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Large biases in climate model simulations of cloud radiative proper-
ties over the Southern Ocean cause large errors in modeled sea
surface temperatures, atmospheric circulation, and climate sensi-
tivity. Here, we combine cloud-resolving model simulations with
estimates of the concentration of ice-nucleating particles in this
region to show that our simulated Southern Ocean clouds reflect
far more radiation than predicted by global models, in agreement
with satellite observations. Specifically, we show that the clouds
that are most sensitive to the concentration of ice-nucleating par-
ticles are low-level mixed-phase clouds in the cold sectors of extra-
tropical cyclones, which have previously been identified as a main
contributor to the Southern Ocean radiation bias. The very low ice-
nucleating particle concentrations that prevail over the Southern
Ocean strongly suppress cloud droplet freezing, reduce precipita-
tion, and enhance cloud reflectivity. The results help explain why a
strong radiation bias occurs mainly in this remote region away from
major sources of ice-nucleating particles. The results present a sub-
stantial challenge to climate models to be able to simulate realistic
ice-nucleating particle concentrations and their effects under spe-
cific meteorological conditions.
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Comparisons between climate models and satellite observa-
tions over the Southern Ocean (SO) show that models

generally simulate far too little reflection of shortwave (SW)
radiation (1, 2). The excess SW absorption at the ocean surface is
likely an important cause of the 2 K positive bias in the SO
annual mean sea surface temperature observed in several models
(3). This error has significant consequences for the ability of
models to simulate sea ice, the jet stream, and storm track lo-
cation (4) and can affect atmospheric energy transport (5–7).
Most of the simulated radiative biases are associated with low
and midlevel clouds containing supercooled droplets and ice
(mixed-phase clouds) (2, 8), which dominate cloud radiative ef-
fects over the SO (9, 10).
Several potential causes of the radiative bias over the SO

have been explored in global models, such as the representation
of aerosols, which act as cloud condensation nuclei and affect
droplet concentrations (11); issues with the model boundary
layer physics (12); or treatment of the effects of small-scale
turbulence in mixed-phase conditions that can enhance the
generation of liquid water (13, 14), increasing slightly the
amount of reflected radiation. It is known that mixed-phase
clouds are a source of large uncertainty in climate model sim-
ulations, with important consequences for cloud feedbacks and
climate sensitivity (15, 16). Examination of mixed-phase cloud
properties in high-resolution models shows that the reflected
SW radiation could be increased by 15% (17) through changes
in the subgrid distributions of relative humidity used for the
depositional growth of ice particles and through changes in
the riming efficiency of ice crystals. These studies managed
to increase the simulated amounts of cloud liquid water, mak-
ing the clouds more reflective, but the bias problem has not
been solved.

The introduction of ice in clouds leads to the depletion of
supercooled liquid water via several microphysical pathways.
Mixtures of supercooled liquid water and ice are thermody-
namically unstable due to the lower-saturation vapor pressure of
ice, which leads to rapid growth of ice particles at the expense of
the droplets in what is known as the Wegener–Bergeron–Findeisen
process. The larger ice crystals then precipitate while collecting
smaller water droplets (riming process), which additionally depletes
the liquid in the cloud. These changes in the composition of the
cloud strongly affect its radiative properties. A schematic repre-
sentation of the effect of ice-nucleating particles (INPs) on marine
mixed-phase clouds is shown in Fig. 1. The top-of-atmosphere SW
flux is affected on a global scale by the concentration of INPs (16,
18–20). However, it has not been established whether representing
the low concentrations of INPs over the SO is quantitatively con-
sistent with the behavior and radiative properties of the specific
clouds that are known to be associated with the model observation
radiative bias (2).
Here, we use information about INP concentrations and

properties combined with a high-resolution numerical weather
prediction model with a state-of-the-art double-moment bulk
microphysics scheme to explore ice formation and the impact on
the radiative properties of cyclonic systems over the SO. The
double-moment microphysics scheme is required so that we can
link the concentration of INP to the number concentration of ice
crystals. Currently, most operational models (numerical weather
prediction and climate) have single-moment microphysics, which
predict mass mixing ratios only and are not able to directly link
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ice crystals number concentrations to INP. The high-resolution
simulations are necessary so that we can resolve convection and
the aerosol–cloud interactions explicitly, and are not affected by
cloud microphysical assumptions made in convection parametri-
zations that would be active at coarser resolutions. The high-
resolution domains in their current resolution should be able to
represent many of the physical processes important for mixed-
phase cloud microphysics, therefore resolving features such as
the liquid and ice partitioning, which typically occur over a few
kilometers horizontally in the midlatitudes (21) and have to be
parameterized in low-resolution global models. We therefore
reduce the effect of the subgrid assumptions relative to coarse
global model resolutions regarding the ice–water partitioning (17),
which is a major cause of uncertainty in global models (22, 23).
Fig. 2A shows the temperature-dependent concentrations of INP

over the South Atlantic simulated by the Global Model of Aerosol
Processes (GLOMAP) as presented in the work by Vergara-

Temprado et al. (24) (VT17) and several other parameterizations
and observations of INP across different parts of the globe.
VT17 simulated the concentration of INP based on the distribution
of potassium feldspar and marine organic aerosols, which are
likely the key INP species in the SO atmosphere (24), combined
with laboratory-derived nucleation efficiencies. We define the
range of possible INP concentrations affecting SO cyclones from
the VT17 model as the daily variability of the simulated concen-
trations in a South Atlantic transect (40°–70° S, 20° W) (Fig. 2A).
The maximum (VT17_high), minimum (VT17_low), and mean
(VT17_mean) values of the INP spectra during this period are
used in different model simulations to test the sensitivity of clouds
to our predicted variability in INP concentrations. The simulated
INP range of two to three orders of magnitude agrees well with
measurements over marine regions (Fig. 2A). Simulated concen-
trations over the remote SO are several orders of magnitude lower
than over continental regions close to dust sources (Fig. 2B),

Fig. 1. Schematic representation of the effect of INPs on marine mixed-phase clouds. Variations on the concentrations of INP both transported and emitted
locally can strongly modify the evolution of low-level clouds by affecting the number of ice nucleation events. Each cloud represents a different time in the
evolution of the cloud system. The yellow arrows represent radiative fluxes, the green arrow represents INP sources from below cloud, and the brown arrow
represents INP sources from the free troposphere.

Fig. 2. INP concentrations. (A) Various parameterizations used in our simulations. The dataset used in the work by Vergara-Temprado et al. (24) is shown for
comparison (marine and terrestrial INP) (Supporting Information). The points are divided between marine and terrestrial locations. (B) Frequency distribution
of daily averaged INP concentrations at an activation temperature of −20 °C for mid- to high latitudes for ocean regions in the Northern Hemisphere and the
Southern Hemisphere between 850 and 600 hPa. INP concentrations over land (whole globe from 75° N to 75° S at the same altitudes) are also shown for
comparison. The solid vertical lines show the median values of the distributions. Note that the INP model is subject to low biases over continental regions (24),
and therefore, the actual values over land are probably higher.
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which is corroborated by measurements of very low ice concen-
trations in the SO region (25, 26). The SO INP concentrations are
also a factor of 5–10 lower than over the North Pacific and North
Atlantic, which are the other main regions of the planet affected
by postfrontal mixed-phase clouds (Fig. 2B). We also used several
earlier parameterizations of INP for testing. DeMott et al. (19)
(DM10) use the simulated concentration of aerosols larger than
0.5 μm from all aerosol species apart from sea salt, and the pa-
rameterization of DeMott et al. (27) (DM15) is based on the
concentration of dust particles. We also use a commonly used
parameterization of INP based on temperature only from Meyers
et al. (28) (M92). Both DM10 and M92 parameterizations have
been shown to overestimate measured ambient INP concentra-
tions over remote marine regions, whereas DM15 and the range of
values given by the aerosol model (VT17) agree much better with
the measurements in similar remote marine environments (24).
We simulate three cyclonic cloud systems, each containing ex-

tensive regions of stratocumulus and cumulus mixed-phase clouds.
The cyclones occurred over the South Atlantic during the austral
summer when the largest radiative biases occur (10). Two of the
cloud systems (cases 1 and 2) have moderately cold cloud tops of
around −15 °C, and case 3 was chosen to have a much smaller
supercooling, with an average cloud-top temperature of around
−7 °C. The simulations were made using the United KingdomMet
Office global Unified Model, with a horizontal grid spacing of
∼25 km with two independent embedded domains. For one set of
simulations, we used a grid spacing of 7 km in a high-resolution
domain to include the whole cyclone and test the effects of the ice
nucleation scheme on the different features within the cyclone
(Fig. 3 A–C). All of the other simulations were performed with

another nested domain (1,000 km) with a finer grid spacing of
0.02° or about 2.2 km (Fig. 3 E–H) embedded in the global model.
This latter set of simulations focused on the cold sector (Sup-
porting Information) of the cyclone. Within the high-resolution
domains, cloud microphysics processes are simulated using the
Cloud AeroSol Interactive Microphysics scheme (29, 30), which
represents the mass and number concentration of hydrometeors
(Supporting Information). The global model, in common with most
climate models (15), does not have a representation of INP that
depends on the aerosol composition, but instead uses a temperature-
dependent parameterization with a single-moment representation
for the cloud microphysics (31, 32).
Figs. 3 and 4 show that the liquid water path (column-integrated

water per unit area) and the reflected SW radiation of the cloud
systems are strongly affected by the INP parameterization (Figs.
S1–S4 show additional results for cloud-top temperature, cloud
droplet concentrations, and cloud-top phase). In contrast, chang-
ing the representation of INP has very little effect on parts of the
cyclone that are already simulated well by the global model, such
as the frontal cloud (Fig. 3 A–D). In cases C1 and C2 with cold
cloud-tops, the domain mean SW flux is simulated within −7 to
+12% of the observations from the NASA Clouds and the Earth’s
Radiant Energy System (CERES) (33) satellite instrument (Sup-
porting Information) when either the VT17 or the DM15 param-
eterization is used. The range of INP concentrations in VT17
results in a range of simulated SW fluxes that spans the observa-
tions [slightly higher (lower) when INP concentrations are as-
sumed to be at the low (high) end of the VT17 range]. The same is
true for the simulated liquid water path, which is higher than
observed with low INP and is about right or slightly low with the

Fig. 3. Top-of-atmosphere outgoing SW radiation for the observed and simulated clouds. Results show the first cloud system C1 with different represen-
tations of INP. A–D show the 0.07° grid-spacing simulations of the whole cyclone collocated with the satellite observations (A). A–D are divided by two black
dashed lines into three areas, each corresponding to a different satellite retrieval. A box is drawn in the satellite image in A to show the position of the 2.2-km
resolution domains (E–H). A and E correspond to the satellite data (CERES). B and F show the output of the global model, and C, D, G, and H are for the high-
resolution runs using the M92 INP scheme and the mean INP values simulated from VT17. Fig. S6 shows all of the cases studied.
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highest model-derived INP concentrations. In contrast, M92, which
predicts unrealistically high INP concentrations over the SO, sim-
ulates SW fluxes that are 28–36% too low and liquid water paths
that are a factor of seven too low.
The frequency distribution of reflected SW fluxes improves

greatly with the more realistic representations of INP (Fig. 4 C–E
and Fig. S1). The correlation of the satellite-derived SW distri-
bution with the simulated distribution based on the INP model
is 0.8–0.92, but it is only 0.03 for the global model and 0.03 for
the high-resolution model with the M92 parameterization. For

cloud systems C1 and C2, the M92 INP parameterization rarely
predicts regions of SW fluxes higher than 400 W m−2, while the
model with realistic INP concentrations predicts the peak fre-
quency to occur above this value, in good agreement with the
measurements.
The cloud system with warmer cloud tops (case 3) is also

poorly simulated by the global model (Fig. 4). The low INP
parameterizations simulate the frequency distribution of the
reflected SW radiation much better than the high INP parame-
terizations (Fig. 4E). However, the absolute liquid water path

Fig. 4. Top-of-atmosphere outgoing SW radiation and cloud liquid water path for all studied cloud systems. A and B show the domain mean value of
reflected SW radiation (A) and liquid water path (LWP) (B). C–E show the distributions of low cloud- and midcloud-reflected SW radiation fluxes for the three
clouds studied (C1–C3) for the simulations with the global model and the high-resolution simulations with M92 and the VT17 range of INP values. (More
detailed versions of these plots are in Fig. S1.) Model grid boxes with a cloud-top temperature less than −35 °C and columns with an LWP less than 0.001 mm
were removed from the calculations to exclude the effect of high clouds and cloud-free areas.

Fig. 5. Relationship between cloud properties and INP concentrations. (A) Median-modeled in cloud-activated INP vs. liquid water path and (B) INP vs.
reflected SW flux. The solid line error bars on the INP axis correspond to the 66% confidence intervals of the distribution of in cloud-activated INPs, and the
dashed line error bars correspond to the 95% intervals. The colors of the points correspond to the different INP parameterizations, and they follow Fig. 3. A
linear fit to the data points corresponding to each cloud is also shown with its corresponding coefficient of determination (R2). The linear regime ends for
concentrations higher than about 1 L−1, and therefore, runs with higher values were not included in the linear fit.
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(Fig. 4B) is overpredicted by the low INP parameterizations,
which might imply that we are missing secondary ice production
processes (34). In our simulations, turning off the H–M process
did not affect the results. However, it is difficult to draw firm
conclusions about its potential importance from these results,
because there are currently large uncertainties in the way that
this process occurs (34) and hence, in its model representation.
To determine the relationship between INP concentration and

cloud properties in the high-resolution runs, we calculated the
domain median concentrations of in-cloud INPs that were active
at local temperatures for each simulation (Fig. 5 and Supporting
Information). There is a clear inverse relationship between the
mean reflected SW radiative flux and the INP concentration,
which was also seen in previous studies using global model simu-
lations (18, 20, 22). We find this relationship to be linear with the
logarithm of the INP concentration up to about 1 L−1, above
which the reflected SW radiation drops sharply as the ice pro-
cesses become efficient enough to deplete most of the liquid wa-
ter. For INP concentrations below about 1 L−1, the slope is about
15 W m−2 per decade change in INP for the cold cloud cases but
about 6 W m−2 per decade increase in INP for the warmer cloud.
While adjustments to model microphysical processes lead to

changes in cloud reflectance (17, 22, 35, 36), such changes are
likely to have broadly uniform effects in different global regions.
Therefore, model tuning, for instance by changing the threshold
temperature at which ice is formed via heterogeneous freezing
without considering the spatial variations in atmospheric INP and
associated ice particle concentrations, will not account for im-
portant regional and temporal variations (37) caused by large
temporal and spatial variations in INP concentrations (Fig. 2B).
Combining the previously computed sensitivities for the cloud
systems simulated with the expected variability in INP concen-
trations in the SO (approximately four orders of magnitude) (Fig.
2B), we estimate that INP could modulate the radiative properties
of similar cloud systems by 24–60 W m−2. Globally, the variability
in INP concentrations is about seven orders of magnitude. For
similar clouds (and dependent on the incoming SW flux), INP
variations could modulate the radiative properties by between
42 and 105 W m−2, although increases above 0.1 L−1 could po-
tentially deplete most liquid water, strongly affecting cloud radi-
ative properties. We therefore argue that to better constrain ice

processes in models, cloud glaciation needs to be linked to realistic
INP concentrations.
Our results suggest that the low INP concentrations over the

remote SO are a major factor in causing mixed-phase clouds to
persist in a supercooled state for longer than similar clouds in
high-INP environments and that this is likely to be an important
factor explaining model biases in reflected SW radiation. Effec-
tively, our findings suggest that ice formation processes in global
models are causing the SO clouds to behave as if they had higher
INP concentrations than in reality. The important role of INP is a
complicating factor for climate models, most of which do not
currently simulate the number concentration of ice particles and
the associated microphysical processes that are required to link
INPs to changes in cloud properties in a realistic way. Adjustments
to the freezing temperature as a proxy for the proper represen-
tation of INP concentrations do not seem to have the same effect
on cloud properties (17, 38) and can lead to unphysical relations
between cloud cover and cloud glaciation temperature (37).
Hence, a representation of cloud microphysical processes that
considers the spatial and temporal differences in INP concentra-
tions is crucial to correctly represent mixed-phase clouds in the
present climate and the way that they affect past climates (20).
Changes in the atmospheric INP concentrations due to natural or
human-induced effects on aerosol emissions could also affect cli-
mate by modifying the properties of these clouds.
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