanatory power of the global environment captured by

that of the local environment, which in turn is captured by that of

intracellular features. We exploited this hierarchy to derive a

concise visualization of the factors influencing marker variability.

We reasoned that a biologically informative representation would

indicate additional variability explained as each module is added

step-wise to a regression model (Williams, 1978; Kruskal, 1987).

The increasing order of explanatory power we observed, which also

supports our conceptual model of cells interacting in tissue (Figs 1A

and 3C–E), suggests that submodules should be added in the order

◀ Figure 3. Global environment, local neighborhood, and cell state are not independent predictors of single-cell marker levels in 3D spheroids.

A Marker levels predicted with a linear model using modules representing global environment (violet in schematic), local neighborhood (blue), autocorrelation (teal),
and cell state (red). Squares represent protein marker states, and triangles represent nutrients or secreted growth factors.

B Variance explained by the full model plotted for each marker, for all cell lines, and for all growth conditions.
C The schematic depicts a confounding effect, through which a marker in a cell (green square) can be indirectly correlated with neighboring cell markers (dashed blue

arrows) due to the global environment (violet arrows) affecting both cells and their neighbors.
D Schematic depicting how confounding can cause a marker (green square) strongly dependent on the local and global environment to be statistically autocorrelated

in neighboring cells (dashed teal arrow).
E Schematic depicting how environmental influences on marker levels are transmitted via other intracellular proteins. Thus certain internal marker levels do capture

environmental effects (red arrows).
F Variance explained by the indicated modules for all markers in all cell lines and growth conditions. The data are visualized to illustrate the minimal added

explanatory power of the local neighborhood over global environment (top), of autocorrelation over other spatial factors (middle), and of internal cell state markers
over all environmental factors (bottom). p-S6, p-Rb, and carbonic anhydrase are highlighted examples (see also Fig EV5B).

Data information: For all schematics (C-E), bold arrows indicate a direct effect and dotted arrows indicate indirect statistical correlations.
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of global environment, local neighborhood, autocorrelation, and

internal cell state (Fig 4A). Exhaustive permutations indeed con-

firmed that this sequence (of all possible sequences of step-wise

addition of these modules) optimally captures the contributions of

all factors (Fig EV5E). Other sequences of module addition either

mask the contributions of some modules or incorrectly exaggerate

the contributions of others, as seen for p-S6 variation, for example

(Fig EV5D).

We then used this representation to compare the marker varia-

tion explained by global environment, local neighborhood, and

internal cell state for each marker across cell lines and growth

conditions. Averaged over all cell lines, markers, and conditions,

the linear model containing all modules explained 50% of variation,

whereas 20% was explainable by all environmental factors (Fig 4A).

Within the spatial effects (i.e., global environment, local neighbor-

hood, and local autocorrelation), the global environment explained

on average more than half (55%) of the variability. Averaging

across all markers and growth conditions for each of the four cell

lines showed similar dependencies (Fig 4B), suggesting that each of

these cell lines reacts similarly to internal and environmental influ-

ences when grown as 3D spheroids.

Our concise visualization based on the hierarchy of explanatory

power also enabled fine-grained comparison of how each of the 34

markers depends on the global and local environments in four cell

lines and under six growth conditions, allowing more than 4,000

comparisons (Fig 4C). We observed both general and cell line-speci-

fic effects. We note that, across the dataset, the average standard

deviation of the explained variability was less than 0.04 for all

models (overall average 0.036, iqr. 0.018–0.047) across five

spheroid replicates for each of the 24 growth conditions.

Since the cell cycle is a major source of cell-to-cell variability

(Gut et al, 2015; Buettner et al, 2015; Rapsomaniki et al, 2018), we

further classified the internal markers into cell-cycle and non-cell-

cycle markers (Dataset EV1). For a given cell-cycle marker, an aver-

age of around 50% of variability was explained by the full model

(Fig 4C). Cell-cycle markers and environment together captured

75% of this variation. An exception across all cell lines was p-HH3,

a mitotic marker, for which environment and cell-cycle markers

A

C

B

Figure 4. Marker variance is hierarchically explained by cell-intrinsic and environmental factors.

A Average marker variability over all markers explained by global environment, local neighborhood, autocorrelation, cell-cycle markers, and all intracellular markers. For
each bar, colored portions indicate the variability explained by the particular module alone and the light gray portion indicates the additional variability explained
when the previous module or modules are also included in the model. Dark gray indicates unexplained variance. Since the variability explained by each feature is not
additive but roughly follows a hierarchy, the contributions to the full model are represented as a stacked bar plot.

B Contributions of the different modules to marker variance for each cell line, averaged over all markers and growth conditions.
C Contributions of the different modules to marker variance for each cell line and growth condition. Rows represent cell lines. Columns show marker abundances at a

specific growth condition. Columns represent growth conditions varied by sphere sizes (triangle, 0.25/0.5/1.0x cells) and growth time (72 h green, 96 h pink).
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explained only 58% of all explainable variation. This suggests that

mitosis is strongly linked to the cellular state as a whole and not only

to cell-cycle markers. We also observed cell line-specific effects. For

instance, Ki67 variability was strongly linked to non-cell-cycle intra-

cellular markers specifically in T-REx-293 cells. Early cell-cycle

markers, p-RB and Ki67, showed little dependence on the global

environment in T-47D cells (approximately 2% variability

explained), but the global environment explained 7-12% of the vari-

ability observed in HT29, DLD-1, and T-REx-293 cells. Of all the cell-

cycle markers, cyclin B1 levels were the most dependent on the envi-

ronment, with an average of more than 20% of variability explain-

able by global environmental gradients in all cell lines (Fig 4C).

The AKT/mTOR pathway is involved in growth and nutrient

signaling (Manning & Toker, 2017). We found that the levels of

multiple markers of this pathway are explained by environment and

local neighborhood features. A downstream readout of this path-

way, p-S6, was strongly dependent on environmental factors in all

cell lines. Other upstream markers, such as p-AKT and p-GSK3beta,

showed cell line-specific effects: Environmental factors had higher

explanatory power for these markers in DLD-1 cells than in other

cell lines. Finally, the levels of p-AMPK, reported to be a nutrient

sensor (Mihaylova & Shaw, 2011), were strongly explained by the

cell cycle but only slightly by environmental factors. This is also

reflected in the correlation maps, which showed that p-AMPK

expression was correlated with that of mitosis markers (Figs 2C and

EV4A–C), consistent with the reported association of this marker

with the mitotic spindle (Vazquez-Martin et al, 2009a, 2009b).

In summary, our analysis of multiplex imaging data in homoge-

nous 3D tissue models allowed a detailed deconvolution of the

factors affecting marker variation. Internal cell state, local neighbor-

hood, and global environmental factors are interdependent and

follow a hierarchical order of their explanatory power for marker

variation. The variability explained by different factors was on aver-

age similar across cell lines. There were, however, impacts of cell

line and growth conditions on expression levels of certain markers.

Our data allow granular identification of these cell line-specific and

growth condition-specific patterns in marker dependencies.

Signaling deregulation affects cells and their neighbors
in spheroids

Our experiments showed that, after correcting for global effects, on

average 6% of marker variability was predicted by neighboring cell

markers. To explore whether these correlations reflect spatial coordi-

nation due to active communication between cells, other biological

effects, or technical artifacts, we developed an overexpression

system to induce changes in individual cells and investigate the

effects on neighboring cells. We hypothesized that in the overexpres-

sion context, active cell communication should lead to systematic

changes in neighboring cell states. We used a previously described

library of 32 pro-cancer signaling protein constructs involved in 17

pathways and containing many common cancer driver mutations

(Martz et al, 2014), supplemented with ten growth factor receptors,

nine ligands, and four negative controls (Dataset EV3). Inducible

expression vectors for each GFP-tagged protein were individually

transiently transfected into separate wells of T-REx-293 cells. Over-

expression was induced during 24 h after spheroid formation (Fig 5A

and B). Under the conditions used, overexpression usually occurred

in a subset of cells in a spheroid (Fig EV6A). We combined GFP

detection using two independent antibodies to identify cells that

overexpressed a particular protein (overexpressors), the direct neigh-

bors of overexpressors that did not themselves overexpress the

protein (neighbors), and non-overexpressing cells that were not

neighbors of an overexpressing cell (bystanders) (Fig 5C). Further,

we assigned weakly GFP-positive cells that were localized next to

strongly overexpressing cells as ambiguous, since discriminating

weak overexpression from spurious positivity due to spatial proxim-

ity was not possible. In total, we assessed six replicate spheres for

each construct and 30 mock-transfected spheres as technical nega-

tive controls. We analyzed more than 500,000 cells from 1,968

spheroid sections from 278 spheroids (Dataset EV2), corresponding

to an average of 7 random sections per sphere.

For each of the overexpression constructs, we tested whether

overexpressor, neighbor, or bystander cells were significantly dif-

ferent in their marker expression from cells of mock-transfected

spheres (linear mixed-effects model, P < 0.01, q < 0.1, fc > 20%).

Whereas intracellular effects should be largely cell-autonomous, we

expected that effects on direct neighbors should be dominated by a

combination of juxtacrine and paracrine effects. Further, we

assumed that bystanders are mainly affected by longer-range para-

crine effects of cells in the measured plane and in the planes above

and below the evaluated cell, though juxtacrine effects of off-plane

cells could also plausibly contribute to bystander effects.

First, we examined cell-autonomous effects of overexpression.

Compared with the mock-transfected control spheres, we observed

a stress response in overexpressors for most constructs (p-p38:

86%, p-SAPK/JNK: 64%, Figs 5D and EV6B), including three of the

four negative control constructs. A nonspecific stress response to

overexpression was not unexpected (Moriya, 2015) and thus was

not reported as an overexpression-specific effect or included in

reported statistics except when explicitly mentioned. We observed

that the overexpression of 23 of 32 intracellular signaling proteins,

seven of nine ligands, and ten of ten receptors but none of the four

negative controls significantly affected more than one intracellular

marker (Figs 5D and EV6B). This indicates that the overexpression

of most of the constructs perturbed the intracellular state.

The overexpression effects were often consistent with known

functions of the overexpressed protein and usually involved multiple

markers in the relevant pathway (Figs 5D and EV6B). For example,

EGFR overexpression increased total EGFR and p-HER2 as expected

(Fig EV6B) (Alroy & Yarden, 1997). FGF receptor overexpression

strongly activated its downstream target p-ERK1/2 as well as p-EGFR

and p-HER2 (Fig EV6B) as previously reported (Hinsby et al, 2003).

TGF-beta and TGF-beta receptor 2 overexpression both reduced Ki67

and p-RB levels significantly (Fig 5D) as reported (Massagu�e, 2012).

Reassuringly, in the three cases where an antibody in our panel

detected the overexpressed protein, we detected significantly higher

levels of the overexpressed proteins in cells transfected with the

particular expression construct than in mock-transfected control

cells. Where a phosphorylation site in the overexpressed protein was

monitored, we observed an increase upon overexpression in three of

four cases. The exception was EGFR overexpression, which

increased total EGFR and phosphorylation of its interaction partner

HER2 but surprisingly did not increase levels of p-EGFR. Overall,

these data show that our approach detects biologically expected

intracellular responses to overexpression.
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We next examined the effects of overexpression on neighboring

cells, making use of the GFP intensity in neighbors as an additional

criterion to account for spatial signal bleed-over. Of the 55

constructs tested, nine caused changes in more than one marker in

neighboring cells and ten caused multiple changes in bystander cells

(Fig 5D). Notably, all of these also caused specific and significant

changes in internal cell state as well. Of the constructs that caused

changes in the expression of at least two markers in neighboring

cells, one was a ligand (of eight ligands tested), five were intracellu-

lar signaling proteins, and four were receptors (of 10 receptors

tested) (Fig 5D). The effects on neighbors (marker fold change, iqr

[1.2–1.5], max 2.4) and bystanders (iqr [1.2–1.4], max 2.0) were

usually weaker than internal effects of overexpression (iqr 1.3–5.1,
max 42.8).

A

B

D

C

Figure 5. Systematic overexpression reveals spatial effects of signaling deregulation.

A Left: Depiction of a spheroid with a cell overexpressing a construct of interest (green) that has an effect on a neighboring cell. Protein overexpression could have
intracellular and neighborhood effects. Right: Illustration of an overexpression situation and the question of whether the overexpression of protein P (green) alters the
expression of marker G in a neighboring cell.

B A schematic of the overexpression system used in this study. Inducible transient transfection leads to GFP-tagged protein overexpression in a fraction of cells in
spheroids.

C A representative image of a spheroid is shown illustrating the identification of overexpressing cells (green), their neighbors (blue), and bystander cells (white). In cells
classified as ambiguous (pink), we could not distinguish between overexpression in the cell itself and signal spillover from overexpressing neighbors. White scale bar
indicates 50 μm.

D Matrix of overexpression estimated effects of constructs (rows) on markers (columns) classified as intracellular ( green ), neighborhood ( blue ), and bystander (gray)
in column at the far left. Yellow dots indicate strong, significant effects (P < 0.01, q < 0.1, fold change > 20%, neighbor/bystander effects: >0.1x internal effects, test:
t-statistics for linear mixed-effects model coefficients using Satterthwaite’s method for denominator degrees of freedom). All controls and constructs with
neighborhood or bystander effects on more than one marker are shown here (see Fig EV6B for data for all constructs).

10 of 21 Molecular Systems Biology 16: e9798 | 2020 ª 2020 The Authors

Molecular Systems Biology Vito RT Zanotelli et al



We found that the overexpression of constitutively active YAP

5SA had the most profound effect on the measured marker panel; it

affected 13 markers intracellularly and 7 markers in neighboring

cells. The intracellular effects indicated an activated MAPK pathway

(as indicated by increased EGFR, p-HER2, p-ERK, and p-MEK

expression) and activated mTOR/AKT signaling (increased p-AKT,

AKT, pGSK3Beta, and p-AMPKalpha expression). Both these path-

ways are thought to be upstream of YAP, thus indicating an intracel-

lular positive feedback loop (Basu et al, 2003; He et al, 2015). The

overexpression of constitutively active YAP also affected AKT

signaling and p-HER2 in neighbors indicating an intercellular effect.

We speculate that this combination of intra- and intercellular signal-

ing could be mechanistically explained by the excretion of a ligand

that elicits both autocrine and paracrine effects, consistent with the

autocrine loops reported for this pathway (He et al, 2015; Rizvi

et al, 2016). However, the overexpression of two ligands that are

transcriptional targets of YAP, AREG and FGF1, and that have been

suggested to be involved in these autocrine signaling loops, did not

elicit the same effects as YAP 5SA overexpression.

We found that, of the overexpressed ligands, only TNF had

strong effects on more than one marker in neighboring cells. TNF

overexpression induced apoptosis throughout the sphere, in both

neighbor and bystander cells (Figs 4C and EV6). In summary, these

perturbation experiments demonstrated how coupling multiplexed

imaging to 3D tissue culture can be used to study non-cell-autono-

mous effects of signaling deregulation, providing insight into the

factors determining spatial relationships between markers and thus

into the mechanisms underlying cellular organization.

Discussion

Cell state and environmental measures influence cellular
phenotypes in an interdependent manner

We coupled a 3D spheroid tissue model system with highly multi-

plexed imaging to characterize the influence of global and local cellu-

lar environment on cellular phenotypes. We observed that measures

of local and global environments and internal cell state are not inde-

pendent in their abilities to predict marker variation. Rather, there

were strong nonadditive interdependencies among these factors.

Specifically, and consistent with the spatial architecture of spheroids,

measurements of the local neighborhood of a cell captured marker

variability explained by the global environment. Spatial autocorrela-

tion alone explained much of the marker variation captured by local

and global environmental effects. Finally, intracellular state markers

(including cell-cycle markers) recapitulated much of the explanatory

power of all environmental effects combined.

Such interdependencies must be taken into account in studies

aiming to deconvolve the contributions of environmental factors to

phenotypic variability. For example, although a comprehensive

intracellular marker measurement predicts the behavior of an envi-

ronmentally sensitive marker even without an environmental

measure, this does not mean that such environmental effects do not

exist. In fact, environmental effects could be the causal reason for

the behavior of the marker, reflected in the fact that intracellular

markers are accurate surrogates for environmental conditions in

nonspatial cytometry analyses (Moon et al, 2007). Examples are

hypoxia markers as surrogates for cell position in an oxygen gradient

and phosphorylated receptor levels as surrogates for ligand binding.

We showed that environmental factors that affect marker expression

(for instance, of the hypoxia marker CA9) are missed if the interde-

pendence between explanatory factors is not taken into account.

Interdependencies in spatial measurements have been acknowl-

edged in E. coli (van Vliet et al, 2018). However, a recent approach

developed for multiplexed data analysis, spatial variance component

analysis, assumes that contributions of spatial proximity (environ-

ment), neighborhood levels (cell-to-cell interactions), and cell state

(intrinsic) are independently additive (Arnol et al, 2019). This

assumption may bias results. To account for interdependencies in

our own dataset, we used a step-wise regression approach, in which

predictors were added in increasing order of explanatory power. We

showed that this regression approach was able to quantify how

phenotypic markers depend on the influence of the global environ-

ment, local neighborhood, autocorrelation, and internal markers.

We confirmed several of the identified patterns by visual inspection

of images. Our simple model system allowed us to compare the inter-

dependent effects of environmental and cell-autonomous factors on

cellular phenotype in different cell lines and growth conditions and

to quantify marker-specific differences in spheroid organization.

Our antibody panel was chosen to examine markers expected to

reflect heterogenous growth phenotypes and signaling in homoge-

nous spheroids. The chosen marker panel will to some extent affect

the model outcome; however, we observed that 50% up to 85% of

marker variability was explained using our complete linear model,

which included global environment, local neighborhood, local auto-

correlation, and internal cell state modules. For low-abundancemark-

ers (< 1 average count per cell pixel), technical detection noise likely

dominated marker variability (Fig EV5A). This was not the case for

markers expressed at higher levels, however. An additional technical

source of variability may result from our reliance on 6-µm-thick slices

of cells, measured at a lateral resolution of 1x1 μm. At this resolution,

pixels may belong to more than one cell, and segmentation is unlikely

to be perfect, which introduces technical variability. Further, our

readouts do not represent full cells but random, 6-μm-thick slices

through cells, which could introduce technical sampling variability,

in particular when markers are not uniformly distributed across the

cell. Finally, our analysis assumed linear marker relationships, which

may explain the lack of fit of our model to some extent.

Challenges in adapting the analysis to complex tissues

A future challenge will be to apply similar approaches to heterocel-

lular tissues, which are more representative models of biological

systems than the spheroids analyzed here. Though the specific

factors affecting cellular phenotypes in a particular tumor context

will vary, it is likely that the interdependencies we have identified

between intracellular and local and global environmental factors

will remain valid and could inform spatial analyses in more

heterogenous tissues as well. Such tissues are likely to be highly

structured with different cell types confined to specific locations,

resulting in strong cell-type co-occurrence patterns. Applying meth-

ods that quantify relationships between cells and their neighbor-

hood, agnostic of cell types, will likely capture cell-type co-

occurrences as neighborhood effects (Arnol et al, 2019). Although

meaningful, co-occurrence of cell types does not provide the full
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picture of how the cellular phenotype is influenced by the environ-

ment or neighborhood. Lineaging approaches could help mitigate

the confounding effects of co-occurring cell types and provide a

ground truth for phenotypically comparable cells.

Identification of biologically relevant spatial gradients in hetero-

cellular tissues will be much more challenging than in our symmetri-

cal spheroid model, which allowed estimating these gradients based

on the known location of the source (i.e., nutrients in the medium)

and of the sink (i.e., cells). Gradient characterization will be impor-

tant, as we illustrated here for spheroids, where a readout for such

gradients is key to understanding the cause of observed spatial vari-

ability and correlations. Although it may be theoretically possible to

estimate the number of relevant biological gradients in complex

tissue based only on phenotypic information (Adler et al, 2019),

capturing quantitative information on these gradients will require a

stereotypical tissue structure and biological domain knowledge.

Identifying gradients in tissues and using them as biologically rele-

vant coordinate systems will aid in identification of causes of pheno-

typic variability and will enable comparisons across tissue samples.

In summary, although modeling influences on phenotypic plas-

ticity in tumor tissue will be challenging due to complexities of cell

type and lineage, co-localization due to structured tissues, and

unknown global environmental gradients, we expect that insights

gained from the simplified spheroid systems will inform accurate

spatial analyses of phenotypic variation in more complex systems.

The influence of extreme cell states on neighboring cells

We used a chimeric overexpression system to systematically assess

the effects of deregulated signaling on cellular neighborhoods in the

spheroids formed by T-REx-293 cells. Of the 55 constructs overex-

pressed, 73% induced intracellular changes in multiple markers,

and around 20% caused non-cell-autonomous effects on neighbor-

ing and bystander cells. This indicates that the chronic overexpres-

sion of signaling proteins alters not only the intracellular state of the

cell overexpressing the signaling protein but also, at least in some

instances, cell states of neighbors.

It is likely that our analysis missed some effects: Although our

marker panel covers multiple signaling pathways and cellular

processes, our previous studies have shown that overexpression can

alter signaling transiently, without an effect on steady-state marker

levels at the time of measurement (Lun et al, 2017, 2019). Focusing

on steady-state levels in our analysis meant that we missed such

dynamic effects. Further, misfolding and mislocalization of tagged,

overexpressed constructs can lead to nonphysiological effects,

including the stereotypic intracellular stress responses evident in

our data. We observed intracellular responses consistent with

known biological functions of many overexpressed proteins, but

cannot rule out that some of the constructs were misfolded or mislo-

calized in some way.

The use of linear mixed-effects models allowed us to take into

account dependencies due to the experimental design and due to

global environmental effects, thus increasing the reliability of the

results. However, we did assume normality, heteroscedasticity, and

spatial independence of residuals. These assumptions are violated

to various degrees, potentially leading to false positives and false

negatives. Despite these theoretical reservations, the reliability of

our results is supported by the finding that the expression of nega-

tive control constructs (two different GFP constructs, HcRed, and

luciferase) did not significantly change intracellularly or in neigh-

bors in more than one marker apart from the stereotypic stress

responses, whereas 80% of overexpressed proteins did.

There are multiple potential extensions of these methods to

analyze this spatial overexpression dataset. Apart from statistically

better modeling of the spatial dependencies, these data would also

be suitable to investigate more complex phenomena such as recipro-

cal signaling, a phenomenon that has been previously described in

co-cultures, in which cells react differentially to overexpression

depending on their neighborhood (Tape et al, 2016).

In conclusion, we developed a novel tissue barcoding workflow

for simultaneous processing of up to 240 microtissues and used this

setup to generate a large multiplexed imaging dataset of homoge-

neous 3D spheroids with single-cell resolution. Our dataset will be a

useful resource for the further development of algorithmic approaches

describing spatial variability in cellular phenotypes. We have

assessed how cell state and local and global environment affect cellu-

lar phenotype and report hierarchical interdependencies of these

factors in their ability to explain marker expression. Our approach is

broadly applicable and with appropriate methodological modifi-

cations will enable the robust characterization of more complex

tissues, from co-cultures to heterocellular organoids and small

embryos. Importantly, the interdependence of local and environmen-

tal factors that we demonstrated in the simple spheroid system must

be taken into account in systems-level spatial studies of heterogenous

tissues. We also demonstrated that our approach is compatible with

perturbation studies and identified cell-autonomous and neighbor-

hood effects of overexpressed cancer-related signaling proteins. We

envision that this approach could be used to systematically study the

impact of perturbations on the organization of simple and complex

microtissues. This strategy could, for example, provide insight into

how drug treatment alters the interplay of cell types in healthy and

diseased tissue.

Materials and Methods

Reagents and Tools table

Reagent/Resource Reference or source Identifier or catalog number

Experimental models

T-REx-293 Source: Invitrogen R71007, STR: 100% match with HEK293.2sus
(ATCC® CRL-1573.3™)
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Reagents and Tools table (continued)

Reagent/Resource Reference or source Identifier or catalog number

Flp-In T-Rex DLD-1 Source: Donation Stephen Taylor lab, University of
Manchester

R71007, STR: 100% match with DLD-1
(ATCC® CCL-221™)

HT-29 Source: NCI-Frederick Cancer DCTD Tumor/Cell Line
Repository

STR: 100% match with HT-29 (ATCC® HTB-
38™)

T-47D Source: ATCC STR: 100% match with T-47D (ATCC® HTB-
133™)

Recombinant DNA

Constructs are listed in Dataset EV2

Antibodies

Antibodies are listed in Dataset EV1

Oligonucleotides and sequence-based reagents

pDEST pcDNA5 FRT TO-eGFP Source: Anne-Claude Gingras (Lunenfeld-Tanenbaum
Research Institute, Toronto, Canada, Reference: Couzens
et al, 2013

pDEST 3’ Triple Flag pcDNA5 FRT TO Source: Anne-Claude Gingras (Lunenfeld-Tanenbaum
Research Institute, Toronto, Canada, Reference: Couzens
et al, 2013

Chemicals, enzymes and other reagents

High-glucose DMEM Sigma D5671

RPMI-1640 Sigma R0883

Penicillin-Streptomycin-Glutamine Gibco #10378016

Insulin solution human Sigma I9278

TrypLE™ Express Enzyme Gibco #12605010

0.2 µm vacuum filter Nalgene, Thermo #564-0020

MycoAlert PLUS Mycoplasma Detection Kit Lonza LT07-703

Maxpar® X8 Multimetal Labeling Kit Fluidigm #201300

Antibody Stabilizer PBS Candor #131 050

Fetal Bovine Serum (FBS) Gibco Heat Inactivated FBS, #10500

tetracycline-free FBS Biowest S182T

60 well BC scheme adapted from Zunder et al, 2015, Bodenmiller et al, 2012

126 well BC scheme adapted from Lun et al, 2019, Zunder et al, 2015,
Bodenmiller et al, 2012

PBS Gibco DPBS (1x), 14190-94

16% PFA Electron Microscopy Sciences #15710

Breathe Easier Diversified Biotech BERM-2000

Monoisotopic Cisplatin Pt194 Fluidigm #201194 Cell-ID Cisplatin-194Pt

Monoisotopic Cisplatin Pt198 Fluidigm #201198 Cell-ID Cisplatin-198Pt

Bovine Serum Albumin (BSA) Sigma heat shock fraction, pH 7, ≥98%, A7906

200ul wide bore tips Corning Axygen FX-255-WB-R

Gelatine Dr Oetker Gold Extra Sheets, B000FRSRJE

10% Sodium Azide Merck # 26628-22-8

UltraPure Agarose Invitrogen # 16500100

0.1M PB pH 7.4 adapted from Recipe PB (0.1 M phosphate buffer pH 7.2),
Cold Spring Harb Protoc 2010

https://doi.org/10.1101/pdb.rec12291

Sucrose Sigma BioXtra, S7903

Tryphan Blue 0.4% Invitrogen T10282

Tissue-Tek® O.C.T.™ Compound Sakura #4583

2-Methylbutane Sigma-Aldrich ReagentPlus®, ≥99%, M32631
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Reagents and Tools table (continued)

Reagent/Resource Reference or source Identifier or catalog number

SuperFrost Plus™ Adhesion slides Thermo Scientific Thermo Scientific™ J1800AMNZ

96-well Ultra-Low Attachment Spheroid
Microplate

Corning #4515

Trizma® base Sigma-Aldrich #93350

Sodium chloride Sigma-Aldrich ReagentPlus®, ≥99%, S9625

Dako Pen Agilent S200230-2

Tween-20 Sigma-Aldrich P9416

Cell-ID™ Intercalator-Ir Fluidigm # 201192A

Hoechst 33342 Invitrogen H3570

Telox 2 donation from Nitz lab, Edgar et al, 2016

Jet Prime Polyplus #114

TrypLE Select Enzyme Gibco # A1217701

Tetracycline Hydrochloride Sigma T7660

Software

CATALYST https://doi.org/doi:10.18129/B9.bioc.CATALYST v1.10

imctools https://doi.org/doi:10.5281/zenodo.3973063 v1.0.7

ImcPluginsCP https://10.5281/zenodo.4057958 v1.3

CellProfiler https://doi.org/10.1371/journal.pbio.2005970 v3.1.8

Ilastik https://doi.org/10.1038/s41592-019-0582-9 v1.3.2b3

TrakEM2 https://doi.org/10.1371/journal.pone.0038011 v1.0i

scanpy https://doi.org/10.1186/s13059-017-1382-0 v1.6.0

anndata https://doi.org/10.1186/s13059-017-1382-0 v0.7.4

SciPy https://doi.org/10.1038/s41592-019-0686-2 v1.5.2

Statsmodels Seabold & Perktold, 2010 v0.12.0

Matplotlib https://zenodo.org/record/3264781#.X2hR3_HgrmE v3.3.2

numpy https://doi.org/10.1038/s41586-020-2649-2 v1.19.1

Snakemake https://doi.org/10.1093/bioinformatics/bts480 v5.18

spherpro This study, https://github.com/BodenmillerGroup/spherpro v0.9

Singularity https://doi.org/10.5281/zenodo.3234175 v3.2.1

Python www.python.org v3.7.7

Other

Biomek FX Beckmann Coulter

Hyperion Imaging Mass Cytometer Fluidigm

Countess Invitrogen

ImageXpress Micro XL Widefield High Content
Imaging microscope

Molecular Devices 4x objective, NA 0.20

Axioscan Slide Scanner Z1 Zeiss

Methods and Protocols

Cell lines
T-REx-293 cells (Invitrogen) and DLD-1 cells (Flp-In T-Rex

DLD-1, a kind gift from the Stephen Taylor Lab, University of

Manchester) were grown in high-glucose DMEM (D5671,

Sigma). HT-29 (ATCC HTB-38) and T-47D (ATCC HTB-133)

cells were grown in RPMI-1640 medium (R0883, Sigma). The

media were supplemented with 100 U/ml penicillin, 100 mg/ml

streptomycin, and 2 mM L-glutamine (Gibco, Invitrogen) and

10% fetal bovine serum (Gibco for T-47D, HT-29, and DLD-1

cultures, Biowest for T-REx-293). For T-47D cells, 0.2 U/ml

human insulin was added. All media were filtered through a

0.2-μm membrane (Nalgene, Thermo). 1x TrypLE Express (Life

Technologies) was used for cell passaging and harvesting.

Cells were tested for mycoplasma with a MycoAlert PLUS

Mycoplasma Detection Kit (Lonza). All cell line identities were

verified using STR profiling (Microsynth).
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Antibody conjugation
Isotope-labeled antibodies were prepared using the manufacturer’s

standard protocol using the MaxPAR Antibody Conjugation Kit (Flu-

idigm). Conjugated antibody yield was determined based on absor-

bance at 280 nm. For long-term storage, antibodies were stored at

4°C in PBS Antibody Stabilization Solution (Candor).

Spheroid cultivation
Preparation:

1 Filter all media using a 0.2-µm vacuum filter (Nalgene,

Thermo) to avoid particles.

2 Prepare calculations for final dilutions and prepare a dilution

series.

Seeding:

1 Cultivate cells in 2D culture until ca 80% confluency.

2 Wash cells with 37°C PBS (Gibco).

3 Add TrypLE™ Express Enzyme (Gibco), incubate at 37°C until

cells detach.

4 Quench with warm medium.

5 Take two 10 µl aliquots to count.

6 Spin cells down at 250 g for 4 min.

7 Meanwhile:

- Count the cells in the aliquots using a cell counter (e.g.,

Countess (Invitrogen)).

- Calculate the required dilutions.

8 Remove supernatant of cells.

9 Resuspend cells in warm media.

10 Optional: count again.

11 Dilute cells to final seeding concentration using a dilution

series.

12 Seed 100ul of cell suspension to each well of the 96-well Ultra-

Low Attachment Spheroid Microplate (Corning).

13 Spin plate 4 min at 250 g.

14 Optional: image plate using an automated bright-field micro-

scope to verify seeded cell number.

15 Seal the plates using an breathable membrane (Breathe Easier,

Diversified Biotech).

16 Incubate at 37°C and 5% CO2.

17 Optional: Image plates using an ImageXpress Micro XL Wide-

field High Content Imaging Microscope (Molecular Devices, 4×
objective, NA 0.20) each day to monitor growth.

Spheroid harvesting
Bright-field imaging

Bright-field imaging of intact spheres was performed using an

ImageXpress Micro XL Widefield High Content Imaging Micro-

scope (Molecular Devices, 4× objective, NA 0.20) at multiple

z-planes. Spheres were imaged 2 h before PFA fixation and after

PBS washing the next morning. Plates were acquired twice, rotat-

ing the plate by 180° between data acquisition to avoid imaging

artifacts.

PFA fixation

Optional: Telox 2 hypoxia assay

1 Prepare 200 μM Telox 2 in 2% DMSO (Edgar et al, 2016).

2 Add 5 μl of solution per well to grown spheroids.

3 Incubate for 4h in the incubator and fix using PFA (see

below).

All pipetting steps were implemented with a Biomek FX Robot

(Beckmann Coulter).

1 Fix spheres by adding 30 µl of 16% PFA (Electron Microscopy

Sciences) per well.

2 Incubate shaking at 200 RPM for 5 min.

3 Store overnight at 4°C.
4 Optional: image plates using bright-field imaging.

5 Wash plate four times with 150 µl of 1× PBS using a Biomek

Fx Robot.

6 Optional: image plates using bright-field imaging.

Barcoding and pooling
Barcoding schemes

1 60-well barcoding scheme used for 4 cell line dataset: prepared

according to (Zunder et al, 2015): 8 choose 4 barcoding

scheme with following metals and stock concentrations: 102Pd

(10 µM), 104Pd (15 µM), 105Pd (20 µM),106Pd (20 µM),

108Pd (20 µM), 110Pd (15 µM), 113In (20 µM), and 115In

(20 µM) in DMSO (Sigma).

2 126-well barcoding scheme used for overexpression dataset:

prepared according to (Zunder et al, 2015): 9 choose 4 barcod-

ing scheme with following metals and stock concentrations:

89Y (10 µM), 103Rh (200 mM), 105Pd (10 µM), 106Pd

(10 µM), 108Pd (10 µM), 110Pd (10 µM), 113In (20 µM), 115In

(10 µM), and 209Bi (2 µM) in DMSO.

To extend the barcoding capacity, spheres from multiple plates

are collected and either barcoded with different monoisotopic

cisplatin (Pt 198, Pt194, Fluidigm).

Barcoding

All pipetting steps were implemented with a Biomek Fx Robot

(Beckmann Coulter).

1 Remove PBS from washing by sucking all liquid at a height of

ca 2 mm from well bottom from the middle of the well using a

gentle flow rate (estimated residual volume ca 30 µl).
2 Pre-dilute 4 ul barcoding solution with 65 µl of PBS and add to

each well.

3 Incubate plates for 1 h shaking at 200 RPM.

4 Wash plates four times with 150 µl of 1x Cell Staining Medium

(CSM, PBS (pH 7.4, Gibco) 0.5% bovine serum albumin (Sigma)).

Pooling

1 Incubate collection tubes with CSM for 10 min -> use 1 collec-

tion tube per cisplatin barcode.

2 Remove supernatant from collection tube and pool spheres

from 96-well plate into the tube using 200-ul wide bore tips

(FX-255-WB-R, Corning Axygen).

3 Rotate plates 180 degrees and repeat collection.

4 Visually verify that spheres are collected and manually collect

left-over spheres.

Cisplatin barcoding

Monoisotopic cisplatin was used both as an orthogonal readout for

distance to border (Durand, 1982) (Part physiology, Pt194) and to

extend the 120-well barcoding to 240 wells by using Pt194 and

Pt198 (part overexpression).

1 Wash pooled spheres with 4 ml PBS, centrifuge 1 min at 100 ×
g after each wash, and remove supernatant.
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2 Remove supernatant and add 1 µM monoisotopic cisplatin in

1 ml PBS.

3 Incubate for 40-min shaking at 200 RPM.

4 Wash twice with CSM.

Embedding
Preparation gelatine

1 Let 12% gelatine (Dr Oetker) swell in 0.1 M phosphate buffer

(PB, pH 7.4) for 10 min.

2 Stir at 60°C for 4–6 h to dissolve.

3 Cool to 40°C
4 Add 2 µl/ml 10% sodium azide (Merck).

5 Keep at 37°C until use.

Preparation embedding mold

1 Get a clean glass rod with a flat bottom ca 3mm diameter and

a conical top as an inverse mold (e.g., manufactured by a

glassblower; see Fig EV1 for design).

2 Prepare 6% agarose (Invitrogen) in ddH20 by heating it in a

microwave, keep at 80°C until use.

3 Pour hot agarose in 2-ml Eppendorf tube.

4 Insert inverted mold and put on ice for 10 min until agarose

solidifies. Be careful to position the inverse mold exactly verti-

cal, such that the flat bottom is horizontal.

5 Carefully remove inverse mold and wash cavity with PBS.

6 Prewarm to 37°C.

Sphere embedding

1 Incubate spheres for 5 min at 37°C.
2 Remove supernatant and add 4 ml warm gelatine and keep at

37°C for at least 10 min until spheres are sunk to the bottom.

3 Remove PBS from pre-warmed agarose mold and replace by

warm gelatine.

4 Carefully transfer spheres using a 200-µl pipette with a wide bore

(e.g., cut pipette tip). If not all spheres can be transferred at once,

spin down agarose mold in pre-heated centrifuge (200 g, 37°C),
remove supernatant gelatine, and transfer remaining spheres.

5 Use a pre-warmed 20-µl pipette and repeated spinning to care-

fully adjust position spheres, such that there is an even layer

at the bottom of the cylindrical mold.

6 Let solidify the positioned spheres in the gelatine by incubating

the agarose mold at 4°C overnight.

7 Carefully break the agarose mold to retrieve the gelatine plug.

Hint 1: This is technically difficult. Train this step multiple

times using an empty gelatine plug. In case the plug breaks

apart at this step, it may be possible to re-melt the gelatine at

37°C and repeat the embedding. Hint 2: Instead of an agarose

mold, a 4-ml sample tube with close-to-flat bottom or a flat-

bottom tube could also be used for embedding.

8 Cryo-protect the gelatin plug by incubation for 1 h in 15%

sucrose (Sigma) in ddH20 and then for 4h in 30% sucrose in

ddH20 with 0.004% trypan blue (Sigma).

9 For cryo-embedding, prepare a cylindrical mold out of

aluminum foil and fill it with OCT compound (Sakura).

10 Rinse plug with OCT compound and gently position it upright

in the OCT mold, such that the sphere filled tip of the plug

points upward. Hint: The superfluous gelatine from the plug

can be trimmed.

11 Freeze in 40°C 2-methylbutane (Sigma).

12 Store frozen plug at −80°C.

Cryo-sectioning
1 Mount the frozen plug on a cryo-microtome.

2 Cut slices (thickness: 6 µm, object temperature −17°C, knife

temperature−15°C) and immediatelymelt themonto room temper-

aturemicroscopy slides (Superfrost Plus, Thermo Scientific).

3 Dry the slides overnight at room temperature.

4 Image the sections using a bright-field microscope/slide scanner.
5 Store the slides at −80°C until usage.

Antibody staining
1 Select sections with minimal tearing covering the whole

volume of the plug.

2 Transfer sections from −80°C into TBS (50 mM Trizma base

(Sigma), 50 mM NaCl (Sigma), pH 7.6).

3 Wash 3 times for 10 min with TBS.

4 Mark individual sections with a hydrophobic pen (Dako Pen,

Agilent).

5 Block with 3% BSA in TBS-T (TBS + 0.1% Tween).

6 Prepare an antibody master mix in TBS and a final concentra-

tion of 1% BSA, 0.1% Tween, with antibody concentrations

according to the panel.

7 A spillover slide was created for the whole panel by spotting

~0.3 µl antibody in 0.5 µl 0.4% trypan blue on an agarose-

coated slide (Chevrier et al, 2018).

8 Remove the blocking buffer and add 12 µl antibody mix to

each section.

9 Incubate overnight at 4°C in an hybridization chamber.

10 Wash the slides 3x in TBS for 10 min.

11 Add 20 µl of 1 µM Iridium Intercalator (Fluidigm) for 10 min.

12 Wash with TBS.

13 Add 1 µM Hoechst 33342 (Invitrogen) for 6 min.

14 Wash slides 3x with TBS for 10 min.

15 Dip slides in double-distilled water and blow dry immediately

with compressed air.

16 Dry slides overnight in dark.

Slide imaging
1 Image the dried slides usingAxioscan Slide Scanner Z1 (Zeiss) using

theDAPI (Hoechst) and the GFP channel, where appropriate.

2 Image slides using a Hyperion Imaging Mass Cytometer (Flu-

idigm) at nominal resolution of 1 μm2 and an ablation frequency

of 400 Hz.

Cell line physiology experiment
Cells were seeded into the spheroid microplates at concentrations of

1×, 0.5×, and 0.25×, where the 1× concentrations were 3,200 cells

per well for T-REx-293 cells, 6,400 cells per well for DLD-1 cells,

2,000 cells per well for T-47D cells, and 2,000 cells per well for HT-

29 cells. Cells were grown in five replicates, and each plate was

barcoded using a 60-well barcoding scheme. In plate p173, spheres

of column 2, 3, 6, 7, 10, and 11 were incubated with 10 μM Telox 2

in 0.1% DMSO, other rows with 0.1% DMSO (control) for 4 h prior

to fixation, and cells were fixed and barcoded after 72 h. The other

plate, p176, was fixed and barcoded after 96 h. Monoisotopic

cisplatin (194Pt, 1 μM) was added after pooling the spheroids. For

16 of 21 Molecular Systems Biology 16: e9798 | 2020 ª 2020 The Authors

Molecular Systems Biology Vito RT Zanotelli et al



the 72-h time point, data were acquired on 18 cryo-sections, and for

the 96-h time point, data were acquired on 16 cryo-sections.

Chimeric overexpression experiments
Constructs

We used a library generated from the entry clones of a previously

published cancer signaling constructs library (Martz et al, 2014).

We added constructs encoding biologically relevant ligands and

receptors from the human ORFeome V8.1 library (Dharmacon) via

NEXUS Personalized Health Technologies at ETH Zurich (Yang et al,

2011). Destination vectors, including pDEST pcDNA5 FRT TO-eGFP,

and pDEST 3’ Triple Flag pcDNA5 FRT TO, were kindly provided by

Anne-Claude Gingras (Lunenfeld-Tanenbaum Research Institute,

Toronto, Canada (Couzens et al, 2013)). Tagged expression vectors

were generated via Gateway Cloning (Invitrogen). End read Sanger

sequencing was used to confirm the clone identity before transfec-

tion. Constructs were arranged on a master plate in a randomized

fashion with control wells evenly distributed over the plate.

Experiment

T-REX 293 cells were seeded at a density of 20,000 cells per well in

100 μl medium into two 96-well flat-bottom cell culture plates (p155

and p156), using the normal medium prepared with tetracycline-free

FBS (S182T-500, Biowest). After 24-h incubation, transfection was

done using the jetPRIME transfection system (Polypus) according to

the manufacturer’s instructions: For each construct, a master-trans-

fection mix of 22.5 μl jetPRIME buffer, 0.5 μl jetPRIME reagent, and

2.5 μl of 0.1 μg/μl DNA was prepared. An aliquot of 10 μl of this

master mix was added dropwise to each well. After 5 h, the cell

culture medium was changed using the Biomek Robot under semi-

sterile conditions.

After 24 h, the cells were washed with PBS and detached by the

addition of 100 μl 10× TrypLE Select Enzyme (Gibco) per well. Cells

were resuspended in 100 μl medium. From these plates, cells were

distributed into the spheroid microplates: From plate p155, 4 μl cell
suspension per well was added to each well of plates p161 and

p163. From plate p156, 20 μl of mock-transfected cells from border

wells were transferred to each well, before 2 μl of the suspension

was added per well to plates p165 and p167 and 4 μl was added per

well to plates p169 and p171.

After 48 h, the spheres were imaged with bright-field micro-

scopy. Subsequently, 2 μl of 50 μg/ml tetracycline hydrochloride

(Sigma) in PBS to a final concentration of 1 μg/ml was added to each

well. After 24 h, spheres were fixed and barcoded. For barcoding,

three pairs of plates were barcoded using the 120-well barcoding

plate layout (Plate 1: p161, p165, p171, Plate 2: p163, p167, p169).

Then, plates p165 and p171 and plates p161 and 163 were pooled,

and cisplatin (194Pt) was added. Plates p167 and p169 were pooled,

and cisplatin 198Pt was added. Finally, plates p165, p171, p167, and

p169 were pooled into one spheroid plug with 240 wells. p161 and

p163 were embedded as a spheroid plug of 120 wells. After section-

ing, 20 slices of the 120-well plug and 48 slices of the 240-well plug

were selected for staining.

Analysis
The computational analysis was implemented as a Snakemake

workflow (K€oster & Rahmann, 2018) using singularity containers

(Kurtzer et al, 2017).

Spheroid diameter determination

In order to robustly determine spheroid diameter, we used a pipe-

line based on supervised pixel classification by Ilastik (Berg et al,

2019); this process identified spheres despite intensity variations.

We used CellProfiler for segmentation and quantification (McQuin

et al, 2018).

As quality control, bright-field images of each well were manu-

ally screened for spheroids with growth defects, such as particle or

fiber inclusions, blinded for the spheroid growth condition.

IMC image analysis

Image processing of IMC data was based on our “imctools” library

to convert raw IMC data to tiff files (Zanotelli et al, 2020a), custom

the CellProfiler plugins “ImcPluginsCP” (Zanotelli et al, 2020b), and

roughly followed the concepts laid out in our “ImcSegmenta-

tionPipeline” (Zanotelli & Bodenmiller 2017).

Quantification

To robustly identify spheroids in IMC images, we used supervised

pixel classification by Ilastik (Berg et al, 2019) to identify

spheroid centers, borders, and background, and used CellProfiler

(McQuin et al, 2018) to segment the resulting probability maps.

To identify cells, we used a similar approach, using Ilastik to

classify pixels into nuclear/cytoplasmic membrane and back-

ground and CellProfiler to identify cells based on the resulting

probability maps. Within cell regions, we quantified marker

levels, applied compensation (Chevrier et al, 2018), and calcu-

lated other spatial features. Neighbors were identified by expand-

ing each cell object by 3 pixels and identifying touching cells. We

built an analysis framework (“spherpro”), based on Python (Van

Rossum & Drake, 2009), SQLite, and Anndata (Wolf et al, 2018)

to handle and analyze the data.

Image alignment

Fluorescent SlideScan images and IMC acquisitions were aligned

with a fully automated iterative alignment process using TrakEM2

(Cardona et al, 2012). For the SlideScan images, the DAPI channel

was used, and for the IMC acquisitions, the iridium channel was

used.

First, whole spheroid plug sections were coarsely aligned using a

rigid transform estimated from the machine provided global coordi-

nate system. Then, the sections were aligned using a rigid alignment

estimated by TrakEM2. Finally, individual cropped spheroid section

images of the two modalities were fine-aligned using rigid alignment

by TrakEM2.

Quality control

On a cellular segmentation level, several quality control criteria

were applied:

� Sphere membership: At least 95% of all pixels of a cell need to be

within the sphere segmentation region.

� Sphere ambiguous cells: Cells closer than 20 pixels to any other

sphere in the image were excluded as they might be ambiguous.

� Cell size: Cells smaller than 10 pixels were excluded.

� Border cells: Cells directly touching the outer spheroid segmenta-

tion border were excluded.

� Main sphere: Cells not belonging to the largest contiguous cell

mass of still valid cells were excluded.
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� Fold classifier: A pixel classifier was trained in Ilastik based on

DAPI fluorescence to identify folded areas in the spheres.

On a sphere slice (image) level, we used the following criteria to

exclude images with all their cells:

� Not small: sphere slices with less than 10 valid cells (based on

cellular segmentation quality control) were excluded.

� Manual QC: Quality control image consisting of raw images,

quantification, spheroid and cell segmentation of DNA (193Ir),

Histone H3, and 194Pt, and 198Pt channels were visualized for

each spheroid slice with an anonymized ID. This allowed the

visual identification of image artifacts such as folds, bubbles,

tissue tearing, and spheroid mis-segmentations. Images were

analyzed blind to spheroid growth conditions.

Additionally, we used bright-field images to identify wells with

particles, fibers, deformed spheres, and multiple spheres. Images

were analyzed blind to spheroid growth conditions. Sphere slices

from these wells were excluded.

The effects of the individual QC steps on the datasets are summa-

rized in Dataset EV2.

Data transformation

If not otherwise indicated, the spillover-compensated mean pixel

intensity per cell area was used as a readout. The data were log10

(x + 0.1)-transformed and winsorized using the 0.1th percentile.

Debarcoding

For debarcoding, cells within 30 pixels from the outer spheroid

border were considered. Over all images belonging to a spheroid

plug, each barcoding channel was binarized with the average

barcode channel intensity. Then, for each spheroid, the number of

valid barcodes was determined. Due to the robustness of the

barcode schemes used, false positives were infrequent. Sphere

slices were assigned to the most common valid barcode in the slice.

As quality control, at least 10 cells were required to be assigned to

this barcode, and the most common barcode was required to be at

least twice as frequent and then the second highest barcode.

Images without valid identification were excluded from further

analysis.

Distance-to-border correction

Distance to the border of the spheroid slices can overestimate

distance to border in the spheroid, as they represent spherical

segments at different heights of the sphere. As the real spheroid

diameter can be estimated by bright-field imaging, and assuming

that spheroids are indeed spherical, this was correcting by the

formula:

rreal ¼R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�2rxþx2

p
where rreal is the real distance to the sphere border, R is the radius

of the sphere measured in the bright-field images, r is the radius of

the segment, and x is the measured (noncorrected) distance to the

border in the segment.

UMAP and cluster analysis

Uniform Manifold Approximation and Projection (UMAP) (McInnes

et al, 2018) and clustering via the Leiden algorithm (Traag et al,

2019) were performed via SCANPY (Wolf et al, 2018).

Marker variability analysis

For the marker variability analysis, the level of each marker (yp)

was predicted by a linear model (Fig 3A):

yp ¼ βpiþBSðxd2borderÞþ ∑
m≠p

βnbm xnbm

 !
þ βnbp xnbp

� �
þ ∑

m≠p
βintm xintm

 !

þ∈pi

where:

� yp: the level of marker p in a cell.

� βpi: technical staining/batch effect for marker p of the image i that

the cell is part of

� BS(xd2border): a nonlinear function of distance to border (xd2border:

represented by a polynomial B-spline of degree 3 with 10 knots

distributed located at the deciles (10 quantiles).

� xnbm : average levels of marker m in direct neighboring cells.

� xnbp : average levels of predicted marker p in direct neighboring

cells.

� xintm : cell internal marker levels of marker m.

The models and submodels were fitted using the statsmodels

library (Seabold & Perktold, 2010).

If not mentioned otherwise, the reported variability explained

(R2) for each model was the adjusted R2 relative to the adjusted

R2tech the R2 of a model only containing an image-specific intercept.

This prevented variability in signal differences resulting from techni-

cal issues (e.g., due to staining or acquisition) from being attributed

to biological variability. This corrected R2 is calculated according to:

R2¼ 1� 1�R2uncorr
1�R2tech

� �
:

For the correlation heat maps and distance-to-border plots

(Figs 2C and EV4), an image-specific intercept was fit. This inter-

cept was subtracted before calculating the Pearson correlation.

Permutation analysis

We fit all possible sequences of adding the modules for global envi-

ronment (BS(xd2border)), local environment (xnbm ), autocorrelation

(xnbp ), and cell state (xintm ) to the model, for each marker and condi-

tion, and recorded the additional marker variability explained at

each step in each sequence. For each sequence, we calculated the

variance of the additional variability explained by each added

module. Given that the total variability explained is independent of

the sequence, high variance suggests that marker variability is

explained by a few modules and low variance suggests that marker

variability is explained by multiple modules.

In a strictly hierarchical dependency structure, modules higher in

the hierarchy should contain the variability explained by those lower

in the hierarchy. Adding a more explanatory module before a less

explanatory one will lead to the former fully capturing the variability

of the latter, yielding high variance. Sequentially fitting modules in

line with the hierarchy of explanatory power should maximize the

contributions of each module, thus reducing the variance. The opti-

mal order corresponds to the sequence with least variance.

Chimeric overexpression analysis

We trained a pixel classifier based on the two IMC GFP antibodies

to robustly detect overexpressing image regions in which a
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construct was overexpressed. We calculated the average pixel-wise

probability for overexpression and required this to be more than

0.01 (estimated false discovery rate: 0.003) for a cell to be classi-

fied as “overexpressing”. Cells with an average pixel-wise proba-

bility higher than 0.01 but lower than 30% of the maximal value

observed in neighboring cells were added to an “ambiguous” cate-

gory. Other cells within 6 pixels of “overexpressing” cells were

classified as “neighbor” cells. All other cells were classified as

“bystanders”.

This classification was not reliably possible for spheres trans-

fected with a FLAG-only construct without GFP, due to FLAG anti-

body background staining. All cells in such spheres were classified

as “bystander” cells.

We used a linear mixed-effects model to estimate marker levels

independently of the effect of belonging to the overexpressing,

neighboring, or bystander cell class of a specific construct. The

following model was used to predict a given marker level yp:

yp ¼BSðxd2borderÞþβðctrljoexpjnbÞ∗constructþβplateidþð1jspheroidÞ
þð1jsiteidÞþð1jimageidÞþ ∈p:

where:

� BS(xd2border): a nonlinear function of distance to border (xd2border :

represented by a polynomial B-spline of degree 3 with 10 knots

distributed located at the deciles (10 quantiles)

� β(ctrl|oexp|nb)+construct: an intercept for combination of construct

and overexpression class

� βplateid: a fixed effect intercept for belonging to any of the 6 plates.

This accounts for plate-wise effects.

� (1|spheroid): a random effect acknowledging that cells from the

same sphere are correlated

� (1|siteid): a random effect acknowledging that sphere sections/
images that were stained and acquired together are not indepen-

dent, e.g., through staining effects

� (1|imageid): a random effect acknowledging that cells from the

same sphere slide/image are not independent.

� ϵ: residual variation. This is assumed to be homoscedasticity.

Data availability

The datasets and computer code produced in this study are available

in the following databases:

� Raw imaging data: Zenodo Record 4055781 (https://zenodo.org/

record/4055781)

� Code to reproduce the analysis from raw data: Zenodo Record

4071862 (https://zenodo.org/record/4071862) / GitHub (https://

github.com/BodenmillerGroup/SpheroidPublication)

Expanded View for this article is available online.
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