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Abstract 16 

Here we described PerturbSci-Kinetics, a novel combinatorial indexing method for capturing three-layer 17 

single-cell readout (i.e., whole transcriptome, nascent transcriptome, sgRNA identities) across hundreds 18 

of genetic perturbations. Through PerturbSci-Kinetics profiling of pooled CRISPR screens targeting a 19 

variety of biological processes, we were able to decipher the complexity of RNA regulations at multiple 20 

levels (e.g., synthesis, processing, degradation), and revealed key regulators involved in miRNA and 21 

mitochondrial RNA processing pathways. Our technique opens up the possibility of systematically 22 

decoding the genome-wide regulatory network underlying RNA temporal dynamics at scale and cost-23 

effectively.  24 
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 2 

Main 25 

Cellular functions are determined by the expression of millions of RNA molecules, which are tightly 26 

regulated across several critical steps, including but not limited to RNA synthesis, splicing, and 27 

degradation. Dysregulated transcriptome kinetics have been linked to various diseases, including cancer1, 28 

intellectual disability2, and neurodegenerative disorders3. However, our knowledge regarding how critical 29 

molecular regulators affect genome-wide RNA kinetics is still scarce, partly due to the lack of scalable 30 

tools. For example, while single-cell transcriptome analysis coupled with pooled CRISPR screens have 31 

recently yielded fundamental insight into the gene regulatory mechanisms4–9, the readout of these methods 32 

only provides a snapshot of gene expression programs, thus is insufficient to decipher the complexity of 33 

RNA dynamics (e.g., synthesis, splicing, and degradation). To resolve this challenge, we developed 34 

PerturbSci-Kinetics, by integrating CRISPR-based pooled genetic screens, highly scalable single-cell 35 

RNA-seq by combinatorial indexing, and metabolic labeling to recover single-cell transcriptome 36 

dynamics across hundreds of genetic perturbations. 37 

 38 

The key features of the new method include: (i) A novel combinatorial indexing strategy (referred to as 39 

‘PerturbSci’) was developed for targeted enrichment and amplification of the sgRNA region that carries 40 

the same cellular barcode with the single-cell whole transcriptome (Fig 1a). A modified CROP-seq vector 41 

system8 was adopted in PerturbSci, enabling the direct capture of sgRNA sequences59 (Extended Data 42 

Fig 1). With extensive optimizations on primer designs and reaction conditions (Extended Data Fig 2), 43 

PerturbSci yields a high capture rate of sgRNA (i.e., up to 99.7%), comparable to previous approaches 44 

for single-cell profiling of pooled CRISPR screens4–9. Furthermore, built on an extensively improved 45 

single-cell RNA-seq by three-level combinatorial indexing (i.e., EasySci-RNA10), PerturbSci 46 

substantially reduced the library preparation costs for single-cell RNA profiling of pooled CRISPR screens 47 

(Fig 1b, Supplementary file 3). In addition, to maximize the gene knockdown efficacy, we used a 48 

multimeric fusion protein dCas9-KRAB-MeCP211, a highly potent transcriptional repressor that 49 

outperforms conventional dCas9 repressors. (ii) By integrating PerturbSci with 4-thiouridine (4sU) 50 

labeling method, PerturbSci-Kinetics exhibited an order of magnitude higher throughput than the previous 51 

single-cell metabolic profiling approaches (e.g., scEU-seq, sci-fate, scNT-seq)12–15(Fig 1a). Of note, we 52 

extensively optimized the cell fixation condition to reduce the cell loss rate during permeabilization and 53 

in-situ thiol (SH)-linked alkylation reaction16–22 (referred to as ‘chemical conversion’) (Extended Data 54 

Fig 3). Following 4sU labeling and chemical conversion, the nascent transcriptome and the whole 55 
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 3 

transcriptome from the same cell can be distinguished by T to C conversion in reads mapping to mRNAs14. 56 

The kinetic rate of mRNA dynamics (e.g., synthesis and degradation) were then calculated as a multi-57 

layer readout for each genetic perturbation (Fig 1a, Methods). We further optimized the computational 58 

pipeline for nascent reads calling based on the established pipeline of sci-fate14, enabling the separation 59 

of single cell nascent transcriptomes with high accuracy (Extended Data Fig 4). 60 

 61 

As a proof-of-concept, we first tested our approach in a mouse 3T3-L1-CRISPRi cell line transduced with 62 

a non-target control (NTC) sgRNA or sgRNA targeting a Fto gene (encoding an RNA demethylase). We 63 

found that sgRNA expression was detected in over 99% of all cells, with a median of 284 sgRNA UMI 64 

detected per cell in our optimal condition (i.e., 1uM gRNA primer + 50uM dT primer in reverse 65 

transcription) (Extended Data Fig 2f). We then generated a human HEK293 cell line with the inducible 66 

expression of dCas9-KRAB-MeCP211 (HEK293-idCas9) and tested the sgRNA capture efficiency using 67 

an NTC sgRNA and a sgRNA targeting the IGF1R gene (encoding insulin-like growth factor 1 receptor). 68 

The transductions of the NTC and target sgRNAs were performed independently, such that each cell 69 

received a unique perturbation. We then carried out a PerturbSci experiment on a 1:1 mixture of cells 70 

from these two conditions. We recovered the target sgRNA expression in 96.7% of cells, of which 95.2% 71 

were annotated as sgRNA singlets with a median of 81 sgRNA UMIs detected per cell (Fig 1c). Single-72 

cell gene expression analysis confirmed the induction of dCas9 after Dox treatment, as well as the 73 

significantly decreased IGF1R expression in cells transduced with the target sgRNA (Fig 1d). Strongly 74 

reduced IGF1R mRNA and protein levels were further validated by RT-qPCR and flow cytometry 75 

(Extended Data Fig 5), validating the high knockdown efficiency of the system. 76 

 77 

We next sought to validate the PerturbSci-Kinetics for capturing three-layer readout (i.e., whole 78 

transcriptome, nascent transcriptome, sgRNA identities) at the single-cell level. Following 4sU labeling 79 

(200uM for two hours), we mixed HEK293-idCas9 cells transduced with NTC or IGF1R sgRNA at a 1:1 80 

ratio for fixation and chemical conversion. We observed a significant enrichment of T to C mismatches in 81 

mapped reads of the chemical conversion group, similar to our previous study14(Fig 1e). A median of 82 

22.1% of newly synthesized reads was recovered in labeled and chemically converted cells, compared to 83 

only 0.8% in control groups (Fig 1f). Reassuringly, the proportion of reads mapped to exonic regions was 84 

significantly lower in newly synthesized reads compared with pre-existing reads (p-value < 1e-20, 85 

Tukey’s test after ANOVA) (Fig 1g). Indeed, genes with a higher fraction of nascent reads were 86 
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significantly enriched in highly dynamic biological processes such as transcription coregulator activity 87 

(FDR = 5.7e-12) and protein kinase activity (FDR = 2.6e-08)23 (Fig 1h). By contrast, genes with a lower 88 

fraction of nascent reads were strongly enriched for processes essential for cell vitality, such as the 89 

structural constituent of ribosome (FDR = 1.5e-42), unfolded protein binding (FDR = 4.5e-11), and 90 

translation regulator activity (FDR = 8.2e-10) (Fig 1i). Notably, the chemical conversion step is fully 91 

compatible with sgRNA detection at single-cell resolution: we recovered sgRNAs from 97% of chemically 92 

converted cells (a median of 62 sgRNA UMIs/cell), 92.6% of which were annotated as sgRNA singlets 93 

(Fig 1j-k). These analyses demonstrate the capacity of PerturbSci-Kinetics to profile both transcriptome 94 

dynamics and the associated perturbation identity at the single-cell level. 95 

  96 
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 97 

 98 
Fig. 1. PerturbSci-Kinetics enables joint profiling of transcriptome dynamics and high-throughput 99 

gene perturbations by pooled CRISPR screens. a. Scheme of the experimental and computational 100 

strategy for PerturbSci-Kinetics. The dot plot on the upper right shows the number of cells profiled in this 101 

study for comparison with the published single-cell metabolic profiling datasets14,15,24. Scale, the highest 102 

number of cells profiled in a single experiment of each technique. IAA, iodoacetamide. *4sU, chemically 103 

modified 4sU. R, steady-state RNA level. α, RNA synthesis rate. β, RNA degradation rate. Exp, steady-104 

state expression. Synth, synthesis rate. Deg, degradation rate. b. Bar plot showing the estimated library 105 

preparation cost for PeturbSci-Kinetics and other published techniques25,26 for single-cell transcriptome 106 

analysis coupled with CRISPR screens. c. Scatter plot showing the number of unique sgRNA transcripts 107 

detected per cell in the PerturbSci experiment for profiling cells transduced with sgNTC or sgIGF1R. d. 108 

The left box plot shows the normalized expression of dCas9-KRAB-MeCP2 in untreated or Dox-induced 109 

HEK293-idCas9 cells. The right box plot shows the normalized expression of IGF1R in Dox-induced 110 

HEK293-idCas9 cells transduced with sgNTC or sgIGF1R. Gene counts of each single cell were 111 

normalized by the total gene count, multiplied by 1e4 and then log-transformed. e. Bar plot showing the 112 

normalized percentage of all possible single base mismatches in reads from sci-fate (blue), and PerturbSci-113 
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 6 

Kinetics on chemically converted (green) or unconverted cells (orange). Normalized mismatch rates, the 114 

percentage of each type of mismatch in all sequencing bases. f. Box plot showing the fraction of recovered 115 

nascent reads in single-cell transcriptomes across conditions: no 4sU labeling + no chemical conversion, 116 

4sU labeling + no chemical conversion, and 4sU labeling + chemical conversion. g. Box plot showing the 117 

ratio of reads mapped to exonic regions of the genome in nascent reads, pre-existing reads, and reads of 118 

the whole transcriptomes across single cells. h-i. Bar plots showing the significantly enriched Gene 119 

Ontology (GO) terms in the list of genes with low (h) or high (i) nascent reads ratio (Methods). j. Box 120 

plot showing the number of unique sgRNA transcripts detected per cell in cells with or without the 121 

chemical conversion. k. We performed PerturbSci-Kinetics experiment using converted/unconverted 122 

HEK293-idCas9 cells transduced with sgNTC/sgIGF1R. Stacked bar plot showing the fraction of 123 

converted/unconverted cells identified as sgNTC/sgIGF1R singlets, doublets, and cells with no sgRNA 124 

detected. 125 

  126 
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 127 

To dissect the impact of key genetic regulators on transcriptome kinetics, we performed a PerturbSci-128 

Kinetics experiment on HEK293-idCas9 cells transduced with a library of 699 sgRNAs, containing 15 129 

NTC sgRNAs and sgRNAs targeting 228 genes involved in a variety of biological processes including 130 

mRNA transcription, processing, degradation, and others (Fig 2a, Supplementary Table 1). The cloning 131 

and lentiviral packaging were carried out in a pooled fashion similar to the previous report27 (Methods). 132 

We then infected the HEK293-idCas9 cell line with the sgRNA lentiviral library at a low multiplicity of 133 

infection (MOI) (2 repeats at MOI = 0.1 and 2 repeats at MOI = 0.2) to ensure most cells received only 134 

one sgRNA. After a 5-day puromycin selection to remove non-infected cells, we harvested a fraction of 135 

cells for bulk library preparation (‘day 0’ samples). The rest of the cells were treated with Doxycycline 136 

(Dox) to induce the dCas9-KRAB-MeCP2 expression for an additional seven days. We then introduced 137 

4sU labeling (200uM for two hours) and harvested samples for both bulk and single-cell PerturbSci-138 

Kinetics library preparation (‘day 7’ samples). The time window for the screening period was chosen to 139 

minimize the effect of population dropout28 (Methods).  140 

 141 

As expected, the induction of CRISPRi significantly changed the abundance of sgRNAs in the cell 142 

population, which is consistent between replicates and the previous study29 (Extended Data Fig 6a-b, 143 

Supplementary Table 2, 3). For example, the sgRNAs targeting genes involved in essential biological 144 

functions, such as DNA replication, ribosome assembly, and rRNA processing, were strongly depleted in 145 

the screen (Extended Data Fig 6c). Reassuringly, the sgRNA abundance recovered by PerturbSci-146 

kinetics strongly correlated with the bulk library (Pearson correlation r = 0.988, p-value < 2.2e-16) (Fig 147 

2b). After filtering out low-quality cells, we recovered 161,966 labeled cells, 88.1% of which had matched 148 

sgRNAs. 78% of these matched cells were annotated as sgRNA singlets (Extended Data Fig 7a). Despite 149 

the relatively low (17.9%) duplication rate of sequencing, we obtained a median of 2,155 UMIs per cell. 150 

Most (698 out of 699) sgRNAs were recovered, with a median of 28 sgRNA UMIs detected per cell. We 151 

further filtered out sgRNAs with low knockdown efficiencies (<= 40% expression reduction of target 152 

genes compared with NTC) (Extended Data Fig 7b-e). Finally, 98,315 cells were retained for 153 

downstream analysis, corresponding to a median of 484 cells per gene perturbation with a median of 154 

67.7% knockdown efficiency of target genes (Fig 2c). To further validate the impact of perturbations, we 155 

aggregated single-cell transcriptomes and generated a ‘pseudo-cell’ for each targeted gene, followed by 156 

PCA dimension reduction and UMAP visualization30. Indeed, perturbations targeting paralogous genes 157 
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 8 

(e.g., EXOSC5 and EXOSC6; CNOT2 and CNOT3) or related biological processes (e.g., RNA degradation, 158 

RNA splicing, oxidative phosphorylation (OXPHOS) and energy metabolism) were readily clustered 159 

together in the low dimension space (Fig 2d).    160 

 161 

Taking advantage of PerturbSci-Kinetics for uniquely capturing multiple layers of information, we 162 

performed differentially-expressed gene (DEG) analysis (Supplementary Table 4) and quantified gene-163 

specific synthesis and degradation rates of DEGs in each perturbation based on an ordinary differential 164 

equation31 (Methods). As a quality control, we first examined the kinetics of genes targeted by CRISPRi, 165 

which were known to function through transcriptional repression32,33. Indeed, these genes exhibited 166 

strongly reduced synthesis rates while their degradation rates were only mildly affected (Fig 2c). We then 167 

investigated the impact of genetic perturbations on the global transcriptome dynamics (i.e., synthesis, 168 

splicing and degradation) (Methods, Supplementary Table 5, 6). As expected, the knockdown of genes 169 

involved in transcription initiation (e.g., GTF2E1, TAF2, MED21, and MNAT1), mRNA synthesis (e.g., 170 

POLR2B and POLR2K), and chromatin remodeling (e.g., SMC3, RAD21, CTCF, ARID1A) significantly 171 

downregulated the global synthesis rates but not the degradation rates (Fig 2e-f). In contrast, perturbations 172 

targeting components of critical biological processes such as DNA replication (e.g., POLA2, POLD1), 173 

ribosome synthesis and rRNA processing (e.g., POLR1A, POLR1B, RPL11, RPS15A), mRNA and protein 174 

processing (e.g., CNOT2, CNOT3, CCT3, CCT4) substantially reduced both RNA synthesis and 175 

degradation globally, indicating a compensatory mechanism for maintaining overall transcriptome 176 

homeostasis (Fig 2e-f, Extended Data Fig 8a, b). Furthermore, we observed significantly reduced 177 

fractions of exonic reads in nascent transcripts, an indicator of dysregulated splicing dynamics, following 178 

perturbations of genes involved in the main steps of RNA processing, including 5’ capping (e.g., NCBP1), 179 

RNA splicing (e.g., LSM2, LSM4, PRPF38B, HNRNPK), and 3’ cleavage/polyadenylation (e.g., CPSF2, 180 

CPSF6, NUDT21, CSTF3) (Fig 2g, Supplementary Table 7). In addition, the knockdown of genes 181 

involved in OXPHOS & energy metabolism (e.g., GAPDH, NDUFS2, ACO2) also significantly reduced 182 

the exonic reads ratio in nascent reads (Fig 2g, Extended Data Fig 8c), potentially due to the fact that the 183 

mRNA processing is highly energy-dependent34,35,36.  184 

 185 

We next sought to investigate the regulators of mitochondrial RNA dynamics by quantifying the ratio of 186 

nascent/total read counts (referred to as “turnover rate”) mapped to mitochondrial genes (Methods). 187 

Notably, we observed a significantly downregulated turnover rate of mitochondrial-specific RNA 188 
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following the perturbation of multiple metabolism-related genes (e.g., GAPDH, FH, PKM involved in 189 

glycolysis, ACO2, and IDH3A involved in the TCA cycle, NDUFS2 and COX6B1 involved in oxidative 190 

phosphorylation) (Fig 2h, Extended Data Fig 8d). Furthermore, the knockdown of LRPPRC introduced 191 

the most substantial defect in the mitochondrial turnover and the expression levels of all mitochondrial 192 

protein-coding genes (Fig 2h, Extended Data Fig 9a). Intriguingly, 5 of 13 mitochondrial protein-coding 193 

genes, including MT-CO1, MT-ATP8, MT-ND4, MT-CYB, and MT-ATP6, were regulated by both 194 

decreased transcription and increased degradation (Extended Data Fig 9a, Supplementary Table 9). 195 

This result was supported by a previous study37 (Extended Data Fig 9b) and was also consistent with the 196 

known functions of LRPPRC in regulating the life cycles of mitochondrial RNA from synthesis to 197 

degradation38–40. For comparison, the nuclear-encoded differentially expressed genes (DEGs) following 198 

LRPPRC knockdown were significantly changed mostly at the transcription level (39 out of 48 genes, 199 

Extended Data Fig 9c). Upon closer inspection of promoter regions of these synthesis-regulated genes, 200 

we observed a strong enrichment of ATF4 and CEBPG binding motifs, suggesting their potential roles as 201 

downstream transcriptional regulators of LRPPRC. Indeed, ATF4 and CEGPG have been reported as core 202 

transcriptional activators involved in stress sensing41,and both genes were substantially upregulated in 203 

LRPPRC knockdown cells (Extended Data Fig 9d-e).  204 

 205 

Extending the above analysis, we examined the gene-specific synthesis and degradation regulation across 206 

all perturbations (Supplementary Table 10). Among all 14,618 perturbation-DEG pairs identified in the 207 

study, 22.9% of them exhibited rate changes, in which 15.1% showed significant synthesis rate changes 208 

only, 3.6% showed degradation rate changes only, and 4.2% showed both changes, suggesting complex 209 

mechanisms regulating gene expression upon perturbations42 (Extended Data Fig 10). As expected, most 210 

degradation-regulated DEGs were associated with perturbations on mRNA surveillance/processing (e.g., 211 

UPF1, UPF2, SMG5, SMG7 in nonsense-mediated mRNA decay pathway; EXOSC2, EXOSC5, EXOSC6 212 

in RNA exosome; CSTF3, CPSF2, CPSF6, NUDT21, XRN2 for 3’ polyadenylation; RNMT, NCBP1 213 

related to 5’ RNA capping) (Fig 2i-j). For example, the knockdown of two critical regulators in the 214 

microRNA (miRNA) pathway43 (i.e., DROSHA and DICER144,45, Extended Data Fig 11a) resulted in a 215 

group of highly overlapped DEGs(Extended Data Fig 11b). These DEGs were upregulated through 216 

decreased degradation (e.g., miRNA-mediated silencing complex (RISC) components: TNRC6A and 217 

TNRC6B46) or increased transcription (e.g., miRNA host genes: MIR181A1HG47, FTX48; genes involved 218 

in miRNA biogenesis: DDX3X49) (Fig 2k-m, Extended Data Fig 11c, Supplementary Table 11). To 219 
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 10 

explore the underlying regulatory mechanisms, we examined the gene-specific binding patterns of Ago2, 220 

one of the core components in RISC for targeted mRNA binding and degradation50. Indeed, Ago2 binding 221 

was strongly enriched in the 5’ and 3’ untranslated regions (UTR) of the genes with reduced degradation, 222 

but not in genes with upregulated synthesis (Fig 2n), consistent with prior reports that miRNA induces 223 

targeted RNA degradation and translation repression mainly through binding to the UTR44,51. The analysis 224 

further demonstrates the unique capacity of PerturbSci-Kinetics for deciphering the regulatory 225 

mechanisms (degradation vs. transcription) involved in gene expression changes upon genetic 226 

perturbations. 227 

 228 

Lastly, to our knowledge, the studies described here provided the first method to quantitatively 229 

characterize the genome-wide mRNA kinetic rates (e.g., synthesis and degradation rates) across hundreds 230 

of genetic perturbations in a single experiment. We included the step-by-step protocols and the data 231 

processing pipeline as supplementary files (Supplementary file 1-4) to facilitate the broad applications 232 

of the technique. Our analysis illustrates the advantages of PerturbSci-Kinetics over conventional assays 233 

that solely profile gene expression changes. By capturing three layers of readout (e.g., whole, nascent 234 

transcriptome, and sgRNA identify) at the single-cell resolution, PerturbSci-Kinetics uniquely enables us 235 

to dissect the critical regulators of gene-specific transcription, processing, and degradation in a massive-236 

parallel manner. Finally, PerturbSci-Kinetics is built on the recently developed EasySci-RNA10 and can be 237 

readily scaled up to profiling genome-wide perturbations (e.g., 10,000s genes or cis-regulatory elements) 238 

across millions of single cells, thus enabling the systematic characterization of cell-type-specific gene 239 

regulatory network at unprecedented scale and resolution.   240 
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 241 

 242 
Fig 2. Characterizing the impact of genetic perturbations on gene-specific transcriptional and 243 

degradation dynamics with PerturbSci-Kinetics. a. Scheme of the experimental design of the 244 

PerturbSci-Kinetics screen. The main steps are described in the text. b. The scatter plot shows the 245 

correlation between perturbation-associated cell count (PerturbSci-Kinetics) and sgRNA read counts (bulk 246 

screen). c. Box plot showing the log2 transformed fold change of gene expression, synthesis rates, and 247 

degradation rates of target genes across perturbations in comparison with the NTC cells. d. UMAP 248 

visualization of genetic perturbations profiled by PerturbSci-Kinetics. We aggregated single-cell 249 

transcriptomes in each perturbation, followed by dimension reduction using PCA and visualization using 250 
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UMAP. Population classes, the functional categories of genes targeted in different perturbations.  e-h. 251 

Scatter plots showing the extent and the significance of changes on the distributions of global synthesis 252 

(e), degradation (f), nascent exonic reads ratio (g), and mitochondrial transcriptome turnover (h) upon 253 

perturbations compared to NTC cells. The fold changes were calculated by dividing the median values of 254 

each perturbation with that of NTC cells and were log2 transformed. i. Scatter plot showing the number 255 

of synthesis/degradation-regulated DEGs from different perturbations. nDEGs: the number of DEGs. j. 256 

Top20 perturbations ordered by the number of degradation-regulated DEGs. Synthesis only, DEGs with 257 

significant changes in synthesis rates. Degradation only, DEGs with significant changes in degradation 258 

rates. Synthesis+degradation, DEGs with significant changes in both synthesis and degradation rates. k-l. 259 

Venn diagrams showing the number of merged DEGs with significantly enhanced synthesis (k) or 260 

impaired degradation (l) between DROSHA and DICER1. Based on statistical test results, merged DEGs 261 

of DROSHA and DICER1 perturbations were classified into synthesis-regulated genes (i.e., the 262 

upregulation of these genes was mainly driven by increased synthesis rates) and degradation-regulated 263 

genes (i.e., the upregulation of these genes were mainly driven by reduced degradation rates). Merged 264 

DEGs with p-value <= 0.05 on synthesis increase/degradation decrease in at least one perturbation were 265 

included in the diagram, in which genes with p-value < 0.1 on synthesis increase/degradation decrease in 266 

both perturbations were regarded as shared hits between two perturbations. m. Heatmaps showing the 267 

steady-state expression, synthesis and degradation rate changes of genes sharing the same regulatory 268 

mechanism upon DROSHA and DICER1 knockdown as shown in k, l. Tiles of each row were colored by 269 

fold changes of values of perturbations relative to NTC. n. Line plot showing the Ago2 binding patterns 270 

on the transcript regions of protein-coding genes in Figure 2n and 2o. The transcript regions of genes were 271 

assembled by merging all exons, and were divided into 5’UTR, coding sequence (CDS), and 3’UTR based 272 

on coordinates of the 5’ most start codon and the 3’ most stop codon. Single-base coverage of Ago2 eCLIP 273 

on each gene was calculated, binned, and scaled to 0-1. After merging and averaging scaled binned 274 

coverage of genes in the same group together, the lowest coverage value in the CDS was used to scale the 275 

averaged merged coverage again to visualize the Ago2/RISC binding pattern.  276 

  277 
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Supplementary Figures: 303 

 304 
Extended Data Fig. 1. Scheme of plasmids and experiment procedures of PerturbSci. a. The vector 305 

system used in PerturbSci for dCas9 and sgRNA expression. The expression of the enhanced CRISPRi 306 

silencer dCas9-KRAB-MeCP211 was controlled by the tetracycline responsive (Tet-on) promoter. A GFP 307 

sequence was added to the original CROP-seq-opti plasmid9 as an indicator of successful sgRNA 308 

transduction and for the lentivirus titer measurement. b. The library preparation scheme and the final 309 

library structures of PerturbSci, including a scalable combinatorial indexing strategy with direct sgRNA 310 

capture and enrichment that reduced the library preparation cost, enhanced the sensitivity of the sgRNA 311 

capture compared to the original CROP-seq8, and avoided the extensive barcodes swapping detected in 312 

Perturb-seq9. 313 
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 314 

Extended Data Fig. 2. Representative optimizations on sgRNA enrichment of PerturbSci. a. Multiple 315 

RT primers targeting different sgRNA scaffold regions were mixed with polyT primers respectively and 316 

were used in our test experiment for targeted enrichment of sgRNA (RT primer 2-4 were modified from 317 

primers used in Direct-capture Perturb-seq52, CRISPR-sciATAC53, and ECCITE-seq54). CB, cell barcode. 318 

P_R1, partial TruSeq read1 sequence. b-c. A 96-well plate was divided into 4 parts and RT was performed 319 
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using different combinations of sgRNA capture primers and shortdT primers. After ligation, cells were 320 

mixed and redistributed for SSS. We tested the capture efficiency of sgRNA by different RT primers in 321 

PerturbSci using “Direct PCR” and tested the efficiency of by-product removal by “sgRNA-only PCR” 322 

(Scheme shown in b) followed by gel electrophoresis for analyzing the PCR product (c). Crosses in b, 323 

potential Tn5 tagmentation sites. As shown in c, sgRNA primer 2 and 3 yielded strongest amplification 324 

signals following PCR, while primer1 and 4 recovered weak signals. In addition, tagmentation removed 325 

large by-products generated potentially from polyT priming (as shown in b). d. We tested different 326 

conditions in post-multiplex PCR purification to obtain the input for the sgRNA enrichment PCR that 327 

could maximize the recovery of the sgRNA library. Left lane: 0.7x-1.5x double-size AMPURE beads 328 

purification followed by the sgRNA enrichment PCR reaction. Middle lane: 0.8x-1.2x AMPURE beads 329 

purification followed by the sgRNA enrichment PCR reaction. Right lane: Gel extraction on multiplex 330 

PCR product within 175-275 bp range followed by the sgRNA enrichment PCR reaction. The recovered 331 

sgRNA libraries generated from gRNA primer2 and 3 were marked on the gel image. Based on the result, 332 

the sgRNA primer2 and the 0.8-1.2x AMPURE beads purification condition yielded the best performance. 333 

e. A representative gel image of the final libraries of PerturbSci, including the sgRNA library (Lane 1) 334 

and the whole transcriptome library (Lane 2). f-i. We tested different concentrations of sgRNA RT primers 335 

in the PerturbSci experiment using 3T3-L1-CRISPRi cells transduced with either sgFto and sgNTC. The 336 

box plots show the number of unique sgRNA transcripts (f) or mRNA transcripts (g) detected per cell, the 337 

cell recovery rate (h) and sgRNA capture purity (i) across different sgRNA RT primer concentrations. j-338 

k. We performed PerturbSci experiment with 3T3-L1-CRISPRi cells transduced with sgFto and sgNTC 339 

in a pooled or separate manner. The box plots show the number of unique sgRNA transcripts detected per 340 

cell (j) and sgRNA capture purity (k) across the two conditions. l. Scatter plot showing the correlation 341 

between log2-transformed aggregated gene expression profiled by PerturbSci and EasySci10 in the mouse 342 

3T3-L1-CRISPRi cell line. 343 

  344 
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 345 

 346 

Extended Data Fig. 3. Representative optimizations on fixation conditions of PerturbSci-Kinetics. 347 

We aimed to search for an optimal fixation condition that can i) minimize the cell loss during the fixation 348 

and chemical conversion, ii)  reduce the RNA cross-contamination, iii) be compatible with in-situ 349 

combinatorial indexing of cellular transcriptomes. a-c. We tested different cell fixation conditions on 350 

HEK293-idCas9 cells followed by PerturbSci profiling and quantified the fraction of cells that were 351 

assigned to different groups (a), the number of unique sgRNA (b) and mRNAs (c) detected per cell. PFA 352 

fixation conditions at the room temperature (RT) were too strong to recover sufficient signals. FA fixation 353 

at 4°C yielded higher total UMI counts but showed stronger cross-contamination, indicating that under 354 

4°C it was a milder fixative compared to 4% PFA. d. Scatter plot showing the number of unique mRNA 355 

transcripts recovered from human HEK293-idCas9 cells and mouse 3T3 cells in a PerturbSci experiment. 356 

The human and mouse cell mixture was fixed by 4°C PFA+BS3 condition. Reads were aligned to a 357 

combined human-mouse reference genome and the species origins of single cells were identified by the 358 

fraction of species-specific read counts. The clear separation of cells from two species indicated the good 359 
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compatibility of this fixation condition with PerturbSci. e-f. Dot plots showing the relative recovery rate 360 

(with standard error of the mean) of HEK293-idCas9 cells in different fixation conditions (n = 4) following 361 

HCl permeabilization (d) and chemical conversion (e). All values were normalized by the standard 362 

condition used in sci-fate (PFA fixation)14. g. Box plot showing the number of unique transcripts detected 363 

per cell with or without chemical conversion. Fixation conditions included in the plots: 4°C PFA+BS3: 364 

cells were fixed with 4% PFA in PBS for 15 minutes, and were further fixed by 2mM BS3 during and 365 

after Triton-X100 permeabilization (Methods). 4°C FA+BS3: cells were fixed with 1% Formaldehyde 366 

(FA) in PBS for 10 minutes, and were further fixed by 2mM BS3 during and after Triton-X100 367 

permeabilization. 4°C FA: cells were only fixed once with 1% Formaldehyde (FA) in PBS for 10 minutes. 368 

4°C PFA: cells were only fixed once with 4% PFA in PBS for 15 minutes as sci-fate14. 369 

 370 

 371 

 372 

  373 
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 374 

Extended Data Fig. 4. Optimization of the computational pipeline for nascent reads calling. a-c. Bar 375 

plots showing the normalized mismatch rates of all 12 mismatch types detected in unconverted cells (a), 376 

converted cells (b), and the original sci-fate A549 dataset14 (c) at different positions of the reads using the 377 

original sci-fate mutation calling pipeline14. d-f. Bar plots showing the normalized mismatch rates of all 378 

12 mismatch types detected in unconverted cells (d), converted cells (e), and the original sci-fate A549 379 

dataset14 (f) at different positions of the reads using the updated mutation calling pipeline. Considering 380 

the different sequencing lengths between the present dataset and sci-fate, the Read2 from sci-fate were 381 

trimmed to the same length as the present dataset before processing. Compared to the original pipeline, 382 

the updated pipeline further filtered the mismatch based on the CIGAR string and only mismatches with 383 

“CIGAR = M” were kept. As shown in the result, this optimized pipeline efficiently removed the unaligned 384 

mismatches enriched at the 5’ and 3’ end of reads. Normalized mismatch rates in each bin, the percentage 385 

of each type of mismatch in all sequencing bases within the bin.386 
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 387 

 388 

Extended Data Fig. 5. Validation of the CRISPRi performance. Strongly reduced IGF-1R mRNA and 389 

protein levels in HEK293-idCas9 cells after Dox induction were further validated by a. RT-qPCR (n=4. 390 

****, p-value < 1e-4, Tukey’s test after ANOVA) and b. flow cytometry. Isotype, isotype control. 391 

αIGFIR, anti-IGF1R. 392 

  393 
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 394 

Extended Data Fig. 6. The changes in sgRNA abundance are consistent between replicates and 395 

previously published data. a. Heatmap showing the overall Pearson correlations of normalized sgRNA 396 

read counts between the plasmid library and bulk screen replicates at different sampling times. For each 397 

library, read counts of sgRNAs were normalized first by the sum of total counts and then by the counts of 398 

sgNTC. b. Box plot showing the reproducible trends of deletion upon CRISPRi between the present study 399 

and a prior report29. We calculated the fraction changes (After vs. before the CRISPRi induction) of 400 

sgRNAs for each gene, followed by log2 transformation. c. Bar plot showing the different extent of 401 

deletion of cells receiving sgRNAs targeting genes in different categories in the bulk screen. The 402 

knockdown on genes with higher essentiality caused stronger cell growth arrest. 403 

 404 
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 406 

Extended Data Fig. 7.  Quality control and sgRNA filtering on the PerturbSci-Kinetics library. a. We 407 

filtered out cells assigned to multiple gRNAs based on two criteria: the cell is defined as a sgRNA singlet 408 

if the most abundant sgRNA in the cell took >= 60% of total sgRNA counts and was at least 3-fold of the 409 

second most abundant sgRNA. The histogram shows the fraction distribution of the most abundant sgRNA 410 

in assigned singlets (78%) and doublet cells (22%). b-e. Dotplots showing the expression fold changes of 411 

target genes upon CRISPRi induction compared to NTC. Each dot represents a sgRNA. Fold change < 412 

0.6 was used for sgRNA filtering, and target genes with 3, 2, 1, 0 on-target sgRNA(s) were shown in b-e, 413 

respectively. FC, fold change. 414 

  415 
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 416 

 417 

Extended Data Fig. 8. A systematic view of the effects of perturbations on global synthesis rates, 418 

global degradation rates, exonic reads ratio, and mitochondrial turnover rates. For each gene 419 

category, we calculated the fraction of genetic perturbations associated with significant changes in global 420 

synthesis rates (a), global degradation rates (b), fractions of exonic reads in the nascent transcriptome (c), 421 

and mitochondrial RNA turnover rates (d). Overall global transcription could be affected by more genes 422 

than degradation. Perturbation on essential genes, such as DNA replication genes, could affect both global 423 

synthesis and degradation. Perturbations on chromatin remodelers only specifically impaired the global 424 

synthesis rates but not the degradation rates, supporting the established theory that gene expression is 425 
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regulated by chromatin folding. In addition to the enrichment of genes in transcription, spliceosome and 426 

mRNA surveillance, perturbation on OXPHOS genes and metabolism-related genes also affected the RNA 427 

processing, consistent with the fact that 5’ capping, 3’ polyadenylation, and RNA splicing are highly 428 

energy-dependent processes. That knockdown of OXPHOS genes and metabolism-related genes could 429 

reduce the mitochondrial transcriptome dynamics and also supported the complex feedback mechanisms 430 

between energy metabolism and mitochondrial transcription55. 431 

  432 
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 433 

 434 

Extended Data Fig. 9. PerturbSci-kinetics identified LRPPRC as the master regulator of 435 

mitochondrial RNA dynamics. a. Heatmap showing the relative fold changes of gene expression, 436 

synthesis and degradation rates of mitochondrial protein-coding genes upon NDUFS2, CYC1, BCS1L 437 

and LRPPRC knockdown compared to NTC cells. Perturbation on genes encoding electron transport chain 438 

components resulted in stable steady-state expression with impaired turnover. However, LRPPRC 439 

knockdown significantly disrupted the mitochondrial transcriptome dynamics by inhibiting the synthesis 440 

of almost all mitochondrial protein-coding genes and promoting the degradation of multiple genes 441 

including MT-ND6, MT-CO1, MT-ATP8, MT-ND4, MT-CYB and MT-ATP6. b. The heatmap on the left 442 

showed the mitochondrial protein-coding gene expression changes between wild-type and LRPPRC-443 

knockout mice heart tissue, as reported by Siira, S.J., et al. 37. The heatmap on the right showed the extent 444 

of the mRNA secondary structure increase upon Lrpprc knockdown observed in the published study37, 445 

which positively correlated with the elevated degradation rates of genes detected in our study (Pearson 446 

correlation r = 0.708, p-value = 6.8e-3). The result further validated the mRNA-stabilizing mechanism of 447 

Lrpprc. c. Bar plot showing the fraction of genes regulated by synthesis, degradation or both in 448 

mitochondrial-encoded and nuclear-encoded DEGs. d. Bar plot showing the enrichment of ATF4/CEBPG 449 
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motifs at promoter regions of DEGs with or without significant synthesis changes. Nc DEGs w/o synth 450 

changes, Nuclear-encoded differentially expressed genes without synthesis changes. Nc DEGs w/ synth 451 

changes, Nuclear-encoded differentially expressed genes with synthesis changes. A large part of 452 

synthesis-regulated nuclear-encoded DEGs showed motif enrichment, suggesting the activation of an 453 

integrated stress response transcriptional program mediated by ATF4/CEBPG upon LRPPRC 454 

knockdown41. 5kb regions around transcription start sites of input genes were used for motif scanning and 455 

enrichment calculation using RcisTarget56. We identified two transcription factors (ATF4 and CEBPG) 456 

that were i) significantly upregulated upon LRPPRC knockdown ii) significantly over-represented in the 457 

surroundings of the transcription start site of the synthesis-regulated nuclear-encoded DEGs (Normalized 458 

motif enrichment score of 16 for ATF4 and 16.6 for CEBPG). e. The transcriptional regulatory network 459 

in LRPPRC perturbation inferred from our analysis. Notably, it was consistent with the prior study41 that 460 

ATF4 was regulated at both transcriptional and post-transcriptional levels.461 
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 462 

Extended Data Fig. 10. PerturbSci-Kinetics captured the synthesis/degradation rates of DEGs upon 463 

perturbations. a-d. Box plots showing the log2 transformed fold changes of synthesis or degradation 464 

rates between perturbations and NTC cells for DE genes in four categories: synth up (DEGs with 465 

significantly increased synthesis rates), synth down (DEGs with significantly decreased synthesis rates), 466 

deg up (DEGs with significantly increased degradation rates), deg down (DEGs with significantly 467 

decreased degradation rates).  468 

  469 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 31, 2023. ; https://doi.org/10.1101/2023.01.29.526143doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.29.526143
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28 

 470 

Extended Data Fig. 11. The overview of the miRNA biogenesis pathway and perturbations on 471 

pathway members. a. Illustration of the canonical miRNA biogenesis pathway. After the transcription of 472 

miRNA host genes, the primary miRNA (pri-miRNA) forms into a hairpin and is processed by Drosha. 473 

Processed precursor miRNA (pre-miRNA) is transported to the cytoplasm by Exportin-5. The stem loop 474 

is cleaved by Dicer1, and one strand of the double-stranded short RNA is selected and loaded into the 475 

RISC for targeting mRNA44. b. Venn diagram showing the overlap of upregulated DEGs across 476 

perturbations on four genes encoding main members of the miRNA pathway. The knockdown of two 477 

critical RNases in this pathway (i.e., DROSHA and DICER1) resulted in significantly overlapped DEGs 478 

(p-value = 2.2e-16, Fisher’s exact test). In contrast, AGO2 knockdown resulted in more unique 479 

transcriptome features, and only 1 DEG (PRTG, identified to be mainly regulated by degradation and has 480 

been reported as a miRNA target57) overlapped with DEGs from DROSHA and DICER1 knockdown, 481 

indicating the RNAi-independent roles of AGO2. Interestingly, XPO5 knockdown showed no upregulated 482 

DEGs, which is consistent with a previous report in which XPO5 silencing only minimally perturbed the 483 

miRNA biogenesis, indicating the existence of an alternative miRNA transportation pathway45. c. Bar plot 484 

showing the fraction of upregulated DEGs driven by synthesis changes and degradation changes upon 485 

DROSHA, DICER1, and AGO2 perturbations. While DROSHA and DICER1 knockdown resulted in 486 

increased synthesis and reduced degradation, AGO2 knockdown only affected gene expression 487 

transcriptionally, which was consistent with the previous finding that AGO2 knockdown resulted in a 488 

global increase of synthesis rates (Fig 2e), and further supported its roles in nuclear transcription 489 

regulation58–60. As Drosha is upstream of Dicer1 in the pathway, we indeed observed stronger effects of 490 

DROSHA knockdown than DICER1 knockdown, which was supported by the previous study45.  491 
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Materials and Methods: 492 

Cell culture  493 

The 3T3-L1-CRISPRi cell line was obtained from the Tissue Culture facility at the University of 494 

California, Berkeley. The HEK293 cell line was a gift from the Scott Keeney Lab at Memorial Sloan 495 

Kettering Cancer Center. The HEK293T cell line was obtained from ATCC (CRL-3216). All cells were 496 

maintained at 37 °C and 5% CO2 in high glucose DMEM medium supplemented with L-Glutamine and 497 

Sodium Pyruvate (Gibco 11995065) and 10% Fetal Bovine Serum (FBS; Sigma F4135). When generating 498 

a monoclonal cell line, the medium was supplemented with 1% Penicillin-Streptomycin (Gibco 499 

15140163). In the screening experiment, sgRNA-transduced HEK293-idCas9 cells were cultured in high 500 

glucose DMEM medium supplemented with L-Glutamine (Gibco 11965092) and 10% FBS, following the 501 

induction of dCas9-KRAB-MeCP2 expression by 1ug/ml Dox (Sigma D5207),  502 

 503 

Generation of monoclonal HEK293-idCas9 cell line 504 

To generate HEK293 with Dox-inducible dCas9-KRAB-MeCP2 expression, the lentiviral plasmid Lenti-505 

idCas9-KRAB-MeCP2-T2A-mCherry-Neo was constructed. A dCas9-KRAB-MeCP2-T2A insert was 506 

amplified from dCas9-KRAB-MeCP2 (Addgene #110821). A T2A-mCherry Gblock was synthesized by 507 

IDT. Gibson Assembly reaction (NEB E2611S) was performed at 50 °C with a mixture of Bsp119I-508 

digested Lenti-Neo-iCas9 (Thermo FD0124;  Addgene #85400), dCas9-KRAB-MeCP2-T2A amplicon, 509 

T2A-mCherry Gblock for 60 minutes to construct a dCas9-KRAB-MeCP2-T2A-mCherry plasmid. The 510 

reaction product was transformed into NEBstable competent cells (NEB C3040H), and colonies were 511 

inoculated and amplified in LB medium (Gibco 10855001) with 50ug/ml Sodium Ampicillin (Sigma 512 

A8351) at 37 °C overnight.  513 

 514 

After plasmid extraction (QIAGEN No.27106) and sequencing validation, the plasmid was co-transfected 515 

with psPAX2 (Addgene #12260) and pMD2.G (Addgene #12259) into low-passage HEK293T cells in a 516 

10cm dish using Polyjet (SignaGen SL100688) for 24 hours. Cells were gently washed twice with PBS, 517 

then cultured in a medium with 10mM Sodium Butyrate (Sigma TR-1008-G) for another 24 hours. The 518 

supernatant was collected, and cell debris was cleared by spinning down (5min, 1000xg) and passed 519 

through a 0.45 μm filter. The lentivirus was concentrated 10x by the Lenti-X concentrator (TaKaRa 520 

631231), and the virus suspension was flash frozen by Liquid Nitrogen and was stored at -80 °C.  521 

 522 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 31, 2023. ; https://doi.org/10.1101/2023.01.29.526143doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.29.526143
http://creativecommons.org/licenses/by-nc-nd/4.0/


 30 

The lentivirus titer was determined by examining the ratio of mCherry+ cells after 24 hours of transduction 523 

and 48 hours of Dox induction. Polybrene (Sigma TR-1003) at a final concentration of 8ug/ml was used 524 

to enhance the transduction efficiency. Then HEK293 cells were counted and transduced with lentivirus 525 

at MOI = 0.2 for 48 hours. Cells were treated with Dox for 48 hours, and the top 10% of cells with the 526 

strongest mCherry fluorescence were sorted to each well of a 96-well plate containing 100ul medium. 527 

After a 3-week expansion, monoclonal cells that survived were transferred to larger dishes for further 528 

expansion. We picked the clone with inducible homogeneous strong mCherry expression and normal 529 

morphology for the following experiment. 530 

 531 

Gene Knockdown and efficacy examination 532 

To simplify the lentiviral titer measurement, CROP-seq-opti-Puro-T2A-GFP was assembled by adding a 533 

T2A-GFP downstream of Puromycin resistant protein coding sequence on the CROP-seq-opti plasmid 534 

(Addgene #106280). Flanking MluI and CsiI digestion sites were added to the GFP Gblock (IDT) by PCR. 535 

Both amplicon and CROP-seq-opti vector were digested using MluI (Thermo, FD0564) and CsiI (Thermo, 536 

FD2114) at 37 °C for 30 minutes, and were ligated at room temperature for 20 minutes using the Blunt/TA 537 

Ligase Master Mix (NEB M0367S). Transformation, clone amplification, and sequencing validation were 538 

done as stated above.  539 

 540 

Oligos corresponding to individual guides for ligation were ordered as standard DNA oligos from IDT 541 

with the following design: 542 

 543 

Plus strand: 5’-CACCG[20bp sgRNA plus strand sequence]-3’ 544 

Minus strand: 5’-AAAC[20bp sgRNA minus strand sequence]C-3’ 545 

 546 

Oligos were reconstituted into 100uM and were mixed and phosphorylated using T4 PNK (NEB M0201S) 547 

by incubating at 37 °C for 30 minutes. The reaction was heated at 95 °C for 5 minutes and then ramped 548 

down to 25 °C by -0.1 °C/second to anneal oligos into a double-stranded duplex. The CROP-seq-opti-549 

Puro-T2A-GFP was digested by Esp3I (NEB R0734L) at 37 °C for 30 minutes, then the linearized 550 

backbone and the annealed duplex were ligated at room temperature for 20 minutes using the Blunt/TA 551 

Ligase Master Mix (NEB M0367S). Transformation, clone amplification, sequencing validation, 552 

lentivirus generation, and titer measurement were done as stated above.  553 
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 554 

For the mouse 3T3-L1-CRISPRi cells, they were counted and incubated with lentivirus inserted with either 555 

non-target control (NTC) sgRNA or sgRNA targeting a Fto gene, and 8ug/ml of Polybrene. For the human 556 

HEK293-idCas9 cells, they were counted and incubated with NTC sgRNA or sgRNA targeting an IGF1R 557 

gene, and 8ug/ml of Polybrene. Transduction was then performed at MOI = 0.2 for 48 hours. Based on 558 

the results of our puromycin titration experiments, sgRNA-transduced 3T3-L1-CRISPRi cells were 559 

selected by 2.5ug/ml Puromycin for 2 days and 2ug/ml Puromycin for 3 days, and sgRNA-transduced 560 

HEK293-idCas9 cells were selected by 1.5ug/ml Puromycin for 3 days and 1ug/ml Puromycin for 2 days. 561 

 562 

As dCas9-BFP-KRAB was constitutively expressed in 3T3-L1-CRISPRi cells, the target gene started 563 

being silenced once sgRNA lentivirus was introduced. For HEK293-idCas9 cells, Dox treatment for a 564 

minimum of 72 hours was required before examining the knockdown effect.  565 

 566 

For RT-qPCR validation, primers targeting IGF1R were selected from PrimerBank 567 

(https://pga.mgh.harvard.edu/primerbank/) and were synthesized from IDT. Total RNA in 1e6 cells of 568 

each sample was extracted using the RNeasy Mini kit (QIAGEN 74104) and the concentration was 569 

measured by Nanodrop. 1ug total RNA was then reverse-transcribed into the first strand cDNA by 570 

SuperScript VILO Master Mix (Thermo 11755050). PowerTrack SYBR Green Master Mix (Thermo 571 

A46109) was used for RT-qPCR following the manufacturer's instructions. 572 

 573 

For flow cytometry validation, 1e6 cells of each sample were harvested and resuspended in 100ul of PBS-574 

0.1% sodium azide-2% FBS. BV421 Mouse Anti-Human CD221 (BD 565966) and BV421 Mouse IgG1 575 

k Isotype Control (BD 562438) at the final concentration of 10 ug/ml were added, and reactions were 576 

incubated at 4 °C in the dark with rotation for 30 minutes. Cells were then washed twice using PBS-0.1% 577 

sodium azide-2% FBS, and fluorescence signals were recorded. 578 

 579 

Construction of pooled sgRNA library 580 

Genes of interest were selected manually, considering their functions and expression levels in HEK293 581 

cells. The sgRNA sequences targeting genes of interest with the best performances were obtained from an 582 

established optimized sgRNA library (only sgRNA set A is considered)29. Finally, 684 sgRNAs targeting 583 

228 genes (3 sgRNAs/gene) and 15 non-targeting controls were included in the present study.  584 
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 585 

The single-stranded sgRNA library was synthesized in a pooled manner by IDT in the following format:  586 

5’-GGCTTTATATATCTTGTGGAAAGGACGAAACACCG[20bp sgRNA plus strand 587 

sequence]GTTTAAGAGCTATGCTGGAAACAGCATAGCAAGTT-3’ 588 

 589 

100ng of oligo pool was amplified by PCR using primers targeting 5’ homology arm (HA) and 3’ HA 590 

with limited cycles (x12) to avoid introducing amplification biases. The PCR product was purified, and 591 

double-stranded library amplicons were extracted by DNA electrophoresis and gel extraction. Then the 592 

insert was cloned into Esp3I-digested CROP-seq-opti-Puro-T2A-GFP by Gibson Assembly (50 °C for 60 593 

minutes). In parallel, a control Gibson Assembly reaction containing only the backbone was set. Both 594 

reactions were cleaned up by 0.75x AMPURE beads (Beckman Coulter A63882) and eluted in 5uL EB 595 

buffer (QIAGEN 19086), then were transformed into Endura Electrocompetent Cells (Lucigen, 602422) 596 

by electroporation (Gene Pulser Xcell Electroporation System, Bio-Rad, 1652662). After 1 hour of 597 

recovery at 250rpm, 37 °C, each reaction was spread onto an in-house 245 mm Square agarose plate 598 

(Corning, 431111) with 100ug/ml of Carbenicillin (Thermo, 10177012) and was then grown at 32 °C for 599 

13 hours to minimize potential recombination and growth biases. All colonies from each reaction were 600 

scraped from the plate and the CROP-seq-opti-Puro-T2A-GFP-sgRNA plasmid library was extracted 601 

using ZymoPURE II Plasmid Midiprep Kit (Zymo, D4200). The lentiviral library was generated as stated 602 

above with extended virus production time. The step-by-step protocol is included in the supplementary 603 

materials. 604 

 605 

The pooled PerturbSci-Kinetics screen experiment 606 

For each replicate, 7e6 uninduced HEK293-idCas9 cells were seeded. After 12 hours, two replicates were 607 

transduced at MOI=0.1 (1000x coverage/sgRNA) and another two replicates were transduced at MOI=0.2 608 

(2000x coverage/sgRNA) with 8ug/ml of Polybrene for 24 hours. Then we replaced the culture medium 609 

with the virus-free medium and culture cells for another 24 hours. Transduced cells were selected by 610 

1.5ug/ml of Puromycin for 3 days and 1ug/ml of Puromycin for 2 days. During the selection, we passed 611 

cells every 2 or 3 days to ensure at least 1000x coverage. At the end of the drug selection, we harvested 612 

1.4e6 cells in each replicate (2000x coverage/sgRNA) as day0 samples of the bulk screen and pellet down 613 

at 500xg, 4 °C for 5 minutes. Cell pellets were stored at -80 °C for genomic DNA extraction later. Then 614 

the dCas9-KRAB-MeCP2 expression was induced by adding Dox at the final concentration of 1ug/ml, 615 
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and L-glutamine+, sodium pyruvate-, high glucose DMEM was used to sensitize cells to perturbations on 616 

energy metabolism genes. Cells were cultured in this condition for additional 7 days and were passed 617 

every other day with 4000x coverage/sgRNA. On day7, 6ml of the original media from each plate was 618 

mixed with 6uL of 200mM 4sU (Sigma T4509-25MG) dissolved in DMSO (VWR 97063-136) and was 619 

put back for nascent RNA metabolic labeling. After 2 hours of treatment, 1.4e6 cells in each replicate 620 

were harvested as day7 samples of the bulk screen, and the rest of the cells were fixed and stored for 621 

single-cell PerturbSci-Kinetics profiling (see the next section). 622 

 623 

Genomic DNA of bulk screen samples was extracted using Quick-DNA Miniprep Plus Kit (Zymo, 624 

D4068T) following the manufacturer's instructions and quantified by Nanodrop. All genomic DNA was 625 

used for PCR to ensure coverage. The primer targeting the U6 promoter region with P5-i5-Read1 overhang 626 

and the primer targeting the sgRNA scaffold region with P7-i7-Read2 overhang was used for generating 627 

the bulk screen libraries for sequencing. 628 

 629 

Library preparation for the PerturbSci-Kinetics 630 

After trypsinization, cells in each 10cm dish were collected into a 15ml falcon tube and kept on ice. Cells 631 

were spun down at 300xg for 5 minutes (4 °C) and washed once in 3ml ice-cold PBS. Cells were fixed 632 

with 5ml ice-cold 4% Paraformaldehyde (PFA) in PBS (Santa Cruz Biotechnology sc-281692) for 15 633 

minutes on ice. PFA was then quenched by adding 250ul 2.5M Glycine (Sigma 50046-50G), and cells 634 

were pelleted at 500xg for 5 minutes (4 °C). Fixed cells were washed once with 1ml PBSR (PBS, 0.% 635 

SUPERase In (Thermo AM2696), and 10mM dithiothreitol (DTT; Thermo R0861)), and were then 636 

resuspended, permeabilized, and further fixed in 1ml PBSR-triton-BS3 (PBS, 0.1% SUPERase In, 0.2% 637 

Triton-X100 (Sigma X100-500ML), 2mM bis(sulfosuccinimidyl)suberate (BS3; Thermo, PG82083), 638 

10mM DTT) for 5 minutes. Additional 4ml of PBS-BS3 (PBS, 2mM BS3, 10mM DTT) was then added 639 

to dilute Triton-X100 while keeping the concentration of BS3, and cells were incubated on ice for 15 640 

minutes. Cells were pelleted at 500xg, 4 °C for 5 minutes and resuspended in 500ul nuclease-free water 641 

(Corning 46-000-CM) supplemented with 0.1% SUPERase In and 10mM DTT. 3ml of 0.05N HCl (Fisher 642 

Chemical, SA54-1) was added for further permeabilization. After 3 minutes of incubation on ice, 3.5ml 643 

Tris-HCl, pH 8.0 (Thermo 15568025), and 35ul of 10% Triton X-100 were added to each tube to neutralize 644 

the HCl. After spinning down at 4 °C, 500xg for 5 minutes, cells were finally resuspended in 400ul PSB-645 
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DTT at the concentration of ~2e6 cells/100ul (PBS, 1% SUPERase In, 1% BSA (NEB B90000S), 1mM 646 

DTT), mixed with 10% DMSO, and were slow-frozen and stored in -80 °C.  647 

 648 

The chemical conversion was performed before the library preparation. Cells were thawed with shaking 649 

in the 37 °C water bath and spun down, then were washed once with 400ul PSB without DTT. Next, cells 650 

were resuspended in 100ul PSB, mixed with 40ul Sodium Phosphate buffer (PH 8.0, 500mM), 40ul IAA 651 

(100mM, Sigma I1149-5G), 20ul nuclease-free water, and 200ul DMSO with the order. The reaction was 652 

incubated at 50 °C for 15 minutes and was quenched by adding 8ul 1M DTT. Then cells were washed 653 

with PBS and were filtered through a 20um strainer (Pluriselect 43-10020-60). Cells were finally 654 

resuspended in 100ul PSB.  655 

 656 

For library preparation, a step-by-step protocol is included as a supplementary file. 657 

 658 

Reads processing 659 

For bulk screen libraries, bcl files were demultiplexed into fastq files based on index 7 barcodes. Reads 660 

for each sample were further extracted by index 5 barcode matching. Then every read pair was matched 661 

against two constant sequences (Read1: 11-25bp, Read2: 11-25bp) to remove reads generated from the 662 

PCR by-product. For all matching steps, a maximum of 1 mismatch was allowed. Finally, sgRNA 663 

sequences were extracted from filtered read pairs (at 26-45bp of R1), assigned to sgRNA identities with 664 

no mismatch allowed, and read counts matrices at sgRNA and gene levels were quantified.    665 

 666 

For PerturbSci-Kinetics transcriptome reads processing and whole-transcriptome/nascent transcriptome 667 

gene counting, the pipeline was developed based on EasySci10 and Sci-fate14 with minor modifications. 668 

After demultiplexing on index 7, Read1 were matched against a constant sequence on the sgRNA capture 669 

primer to remove unspecific priming, and cell barcodes and UMI sequences sequenced in Read1 were 670 

added to the headers of the fastq files of Read2, which were retained for further processing. After potential 671 

polyA sequences and low-quality bases were trimmed from Read2 by Trim Galore61, reads were aligned 672 

to a customized reference genome consisting of a complete hg38 reference genome and the dCas9-KRAB-673 

MeCP2 sequence from Lenti-idCas9-KRAB-MECP2-T2A-mCherry-Neo using STAR62. Unmapped 674 

reads and reads with mapping score < 30 were filtered by samtools63. Then deduplication at the single-675 

cell level was performed based on the UMI sequences and the alignment location, and retained reads were 676 
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split into SAM files per cell. These single-cell sam files were converted into alignment tsv files using the 677 

sam2tsv function in jvarkit64. Only reads with FLAG values of 0 or 16 and high-quality mismatches with 678 

QUAL scores > 45 and CIGAR of M in them were maintained. Mutations were further filtered against 679 

background SNPs called by VarScan using our in-house EasySci data on HEK293 cells. Reads in which 680 

at least 30% of mutations were T to C mismatches were identified as nascent reads, and the list of reads 681 

were extracted from single-cell whole transcriptome sam files by Picard65. Finally, single-cell whole 682 

transcriptome gene x cell count matrix and nascent transcriptome gene x cell count matrix were 683 

constructed by assigning reads to genes if the aligned coordinates overlapped with the gene locations on 684 

the genome. At the same time, single cell exonic/intronic read numbers were also counted by checking 685 

whether reads were mapped to the exonic or the intronic regions of genes. To quantify dCas9-KRAB-686 

MECP2 expression, a customized gtf file consisting of the complete hg38 genomic annotations and 687 

additional annotations for dCas9 was used in this step. 688 

 689 

Read1 and read2 of PerturbSci-Kinetics sgRNA libraries were matched against constant sequences 690 

respectively, allowing a maximum of 1 mismatch. For each filtered read pair, cell barcode, sgRNA 691 

sequence, and UMI were extracted from designed positions. Extracted sgRNA sequences with a maximum 692 

of 1 mismatch from the sgRNA library were accepted and corrected, and the corresponding UMI was used 693 

for deduplication. De-duplication was performed by collapsing identical UMI sequences of each 694 

individual corrected sgRNA under a unique cell barcode. Cells with overall sgRNA UMI counts higher 695 

than 10 were maintained and the sgRNA x cell count matrix was constructed.   696 

 697 

Bulk screen sgRNA counts analysis 698 

For each bulk screen library, read counts of sgRNAs were normalized first by the sum of total counts to 699 

remove the biases from sequencing depth, and then the abundance of each sgRNA relative to the sum of 700 

sgNTC was calculated, assuming the NTC cells had no selection pressure during the screen. The Pearson 701 

correlations across replicates were calculated based on the relative abundances. Then the fraction changes 702 

(After vs. before the CRISPRi induction) of sgRNAs were calculated within each replicate, and the mean 703 

fold changes across replicates were log2 transformed. The raw counts of another external bulk CRISPRi 704 

screen dataset29 was processed as stated above and the log2 mean relative abundance was compared to the 705 

current study. 706 

 707 
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sgRNA singlets identification and off-target sgRNA removal  708 

In the cell mixture experiments, cells with at least 200 whole transcriptome UMIs and 200 genes detected, 709 

and unannotated reads ratio < 40% were kept. If the count of the most abundant sgRNA was at least 3-710 

fold of the second most abundant sgRNA within this single cell, then this cell was identified as a sgRNA 711 

singlet.  712 

 713 

In the screen dataset, cells with at least 300 whole transcriptome UMIs and 200 genes detected, and 714 

unannotated reads ratio < 40% were kept. sgRNA identities of cells were assigned and doublets were 715 

removed based on the following criteria: the cell is assigned to a single sgRNA if the most abundant 716 

sgRNA in the cell took >= 60% of total sgRNA counts and was at least 3-fold of the second most abundant 717 

sgRNA. Then whole transcriptomes and sgRNA profiles of single cells were integrated with the matched 718 

nascent transcriptomes.  719 

 720 

Target genes with the number of cells perturbed >= 50 were kept for further filtering. The knockdown 721 

efficiency was calculated at the individual sgRNA level to remove potential off-target or inefficient 722 

sgRNAs: whole transcriptome counts of all cells receiving the same sgRNA were merged, normalized by 723 

the total counts, and scaled using 1e6 as the scale factor, then the fold changes of the target gene 724 

expressions were calculated by comparing the normalized expression levels between corresponding 725 

perturbations and NTC. sgRNAs with >= 40% of target gene expression reduction relative to NTC were 726 

regarded as “effective sgRNAs”, and singlets receiving these sgRNAs were kept as “on-target cells”. 727 

Downstream analyses were done at the target gene level by analyzing all cells receiving different sgRNAs 728 

targeting the same gene together. 729 

 730 

Gene Ontology analysis of genes with high or low nascent reads ratio 731 

To validate the specificity of 4sU labeling and the computational identification of nascent reads, we 732 

identified features of gene groups with different turnover rates. Single cells were split into nascent 733 

transcriptomes and pre-existing transcriptomes, and were loaded into Seurat30. Nascent transcriptomes 734 

and pre-existing transcriptomes were normalized, scaled independently, and DEGs between the two 735 

groups were identified by FindMarkers function30 with default parameters. Then GO enrichment analyses 736 

were performed using ClusterProfiler66 on upregulated genes (genes with significantly higher fraction of 737 
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nascent counts, FDR of 0.05) and downregulated genes (genes with significantly lower fraction of nascent 738 

counts, FDR of 0.05) respectively. 739 

 740 

UMAP embedding on pseudo-cells 741 

The count matrix of the “on-target” cells described above was loaded into Seurat30, and DEGs of each 742 

perturbation (compared to NTC) were retrieved by FindMarkers function30 with default parameters. Cells 743 

from perturbations with over one DEGs (by FindMarkers function30) were selected. We also included cells 744 

from genetic perturbations involved in similar pathways of the top perturbations. The fold changes of the 745 

normalized gene expression between perturbations and NTC were calculated, and were binned based on 746 

the gene-specific expression levels in NTC. The top 3% of genes showing the highest fold changes within 747 

each bin were selected and merged as features for Principal Component Analysis (PCA). The top 9 PCs 748 

were used as input for Uniform Manifold Approximation and Projection (UMAP) embedding (min.dist = 749 

0.3, n.neighbors = 10). 750 

 751 

Differential expression analysis 752 

Pairwise differential expression analyses between each perturbation and NTC cells were performed by the 753 

differentialGeneTest() function of Monocle 267. To identify DEGs with rate changes, we selected 754 

significant hits (FDR of 5%, likelihood) with a >= 1.5-fold expression difference and counts per million 755 

(CPM) >= 5 in at least one of the tested cell pairs. To showcase LRPPRC and miRNA pathway 756 

perturbations, more stringent criteria were used to obtain DEGs with high confidence: significant hits 757 

(FDR of 5%, likelihood) with a >= 1.5-fold expression difference and CPM >= 50 in at least one of the 758 

tested cell pairs were kept. 759 

 760 

Synthesis and degradation rates calculation 761 

After the induction of CRISPRi for 7 days, we assumed new transcriptomic steady states had been 762 

established at the perturbation level before the 4sU labeling, and the labeling didn’t disturb these new 763 

transcriptomic steady states. The following RNA dynamics differential equation is used for synthesis and 764 

degradation rates calculation similar to the previous study31: 765 

 766 
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In which  is the mRNA abundance of each gene,  is the synthesis rate of this gene, and  is the 767 

degradation rate of this gene. Since the RNA synthesis follows the zero-order kinetics and RNA 768 

degradation follows the first-order kinetics in cells,  is determined by  and . 769 

As steady states had been established, the mRNA level of each gene didn’t change. We can get:  770 

 771 

 772 

Under the assumption that the labeling efficiency was 100%, all nascent RNA were labeled during the 773 

4sU incubation, and pre-existing RNA would only degrade. So, for nascent RNA ( ),  774 

and . For pre-existing RNA ( ),  and . Based on these boundary 775 

conditions, we could further solve the differential equation above on nascent RNA and pre-existing RNA 776 

of each gene. 777 

 778 

As PerturbSci-Kinetics directly measured whole transcriptome gene expression levels and nascent 779 

transcriptome gene expression levels, pre-existing gene expression levels could be obtained by subtracting 780 

nascent transcriptome expressions from the whole transcriptome expressions. As cells were labeled by 781 

4sU for 2 hours ( ),  and  of each gene could be calculated based on the equations above. 782 

 783 

Due to the shallow sequencing and the sparsity of the single cell expression data, synthesis and degradation 784 

rates of DEGs were calculated at the pseudo-cell level. We aggregated the expression profiles of all cells 785 

with the same target gene knockdown, normalized the expressions of genes by the sum of gene counts, 786 

and scaled the size of the total counts to 1e6. Synthesis and degradation rates of DEGs in the corresponding 787 

perturbed pseudo-cell were calculated as stated above. DEGs with only nascent counts or degradation 788 

counts were excluded from further examination since their rates couldn’t be estimated. 789 

 790 
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To examine the significance of synthesis and degradation rate changes upon perturbation, regarding the 791 

different cell sizes across different perturbations and NTC, which could affect the robustness of rate 792 

calculation, randomization tests were adopted. Only perturbations with cell number >= 50 were examined. 793 

For each DEG belonging to each perturbation, background distributions of the synthesis and degradation 794 

rate were generated: a subset of cells with the same size as the corresponding perturbed cells was randomly 795 

sampled from a mixed pool consisting of corresponding perturbed cells and NTC cells, then these cells 796 

were aggregated into a background pseudo-cell, and synthesis and degradation rates of the gene for testing 797 

were calculated as stated above, and the process was repeated for 500 times. Rates = 0 were assigned if 798 

only nascent counts or degradation counts were sampled during the process (referred to as invalid 799 

samplings), but only genes with less than 50 (10%) “invalid samplings” were kept for p-value calculation. 800 

The two-sided empirical p-values for the synthesis and degradation rate changes were calculated 801 

respectively by examining the occurrence of extreme values in background distributions compared to the 802 

rates from perturbed pseudo-cell. Rate changes with p-value <= 0.05 were regarded as significant, and the 803 

directions of the rate changes were determined by comparing the rates from the perturbed pseudo-cell with 804 

the background mean values. The fold changes of rates for each significant gene were calculated as 805 

follows: only NTC cells were sampled at the same size as perturbed cells and aggregated, and the 806 

background rates were calculated at the pseudo-cell level. After resampling for 200 times, these gene-807 

specific rates were averaged. Fold changes of the rates = rates in perturbed pseudo-cell / mean rates from 808 

the NTC-only background. 809 

 810 

Global changes of key statistics upon perturbations 811 

For global synthesis and degradation rate changes, considering the noise from lowly-expressed genes, we 812 

selected top1000 highly-expressed genes from NTC cells, then calculated their synthesis rates and 813 

degradation rates in NTC cells and all perturbations with cell number >= 50. KS tests were performed to 814 

compare rate distributions between each perturbation and NTC cells. 815 

 816 

During the reads processing, the number of reads aligned to exonic/intronic regions were counted at the 817 

single cell level. Then the distributions of exonic reads percentage in nascent reads from single cells with 818 

the same target gene knockdown and NTC cells were compared using the KS tests to identify genes 819 

affecting RNA processing.  820 

 821 
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The ratio of nascent mitochondrial read counts to total mitochondrial read counts was calculated in each 822 

single cell, and the distributions of the ratio from single cells with the same target gene knockdown and 823 

NTC cells were compared using the KS tests to identify the master regulator of mitochondrial mRNA 824 

dynamics.   825 

 826 

In all global statistics examinations, the p-values were corrected from multiple comparisons, and 827 

comparisons with FDR <= 0.05 were considered as significant. The median value from each perturbation 828 

and NTC cells were compared to determine the direction of significant changes. 829 

 830 

Ago2 eCLIP coverage analysis 831 

To identify the potential different RISC binding patterns between synthesis/degradation-regulated DEGs 832 

in DROSHA and DICER1 perturbations, we reprocessed the raw data of Ago2 eCLIP obtained from Hela 833 

cells (two replicates, SRR7240709 and SRR7240710) from Zhang, K et, al68. Potential adapters at 3’ ends 834 

of reads were trimmed by Cutadapt69, and the first 6-base UMI were extracted and attached to headers of 835 

the reads. After STAR alignment62 and samtools filtering63, only uniquely aligned reads were kept and 836 

deduplication was performed based on the UMI and mapping coordinates using UMI-tools70. Then bam 837 

files were transformed to the single-base coverage by BEDtools71. The transcript regions of genes-of-838 

interest were reconstructed based on the hg38 genome annotation gtf file from GENCODE. Briefly, for 839 

each gene, the exonic regions were extracted and were redivided into 5’UTR, CDS, and 3’UTR by the 840 

5’most start codon and the 3’most stop codon annotated in the gtf. The Ago2 binding coverages of these 841 

designated regions were obtained by intersection and were binned. A small background (0.1/base) was 842 

added for smoothing. The gene-specific signal in each bin was normalized by the number of bases in each 843 

bin, and the binned coverage of each gene was scaled to be within 0-1. After aggregating scaled coverages 844 

of synthesis/degradation-regulated genes respectively, the second scaling was performed to visualize the 845 

relative enrichment of Ago2 binding at UTR compared to the CDS: fold changes of the scaled binned 846 

coverage relative to the lowest coverage value in the CDS along the aggregated transcript were calculated. 847 

 848 

Data Availability 849 

The data generated by this study can be downloaded in raw and processed forms from the NCBI Gene 850 

Expression Omnibus (GSE218566,  reviewers’ token: itqlgacczrgxpmb).  851 

 852 
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Code Availability 853 

The computation scripts for processing PerturbSci-Kinetics were included as supplementary files. 854 

 855 

Supplementary Tables (provided as Microsoft Excel files) 856 

Supplementary Table 1: Genes and sgRNAs included in the study. Each gene (“gene_symbol”) has 3 857 

sgRNAs, and they were named in the format “Gene_number” (“names”). sgRNA sequences were included 858 

in “sgRNA_seq”. The “gene_class” is the functional category of each gene. 859 

Supplementary Table 2: Raw sgRNA counts of the bulk screen samples collected at different time points. 860 

Read counts of each sgRNA (“sgRNA_name”) from 4 replicates at day 0 and day 7 were included. 861 

Supplementary Table 3: Relative sgRNA abundance fold changes between day 7 and day 0. The 862 

“Day7_vs_Day0_repX” is the fold changes of relative sgRNA abundance at the gene level (Methods).  863 

Supplementary Table 4: Filtered differentially expressed genes between perturbations with cell 864 

number >= 50 and NTC. For each gene (“Gene_symbol”), the “perturbation” is the target gene in 865 

perturbed cells. The “DEGs_direction” is the direction of gene expression changes comparing perturbed 866 

cells to the NTC cells, and the “DEGs_FC” is the fold change of the gene expression changes comparing 867 

perturbed cells to the NTC cells. The “max.CPM.between.KD.NTC” and “min.CPM.between.KD.NTC” 868 

are the pseudobulk expression levels of the gene that showed higher and lower expression in perturbed 869 

cells or the NTC cells. The expression level was quantified by counts per million. The “qval” is the false 870 

discovery rate (one-sided likelihood ratio test with adjustment for multiple comparisons).  871 

Supplementary Table 5: Information about perturbations that showed significant global synthesis rate 872 

changes. The “adj.p” is the false discovery rate adjusted for multiple comparisons. The “direction” is the 873 

direction of the changes on the global synthesis rates distributions comparing perturbed cells to the NTC 874 

cells, and the “KD_median/NTC_median” is the quantitative measurement of the changes. The 875 

“gene_class” is the functional category of target genes (“Perturbations”). 876 

Supplementary Table 6: Information about perturbations that showed significant global degradation rate 877 

changes. The “adj.p” is the false discovery rate adjusted for multiple comparisons. The “direction” is the 878 

direction of the changes on the global degradation rates distributions comparing perturbed cells to the 879 
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NTC cells, and the “KD_median/NTC_median” is the quantitative measurement of the changes. The 880 

“gene_class” is the functional category of target genes (“Perturbations”). 881 

Supplementary Table 7: Information about perturbations that showed significant nascent exonic reads 882 

ratio changes. The “adj.p” is the false discovery rate adjusted for multiple comparisons. The “direction” 883 

is the direction of the changes on the nascent exonic reads ratio distributions comparing perturbed cells to 884 

the NTC cells, and the “KD_median/NTC_median” is the quantitative measurement of the changes. The 885 

“gene_class” is the functional category of target genes (“Perturbations”). 886 

Supplementary Table 8: Information about perturbations that showed significant mitochondrial RNA 887 

turnover changes. The “adj.p” is the false discovery rate adjusted for multiple comparisons. The 888 

“direction” is the direction of the changes in the distributions of mitochondrial nascent/total reads ratio 889 

comparing perturbed cells to the NTC cells, and the “KD_median/NTC_median” is the quantitative 890 

measurement of the changes. The “gene_class” is the functional category of target genes (“Perturbations”). 891 

Supplementary Table 9: Steady-state expression and synthesis/degradation dynamics of mitochondrial 892 

genes upon LRPPRC, NDUFS2, CYC1, BCS1L perturbations. The “synth_rate”, “synth_FC”, 893 

“synth_pval”, “synth_direction” are the synthesis rate of the gene in the perturbed cells, the fold change 894 

of the synthesis rate of the gene in the perturbed cells compared to the NTC cells, the significance of the 895 

synthesis rate change, and the direction of the synthesis rate changes. The “deg_rate”, “deg_FC”, 896 

“deg_pval”, “deg_direction” are the degradation rate of the gene in the perturbed cells, the fold change of 897 

the degradation rate of the gene in the perturbed cells compared to the NTC cells, the significance of the 898 

degradation rate change, and the direction of the degradation rate changes. The “DEG_qval” and 899 

“DEG_fold.change” are the multiple comparison-corrected FDR and the fold change of the steady-state 900 

gene expression change in perturbed cells compared to the NTC cells. 901 

Supplementary Table 10: Differentially expressed genes with significant synthesis and/or degradation 902 

changes. The “perturbations” is the target gene of the perturbed cells, and the “Gene_symbols” is the 903 

symbols of DEGs with significant synthesis and/or degradation rate changes in corresponding 904 

perturbations. The type of significant rate change of each gene is included in the “Regulation_type”. The 905 

“Synth_deg_FC”, the “Synth_deg_direction”, and the “Synth_deg_pval” reflect the fold change, the 906 

direction of the change, and the randomization test p-value of the rate indicated in the “Regulation_type”. 907 
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“DEGs_FC”, “DEGs_direction”, and “max.expr.between.KD.NTC” are the fold changes of gene 908 

expression, the direction of the change, and the maximum pseudobulk CPM between the corresponding 909 

perturbation and the NTC cells. 910 

Supplementary Table 11: Steady-state expression and synthesis/degradation dynamics of merged DEGs 911 

upon DROSHA and DICER1 perturbations.  The “synth_rate”, “synth_FC”, “synth_pval”, 912 

“synth_direction” are the synthesis rate of the gene in the perturbed cells, the fold change of the synthesis 913 

rate of the gene in the perturbed cells compared to the NTC cells, the significance of the synthesis rate 914 

change, and the direction of the synthesis rate changes. The “deg_rate”, “deg_FC”, “deg_pval”, 915 

“deg_direction” are the degradation rate of the gene in the perturbed cells, the fold change of the 916 

degradation rate of the gene in the perturbed cells compared to the NTC cells, the significance of the 917 

degradation rate change, and the direction of the degradation rate changes. The “DEG_fold.change” and 918 

“DEG_qval” are the fold change of the steady-state gene expression change in perturbed cells compared 919 

to the NTC cells and the multiple comparison-corrected FDR. 920 

Supplementary files 921 

Supplementary file 1: Detailed experiment protocols for PerturbSci-Kinetics, including all materials and 922 

equipment needed, step-by-step descriptions, and representative gel images. 923 

Supplementary file 2: Primer sequences used in the PerturbSci-Kinetics experiment. The design 924 

principles and sequences of the oligo pool library, bulk screen sequencing primer, shortdT RT primers, 925 

sgRNA capture primers, ligation primers, sgRNA inner i7 primers, and P5/P7 primers were included. The 926 

columns indicate the positions on the 96-well plate (Well positions), an identifier of the sequence (Names), 927 

the full primer sequence (Sequences), and the barcode sequence (Barcodes). 928 

Supplementary file 3: The overall costs for PerturbSci-Kinetics library preparation. Reagents used in 929 

each step were included, and the costs were calculated based on the scale of the real experiment. 930 

Supplementary file 4: Computational pipeline scripts and notes for processing PerturbSci-Kinetics data, 931 

from sequencer-generated files to single-cell gene count matrix. 932 

 933 
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