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Neuroblastoma is themost commonextracranial childhood solid tumor. Themajority of high-
risk neuroblastoma is resistant/refractory to the current high intensity therapy, and the survival
of these patients remains poor for the last three decades. To effectively treat these extremely
unfavorable neuroblastomas, innovative immunotherapy approaches would be the most
promising. In this article, we discuss the identity of tumor-infiltrating effector cells and
immunosuppressive cells in high-risk neuroblastoma. Neuroblastoma is unique in that it
expresses little or no classical HLA Class I and II. In contrast, high-risk neuroblastomas
express the stress-responsive non-classical Class I, HLA-E molecule. HLA-E is the ligand of
activating receptorsNKG2C/E that areexpressedonmemoryNKcells,CD8+Tcells andCD4
CTLs. By examining a comprehensive RNA-seq gene expression dataset, we detected
relatively high levels of CD4 expression in high-risk neuroblastoma tissues. The majority of
CD4+ cells were CD3+, and thus they were likely tumor-associated CD4+T cells. In addition,
high-level of both CD4 and NKG2C/E expression was associated with prolonged survival of
the high-risk neuroblastoma patients, but CD8 levels were not, further suggesting that the
CD4+NKG2C/E+T cells or CD4CTLconferred cytotoxicity against the neuroblastoma cells.
However, this T cell mediated- “protective effect” declined over time, in part due to the
progressive formation of immunosuppressive tumor microenvironment. These observations
suggest that to improve survival of high-risk neuroblastoma patients, it is essential to gain
insights intohowtoenhanceCD4CTLcytotoxicityandcontrol the immunosuppressive tumor
microenvironment during the course of the disease.

Keywords: HLA-E, NKG2E/KLRC3, CRTAM, CADM1, TME (tumor microenvironment), neuroblastoma
INTRODUCTION

Neuroblastoma is the most common extracranial childhood solid tumor and is known for its biological
and clinical heterogeneity. There are two distinct biological types of neuroblastoma: favorable
neuroblastoma (known by tumor spontaneous regression or curable simply by surgery) and
unfavorable neuroblastoma that are deadly malignant tumors. Based on established prognostic
factors, including age, disease stage, MYCN amplification status, ploidy, segmental chromosomal
aberrations at 1p and 11q, and international neuroblastoma pathology classification (INPC),
Abbreviations: CD4 CTL, CD4 Cytotoxic T Lymphocyte; TCR, T-cell receptor; ADCC, Antibody-dependent cell-
mediated cytotoxicity.
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neuroblastoma is divided into three risk-based categories: low-,
intermediate- and high-risk groups (1). Among those prognostic
factors, INPC is the strongest prognostic factor that categorizes the
tumors into Favorable Histology (FH) and Unfavorable Histology
(UH) groups (2). Survival of UH neuroblastoma is essentially the
same as that ofhigh-riskneuroblastoma (3, 4).Themajority (>50%)
of high-risk/UH neuroblastoma will resist or refract the current
high intensity multimodal therapy (3–6).

Recently, we have described an immunohistochemistry-based
sub-classification of the UH neuroblastoma, which subcategorizes
them into UH and Extremely Unfavorable Histology (EUH) subsets
(7). As shown in Figures S1A, B, the EUH subset includes (i) MYC-
driven neuroblastoma expressing high MYC and/or MYCN protein
(8), (ii) Neuroblastoma with TERT overexpression due to genomic
rearrangements (9–11), and (iii) Neuroblastoma of the ALT group
due toATRX loss (12, 13). The remaining tumors of theUH is called
theNull group,which does not have the above three characteristics of
the EUH tumors (7). The MYC-driven neuroblastoma group
includes both MYCN-amplified and non-amplified tumors with
high MYCN and MYC expression, respectively, and they are
among the worst tumors that ultimately kill the patients.
Collectively, the EUH neuroblastoma represents the most
malignant and chemotherapy-resistant/refractory disease. Within
the scope of this article, we discuss the identity of tumor-infiltrating
effector cells and immunosuppressive cells in high-risk
neuroblastoma tumor tissues. In addition, we propose an antibody-
based approach that can maximize the effector’s killing activity
against the tumor cells.

As described below, our data suggest that CD4 CTLs are
important effector cells against high-risk neuroblastoma. CD4
CTLs can develop from TH0 (14, 15), TH1, TH2 (16), TH17 (17),
and Treg (18) subsets. However, CD4 CTLs derived from TH1
cells represent the majority of CD4 CTLs (19). A hallmark of
CD4 CTLs is the expression of the transcription factor EOMES
(19). Previous studies have pointed that at least in some cases,
CD4 CTLs are better effectors than CD8 CTLs (20–22). CD4
CTLs kill target cells by two cytotoxic effector mechanisms (23).
The first involves the death receptor/ligand pathway. In that, the
effector cells express the death ligands (e.g., FASLG), which bind
to their cognate receptors (e.g., FAS) on the target cells to induce
apoptotic cell death (24–26). The second cytotoxic mechanism is
the directed exocytosis of Granzymes and Perforin into target
cells to induce apoptosis (27). Others have suggested that CD4+
T cells can reject MHC Class II negative tumor cells through
interplay with other infiltrating macrophages (28) and NK cells
(20). In addition, it has been shown that CD4 CTLs can target
tumor cells in two different ways: an MHC-restricted fashion (21,
22) and MHC-independent manner (29). Nonetheless, it is not
clear how CD4 CTLs can directly engage target cells at the
molecular levels when MHC Class II restriction is not applied or
the tumor lacks HLA Class II expression.

IMMUNOPHENOTYPEOFNEUROBLASTOMA

Neuroblastoma is a neural crest-derived tumor, which lacks
classical HLA Class I and II expression (30, 31) and exhibits
Frontiers in Immunology | www.frontiersin.org 2
low mutation rates (32, 33). These characteristics help
neuroblastoma cells evade CD8+ T cell-mediated immune
surveillance. In contrast, there have been conflicting data on
PD-L1 expression in neuroblastoma. Aoki et al. first showed that
neuroblastoma was PD-L1 negative (34). Later, others suggested
that neuroblastoma cells per se expressed PD-L1 (35–38).
Recently, Shirinbak et al. reported that PD-L1 protein was
expressed predominately on tumor-associated macrophages
(TAMs) infiltrating into neuroblastoma tissues at diagnosis
and a very few neuroblastoma cells became PD-L1 positive
after chemotherapy (39). PD-L1 is an important immune
checkpoint molecule; we thus carefully examined this issue by
multiplex immunohistochemistry assay. As shown in Figure S1C,
neither FH nor UH neuroblastoma cells expressed PD-L1, and PD-
L1 positive staining was in fact detected on the cell membrane of
stromal TAMs (see Discussion).
THE STUDY COHORT

The majority of high-risk neuroblastoma is resistant to the
current multimodal therapy, and this group of the tumors is
our particular interest. The study cohort includes 176 high-risk
neuroblastoma specimens collected at diagnosis (40, 41), and its
subsets are shown in Figure 1A.
CLINICAL RELEVANCE OF
HLA-E EXPRESSION IN
HIGH-RISK NEUROBLASTOMA

HLA-E is a stress-induced molecule (42, 43), and its expression is
significantly associated with high-risk neuroblastoma (Stage 4
and MYCN amplified cases) (44). We also found that all high-
risk neuroblastoma examined expressed HLA-E (Figure 1B).
These observations suggest that high-risk neuroblastoma are
under the environmental and/or oncogenesis-associated stress,
which in turn forces neuroblastoma cells to express HLA-E.
HLA-E is the ligand of activating receptors NKG2C and NKG2E
that are expressed on CD8+T cells, CD4 CTLs, and memory/
adaptive NK cells (45–48). HLA-E is also the ligand of the
inhibitory receptor NKG2A on CD8 T, CD4 CTLs, late
immature and mature NK cells (19, 49). It is known that the
NK cells can effectively kill HLA-E+ target cells by the ligation of
NKG2C/E and HLA-E, followed by the release of effector
molecules (Granzymes, Perforin) (47, 50–53). However, little is
known whether CD8 T cells and CD4 CTLs would use the same
molecular mechanism to directly engage and ultimately lyse the
HLA-E+ target cells. To investigate a possible involvement of
HLA-E in the anti-tumor immune response against high-risk
neuroblastoma, we first examined survival of the patients based
on HLA-E expression. As shown in Figure 1C, high HLA-E
expression was significantly associated with longer survival of
high-risk neuroblastoma, suggesting HLA-E is a target of the
effector cells.
April 2021 | Volume 12 | Article 650427
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CD4 CTL AS EFFECTOR CELLS AGAINST
HIGH-RISK NEUROBLASTOMA

Because of the limited availability of tumor specimens, it is
virtually impossible to perform live cell-based analyses on a
Frontiers in Immunology | www.frontiersin.org 3
large high-risk human neuroblastomas cohort. To gain an insight
into the identity of immune effector cells against high-risk
neuroblastoma, we analyzed a comprehensive RNA-seq gene
expression dataset of neuroblastoma (40, 41), using the R2
Genomics Analysis Platform (http://r2.amc.nl).
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FIGURE 1 | Clinical relevance of CD4 CTL in high-risk neuroblastoma. (A) The study cohort and its UH subgroups. The study cohort is composed of 176 high-risk
neuroblastoma specimens (40, 41), which include the Null group and EUH groups (MYC-driven, TERT over-expression, and ATRX loss). The proportion of each subset was
estimated based on expression levels of MYCN, MYC, TERT and ATRX. (B) HLA-E is highly expressed in high-risk neuroblastoma. HLA-E expression was correlated with
PHOX2B expression (a marker of neuroblastoma) in the study cohort. All tumors were PHOX2B positive and co-expressed HLA-E. (C) The effect of HLA-E expression on
survival of high-risk neuroblastoma. High HLA-E expression was associated with better outcome of high-risk neuroblastoma. Survival of high-risk neuroblastoma patients with
high or low expression of HLA-E was analyzed by the R2: Genomics Analysis and Visualization Platform (http://r2.amc.nl). (D–F) The effect of NKG2E, CD4 and CD8
expression on survival of high-risk neuroblastoma. (D) High NKG2E and (E) high CD4 expressions were associated with prolonged survival of high-risk neuroblastoma.
Difference in High expression (Blue) vs. Low expression (Red) was statistically significant up to 130 months after diagnosis as indicated by the arrows in (D, E). (F) No
association between CD8 expression and disease outcome was found. CD8 expression is represented by CD8 b chain (CD8B). (G) Correlation between CD4 and CD3E
expressions in the high-risk neuroblastoma. The expression of CD4 and CD3E were highly correlated each other, suggesting the presence of tumor-infiltrating CD4+ T cells.
CD3E (encoding the CD3e chain) expression represents CD3 expression. The horizontal bar represents the cutoff value to separate the cohort into high and low CD4 subsets,
which were used in the survival analysis shown in (E). (H) The effect of CRTAM expression on high-risk neuroblastoma. High CRTAM expression, encoding a CTL activating
receptor, was associated with prolonged survival of high-risk neuroblastoma. (I) High-risk neuroblastoma expresses both HLA-E and CADM1. All the high-risk tumors
examined expressed both HLA-E and CADM1. CADM1, encoding the CRTAM ligand, expressed at high levels in high-risk neuroblastoma. CADM1 expression also showed a
trend of being associated with better survival (p=0.096) (not shown). Unit of expression levels is expressed as Reads Per Million (RPM). Expression levels of genes shown in
the figures were expressed as log2 of RPM.
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Neuroblastoma tissues contain the majority of neuroblastoma
cells and various stromal cells, including lymphoid and myeloid
cells, endothelial cells, Schwann cells and fibroblasts. RNA-seq
analysis can detect low-level transcripts from the stroma and
tumor-infiltrating immune cells. As shown in Figure 1D, we
detected expression of the activating receptor NKG2E in high-
risk neuroblastoma, and high NKG2E expression was
significantly associated with prolonged survival of high-risk
neuroblastoma patients, suggesting the presence of tumor-
infi l trat ing NKG2E+ effector cells in the high-risk
neuroblastoma tissues. We also observed that high CD4
expression (Figure 1E), but not CD8 expression (Figure 1F),
was associated with better outcome of the patients. Correlation
analysis indicated that CD4 and CD3E expressions were
significantly associated with each other in the tumor tissues
(Figure 1G), suggesting the presence of tumor-infiltrating CD4+
T cells. Of note, there was a population of CD3Enegative-low and
CD4low cases (Figure 1G), which could represent non-T CD4+
cells. Even when these cases are excluded from the analysis,
association of survival with CD4 expression still holds.
Specifically, excluding 12.5% and 25% of CD3Enegative-low cases
from the survival analysis gives rise to p values of 0.021 and
0.03, respectively.

Similar to NKG2E, high-level expression of NKG2C showed a
trend (p=0.09) toward being associated with prolonged survival of
high-risk neuroblastoma patients (data not shown). Furthermore,
high CRTAM expression was associated with better outcome of the
patients (Figure 1H). CRTAM is known as an activating receptor
expressed on CD4 CTLs, CD8 T cells, and NK cells and therefore a
collective marker of CTLs (54, 55). On the other hand,
neuroblastoma cells expressed CADM1, the ligand of CRTAM
(56) (Figure 1I). The results shown in Figure 2A further
suggested the presence of CRTAM+CD4+ cells in high-risk
neuroblastoma tissues, which were more abundant than
CRTAM+ CD8+ cells (Figure 2B) and CRTAM+ NCR1+ cells
(i.e, NK cells) (Figure 2C). Together, the data suggest that the
effector cells of high-risk neuroblastoma are CD4+ CD3+
NKG2C/E+ CRTAM+, namely CD4 CTLs.

Of note, the protective effect of high NKG2E expression, high
CD4 expression and high CRTAM expression declined over time
with a similar kinetics (~130 months after diagnosis) as indicated
by the arrows in Figures 1D, E, H. This observation suggests the
progressive development of the immunosuppressive tumor
microenvironment (TME) during the course of high-risk disease.
A PROPOSED MODEL FOR HOW CD4
CTLS ENGAGE NEUROBLASTOMA CELLS
LACKING HLA CLASS II

Based on our observations, we hypothesize that CD4 CTLs use
two additive signals to directly engage neuroblastoma cells
lacking HLA Class II: first, ligation between the activating
receptors NKG2C/E on CD4 CTLs and the ligand HLA-E on
neuroblastoma cells, and second, CRTAM of CD4 CTLs and
CADM1 on neuroblastoma cells. Thus, CD4 CTLs act like NK
Frontiers in Immunology | www.frontiersin.org 4
cells and their effector mechanism would be TCR- and HLA
Class II-independent. Our observation that almost all the high-
risk neuroblastomas examined highly expressed bothHLA-E and
CADM1 lends support for this hypothesis (Figure 1I). In
addition, a previous report suggests that CADM1 is a
candidate of tumor suppressors for neuroblastoma at the
chromosome 11q23 (56), and the patients with tumors having
lost CADM1 expression on cell surface have poor prognosis (56).
These observations are consistent with our hypothesis that
CRTAM is an important receptor on the effector cell against
high-risk neuroblastoma.

To further address the hypothesis, we examined the likely
cytotoxic pathway involved in the tumor killing of high-risk
neuroblastoma. We first found that FAS expression was not
associated with survival of high-risk neuroblastoma patients
(Figure S2A). This was in part due to the low expression of
FAS on the tumor cells compared to HLA-E (Figures S2B, C).
Thus, it is unlikely that CD4 CTL use the FASL/FAS pathway as
an effector mechanism. In contrast, GZMA/GZMB expression
was associated with longer survival of high-risk neuroblastoma
patients (p=0.026 for both, not shown). Expression of OX40,
encoding a co-stimulatory molecule on CD4 CTLs, was also
associated with better outcome (Figures S2D, E). A similar trend
was observed for 4-1BB, which was expressed at lower levels than
OX40 (Figures S2F, G). Together, these observations suggest
that the anti-neuroblastoma effect of CD4 CTLs relies on the
perforin/granzyme pathway.
THE IMMUNOSUPPRESSIVE
CELLS IN THE TME OF
HIGH-RISK NEUROBLASTOMA

Tumor-associated macrophages (TAMs) include M1 and M2
TAMs. TAMs tend to polarize toward an M2 state (anti-
inflammatory, pro-tumor) in the TME and mediate immune
exclusion and suppression, and ultimately promote tumor
growth. Myeloid-derived suppressor cells (MDSCs) represent a
heterogeneous population of immature myeloid cells that inhibit
anti-tumor activities of T and NK cells and stimulate Treg,
leading to tumor progression (57). As shown in Figures S3A, B,
we detected the significantly correlated expression of M2 TAMs
marker genes (CD163, CD204, CD206) andM-MDSCmarker genes
(CD11B, CD14, CD33) in the high-risk neuroblastoma examined,
suggesting that the various numbers of M2 TAMs and MDSCs are
present in the high-risk neuroblastoma TME.

Based on the gene expression profiling analysis, high-risk
neuroblastoma tissues express relatively high levels of CCL2,
CXCL12, and TGFB1, which could influence the recruitment and
polarization of myeloid cells (58–65). We therefore addressed
whether the various quantities of M2 TAMs and M-MDSCs
linked to the variation in the cytokine/chemokine levels in the
TME. To this end, we found that expressions of M2 TAMs markers
(CD163, CD204 andCD206) andM-MDSCmarkers (CD11B, CD14
and CD33) were all correlated significantly with the expression of
CCL2, CXCL12 and TGFB1 (Figure S3C). Moreover, the expression
April 2021 | Volume 12 | Article 650427
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levels of TGFB1, CXCL12, and CCL2 were also highly correlative to
each other in all the tumors specimens (Figure S3D). Taken
together, these observations suggest that the production of these
cytokines and chemokines by neuroblastoma and cells in the TME
likely determines the quantity of M2 TAMs andM-MDSCs in high-
risk neuroblastoma.

Tregs are a subset of CD4+T cells, which maintain peripheral
tolerance and suppress anti-tumor immune responses. Tregs
interact with infiltrating lymphocytes, stromal cells and tumor
cells to exert their immunosuppressive effects (66). CD4+Treg
cells are distinguished from other TH lineages via FOXP3
expression. FOXP3 stabilizes the suppressive phenotype and
capabilities of Treg. CD4+ FOXP3+ Treg express characteristic
receptors including CTLA4, GITR, and CD25 (67). Our analysis
showed that FOXP3 expression correlated with CTLA4 (r=0.837
p= 2.14e-47) (Figure S3E), GITR (r=0.769 p= 1.28e-35) and
CD25 (r=0.490 p= 4.92e-12) (data not shown), indicating the
presence of Tregs in the TME of high-risk neuroblastoma.

TOX has been recognized in driving the epigenetic
enforcement of exhaustion (68, 69). Exhausted T cells also
express inhibitory receptors: PD-1, CTLA4, LAG3, and TIM3
(70). As shown in Figures 2D, E, high TOX and LAG3
expression was associated with adverse outcome of high-risk
Frontiers in Immunology | www.frontiersin.org 5
neuroblastoma, suggesting the exhaustion of CD4 CTLs. Taken
together, our analysis suggests the roles of M2 TAMs, MDSCs,
Treg, and T cell exhaustion in high-risk neuroblastoma in
promoting tumor progression. The results also suggest that the
HLA-E reactive CD4 CTL effector cells are functionally
compromised in the TME of high-risk neuroblastoma.
DISCUSSION

There have been several studies examining the immune cell
profile in neuroblastoma tissues (71–73). In these reports, the
emphasis was on the relationship between immune cell gene
expression signatures and clinical outcomes. An additional study
employed the immune-related gene expression signature to
subdivide the high-risk group into further subsets (74). In this
report, we conducted a series of analyses to determine the
identity of specific immune effector and immunosuppressive
cells in the high-risk neuroblastoma TME. Furthermore, we
were particularly interested in the expression of HLA-E, which
was expressed on high-risk neuroblastoma (44) (Figure 1B).
Therefore, identification of effector cells against HLA-E+ tumors
A B
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FIGURE 2 | The relationship between CRTAM expression and CTL marker expression. CRTAM is an activating receptor of cytotoxic lymphoid cells: CD4 CTLs,
CD8 T cells, and NK cells (19, 55) and therefore represents a collective marker of CTLs. (A) CRTAM and CD4 expressions were highly correlated each other in high-
risk neuroblastoma tissues, suggesting the presence of CRTAM+ CD4+ T cells. (B) The expressions of CD8B (a CD8 T cell signature) and (C) NCR1 (an NK cell
signature) were also found correlated with that of CRTAM, although the expression levels of these genes were much lower than that of CD4. Taken together, the
results suggest that CD4 CTLs are the main CTL subset in high-risk neuroblastoma. CTL exhaustion and the dysfunctional immune response against high-risk
neuroblastoma. High-level expression of T-cell exhaustion markers, TOX (D) and LAG3 (E) was associated with rapid progression and worse outcome of high-risk
neuroblastoma, suggesting T-cell exhaustion had occurred in the high-risk neuroblastoma. Blue: High TOX/LAG3 expression, Red: Low TOX/LAG3 expression. Unit
of expression levels is expressed as Reads Per Million (RPM). Expression levels of genes shown in the figures were expressed as log2 of RPM.
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would help advance therapeutic strategy against these most
malignant tumors.

This study suggests that CD4 CTLs are important effector
cells against high-risk neuroblastoma, but their “protective
effect” declines over time in part due to the progressive
formation of the immunosuppressive TME, leading to the
death of the patients. To improve survival of high-risk
neuroblastoma patients, therapeutic strategy should include
two essential tasks simultaneously: one to enhance the
cytotoxicity of CD4 CTLs, and the other to remove the
immunosuppressive TME.

Current understanding on cell surface molecules expressed on
CD4 CTLs can provide significant insight into the first task. CD4
CTLs express not only the activating receptors NKG2C/E, but
also the inhibitory receptor NKG2A, and these activating and
inhibitory receptors NKG2C/E/A share the same ligand HLA-E
expressed on neuroblastoma cells. CD4 CTLs also express other
co-stimulatory molecules on their surface: CRTAM, 4-1BB and
OX40. The biological functions of these CD4 CTLs’ cell surface
molecules suggest that activating signals by NKG2C/E, CRTAM,
4-1BB, OX40 and the inhibitory signal by NKG2A determine the
overall cytotoxicity of CD4 CTL. Thus, blocking of the inhibitory
signal NKG2A by anti-NKG2A antibody would enhance the
tumor killing of CD4 CTL. On the other hand, the use of
agonistic antibodies against 4-1BB and OX40 would maximize
the activating signals. This antibody-based approach via
agonistic/antagonistic antibodies could in turn augment
cytotoxicity of CD4 CTLs and result in a robust anti-
neuroblastoma immune response.

Effective immunotherapy against solid tumors depends on
how to remove the activity of the immunosuppressive TME. To
date, there have been numerous studies describing innovative
strategies to inactivate the immunosuppressive TME in adult
cancers, and each of these studies has focused on one
immunosuppressive cell type: TAMs (75–80) or MDSCs (81–
83). Our analysis suggests that multiple immunosuppressive cells
exist in the high-risk neuroblastoma tissues (M2 TAMs, MDSCs,
Treg, exhausted T cells). In addition, a previous study reported
that there were protumorigenic cancer-associated fibroblasts in
the TME in neuroblastoma (84). Basic understanding of the
biology of high-risk neuroblastoma, their metastatic/biological
behavior, and knowledge on metabolism of the immune cells
would help advance our strategy toward how to systematically
remove the immunosuppressive TME and restore effector
functions of the immune cells.

Intriguingly, our data show that neuroblastoma cells do not
express PD-L1 (Figure S1C). The PD-1/PD-L1 ligation inhibits
T-cell receptor signaling in effector T cells. Therefore, the lack of
classical HLA Class I expression makes it unnecessary for the
neuroblastoma cells to utilize the PD-1/PD-L1 pathway to
avoid the killing by PD-1+ CD8 CTLs. On the other hand, we
propose that in the absence of CD8+ T-mediated immunity,
CD4 CTLs can target the HLA-E+ high-risk neuroblastoma
cells in a TCR- and HLA-independent manner, which in turn
would be unaffected by the PD-L1 expression status on the
neuroblastoma cells.
Frontiers in Immunology | www.frontiersin.org 6
Because of the biological heterogeneity of high-risk
neuroblastoma, multiple immunotherapy protocols would be
required to treat the patients. Currently, GD2, a surface
glycolipid is the most common target for neuroblastoma
immunotherapy. Anti-GD2 monoclonal antibodies have
improved event-free survival and overall survival in patients
with high-risk neuroblastoma (85, 86). However, some
neuroblastomas intrinsically lack GD2 expression (87).
Furthermore, in response to anti-GD2 therapy, tumor cells can
down-regulate GD2 (88). In this study, we have found that the
majority of high-risk neuroblastoma expresses both HLA-E and
genes responsible for GD2, but ~5% of the tumors were HLA-E+
and likely GD2 negative (Figures S4A–C). Combination
treatment against HLA-E and GD2 or an alternative therapy to
anti-GD2 antibodies would be beneficial to these patients.
Therapeutic interventions based on other cell surface
molecules on neuroblastoma, including 4Ig-B7-H3 (89) and
CD57 (90, 91), might be worth investigating, although these
molecules are known to be expressed on both the tumor cells and
immune cells.

It should be mentioned that antibody-based approaches
targeting tumor surface molecules (e.g., GD2) are mediated by
ADCC, which requires immune-active NK cells or macrophages
(M1 TAMs). Thus, enhancing the immune-active status of
tumor-infiltrating immune cells is a key strategy for anti-
neuroblastoma immunotherapy. Lastly, because high-risk
neuroblastoma is a metastatic disease, therapeutics given to
these pediatric patients should be delivered systemically but
tumor-specific with little toxicity to the normal cells.
Immunotherapy would be a desirable approach to treat high-
risk neuroblastoma patients, as it can target the tumor cells. This
is in fact a basic principle underlying how the immune
system works.
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Supplementary Figure 1 | (A) Neuroblastoma subsets in a general cohort. In a
general cohort, about 50% of the tumors are Favorable Histology (FH) group. The
remaining 50% tumors belong to the Unfavorable Histology (UH) group, which is further
divided into subcategories: the Null group (chemotherapy-sensitive; ~10%) and the
Extremely Unfavorable Histology (EUH) group (chemotherapy-resistant/refractory). The
EUH tumors include MYC-driven neuroblastomas (high MYCN and/or MYC protein
expression; ~30%), TERT overexpression tumors (~7%), and ALT tumors (ATRX loss;
~4%). The proportional distribution of these subsets was estimated based on previous
publications from our group (8) and others (9, 10, 92). (B) Immunohistochemical
phenotypes of UH neuroblastoma subgroups. Examples of immunohistochemistry
images of the EUH and Null group neuroblastomas are shown, which was performed as
previously described (8, 93, 94). (C) Neuroblastoma at diagnosis does not express PD-
L1. Multiplex IHC was performed to detect PD-L1 (brown, membrane staining) and
PHOX2B (red, nuclear staining, one of the most reliable markers for neuroblastoma cells
(95) on FH (5 cases) and UH (5 cases) neuroblastomas at diagnosis. PHOX2B positive
neuroblastoma cells were always negative for PD-L1. In contrast, only PHOX2B negative
cells, the majority of them appeared to be macrophages, showed positive staining for
PD-L1 (see the inset in the UH tumor image). Representative cases of FH and UH IHC
images of PD-L1 and PHOX2B staining are shown. The scale bar represents 20mm.

Supplementary Figure 2 | Effects of FAS, OX40 and 4-1BB expressions on
survival of high-risk neuroblastoma. (A) FAS expression was not associated with
survival of the high-risk neuroblastoma patients. This was likely due to low-level
expression of FAS in high-risk neuroblastoma (B) as compared to HLA-E
expression (C). HLA-E and PHOX2B expression in (C) is the same as Figure 1B,
and it is shown here for the comparison of FAS expression to HLA-E expression.
PHOX2B expression was used as a gene expression control for neuroblastoma.
(D) High OX40 expression was significantly associated with better survival of the
high-risk patients, and high 4-1BB expression showed a similar trend (F). The
difference in the effects of OX40 and 4-1BB expressions on the patient survival was
likely due to expression levels of OX40 and 4-1BB as shown in (E, G), respectively.
EOMES expression signifies CD4 CTLs (19, 55, 96), and it was used to assess
expression levels of OX40 and 4-1BB in tumor-infiltrating CD4 CTLs. (E) OX40
expression among the tumors with EOMES expression over 1.0 RPMwas significantly
higher than that of 4-1BB (G) (p=4.8e-04). Statistical analysis was done using a
Student’s t-test. Unit of expression levels is expressed as Reads Per Million (RPM).
Expression levels of genes shown in the figures were expressed as log2 of RPM.
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Supplementary Figure 3 | M2 TAMs, M-MDSCs and Tregs in the TME of high-
risk neuroblastoma. (A) The expression of M2 TAM signature genes (CD163,
CD204, and CD206) (97, 98) was examined by 3D-correlation analysis in high-risk
neuroblastoma. The signature gene expression was tightly associated each other,
suggesting that various numbers of M2 TAMs were present in high-risk
neuroblastoma tissues. (B) The expression of M-MDSC signature genes (CD11B,
CD14 and CD33) (99) was also examined by 3D-correlation analysis in high-risk
neuroblastoma. Based on histological observations, monocytic MDSCs (M-MDSC)
appeared to be the main subset of MDSCs in neuroblastoma. Therefore, only the
M-MDSC signature genes were analyzed. As shown, there was a tight association
among CD11B, CD14, and CD33 gene expressions in high-risk neuroblastoma
tissues, suggesting that various amounts of M-MDSCs were present in the TME.
(C) Expression of M2 TAM and M-MDSC marker genes was highly correlated with
the expression of cytokine and chemokines genes indicated. (D) The expression
levels of chemokine and cytokine genes (CCL2, CXCL12 and TGFB1) are also
highly correlated to each other in all tumors examined. These observations suggest
that the establishment of M2 TAMs andM-MDSCs in the TME are dependent on the
cytokine and chemokines. (E) Expressions of Treg signature genes (FOXP3 and
CTLA4) in the high-risk neuroblastoma. The expressions of these genes were highly
correlated each other, suggesting the presence of Treg cells in the tumor tissues.
Unit of expression levels is expressed as Reads Per Million (RPM). Expression levels
of genes shown in the figures were expressed as log2 of RPM.

Supplementary Figure 4 | The majority of high-risk neuroblastomas co-
expressed HLA-E and genes responsible for GD2 synthesis (B4GALNT1 and
ST8SIA1). GD2 is a glycolipid and an immunotherapy target of neuroblastoma, but
its expression cannot directly be measured by gene expression. We thus examined
the expression of B4GALNT1 encoding GD2 synthase and ST8SIA1 encoding GD3
synthase as surrogates of GD2 expression in high-risk neuroblastoma. Of note,
GD3 synthase is the rate-limiting enzyme for GD2 synthesis, and therefore,
expression of ST8SIA1 was included in the analysis (A, B). The result showed that
the vast majority of high-risk neuroblastomas co-expressed HLA-E together with
B4GALNT1 and ST8SIA1. In other words, most tumors are both HLA-E+ GD2+.
(C) The majority of high-risk neuroblastomas expressed both ST8SIA1 and
B4GALNT1. However, about 5% of the tumors expressed very low levels of both
B4GALNT1 and ST8SIA1 (the red circle), suggesting these tumors (~5%) were
negative for GD2 at diagnosis. Expression levels of genes shown in figures were
expressed as log2 of RPM. (D) Average expression levels of genes examined in the
study are shown. Unit of expression levels is expressed as Reads Per Million (RPM).
Expression average was calculated based on the high-risk neuroblastoma cases
(n=176) (40, 41). TOX is expressed in non-T cell lineage cells (e.g., B cells, NK cells, and
granulocytes) and its expression levels appear higher than other T cell markers in tumor
tissues (https://www.proteinatlas.org/ENSG00000198846-TOX/tissue).
Housekeeping genes (HKGs) include RPL5, RPL28, TBP, RPL13A, RPLP0 and TFRC.
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