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We are delighted that Higaki et al. have continued the dialogue initi-
ated by our recent teaching series article1 about synthetic imaging and
prospective clinical uses in cardiology.2 We agree that forms of artifi-
cial intelligence (AI) that construct synthetic images—including gen-
erative adversarial networks (GANs)—represent potentially
powerful tools in cardiovascular intervention, but that precautions
must be taken to ensure their positive contributions to medical prac-
tice. Higaki et al.2 specifically raised concerns regarding image evalu-
ation, our method’s scalability, and the risk of technology-mediated
misdiagnosis.

The letter highlights an open question regarding how the quality
and validity of synthetic images should be evaluated.2 Image quality
and validity are intertwined concepts, though neither attribute guaran-
tees the other. Quality typically reflects a sense of realism arising from
image texture, style, and self-consistency; validity usually indicates
whether intended information is conveyed or the outcome is similar
to a target (i.e. ground truth) image. Higaki et al.2 note that there is no
absolute measure to evaluate synthetic image quality or validity, and
indeed there can be no universal, one-size-fits-all criteria. At least 34
assorted metrics of image quality have been employed to train or
evaluate GANs in medical imaging applications.3 The approach to
medical image generation we described1 was trained with two of
these to optimize both image quality and validity—through supervised
learning—using a common, effective combination of image and adver-
sarial losses.4 Notably, synthesized images could be directly compared
with the target images they emulated to confirm whether each aim
was achieved.

However, for the proposed applications, image realism was not an
intrinsic aim. While realism is valuable and potentially sufficient for
educational use or dataset augmentation,3 such a standard is inad-
equate—potentially counterproductive—for evaluating enhanced or
augmented images. Benefits of the introduced framework include the
integration of additional information or processing algorithms to ex-
ceed real images. This can lead, for example, to the desirable—but

unrealistic—absence of obscured regions observed in real optical co-
herence tomography (OCT) images.1

Ultimately, the most important feature of any image—synthetic or
real—is the ability to convey information in usable form. As we noted
when explaining the fundamentals of morphology-based image gener-
ation,1 future work towards clinical translation will require robust
examination of the functional validity and value of these images.
Evaluation should be application-driven in the context of outcomes,
with images judged by their ability to replace or exceed real data in
the performance of analytical tasks.3,5 Furthermore, hierarchical evalu-
ation frameworks, ranging from technical efficacy (i.e. image quality)
through societal efficacy (i.e. cost-effectiveness), have long been
espoused for medical imaging technologies.6

Given the ongoing evolution of imaging technologies and use
trends, generalizability is key to the sustained viability of medical image
synthesis in cardiology. Regarding the question of scalability,2 our ap-
proach is particularly promising. Matched pairs of images from differ-
ent modalities are not required for training the AI, only images
matched with corresponding morphology.1 As such, image generation
on the basis of morphology allows for the integration of any number
and type of information sources that elucidate tissue distribution, un-
like direct image translation, e.g. through supervised image synthesis.
Thus, the morphology-mediated approach potentially offers greater
flexibility, ability to integrate domain knowledge, and scalability, while
also facilitating expanded utility (e.g. through the integration of
patient-specific models).

There are key limitations that should be noted, however. The first
is that full morphological maps of synthetically imaged tissue must be
provided to our method’s conditional GAN. For instance, coronary
angioscopy (CAS), yielding minimal information on plaque location
and composition, would be insufficient to generate comprehensive
OCT or intravascular ultrasound (IVUS) images, which convey mural
structure. However, CAS could potentially augment other modalities
which provide mural structure, thus refining the morphological input
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..map used to generate synthetic OCT or IVUS images. Similarly, images
generated in the style of a modality do not inherit its resolution or ac-
curacy, but rather retain that of the source(s) of rendered morph-
ology. As a practical example, if virtual histology IVUS (VH-IVUS)
were used to generate synthetic OCT, an identified thin-cap fibroa-
theroma (TCFA) should be diagnosed as VH-IVUS-defined TCFA—
not OCT-derived TCFA.

These shortcomings and challenges ultimately culminate in the risk
of misdiagnosis caused by AI-generated synthetic images. As Higaki
et al.2 imply, reliable conveyance of accurate, unadulterated informa-
tion is indispensable to the success of this technology. Eye-opening
work compellingly illustrated how AI can falter in this aim—GANs
trained with biased data artificially introduced or eliminated key
pathological features.7 (Such results align with our own previous
work, which showed how training data distribution can bias intravas-
cular image segmentation.8) While the training method cautioned
against in the aforementioned work7 fundamentally differs from our
own,1 use of varied datasets representative of intended patient popu-
lations is critical,9 and generators should not be relied upon to synthe-
size images of scenarios beyond the scope of their training dataset.7

Further safeguards are present in our framework, though more are
warranted. A benefit of morphology-mediated image generation is its
inherent auditability; underlying morphology which the image intends
to convey can always be checked, as can source images which yielded
that tissue distribution. Furthermore, the human-in-the-loop central
to our core aim—to facilitate, rather than automate, image interpret-
ation—provides oversight. However, to facilitate clinical translation,
such systems should also transparently convey uncertainty.9,10

Conflicts between information sources or uncertainty in tissue seg-
mentation, particularly from automated classifiers, should be propa-
gated. Users should be informed accordingly by accompanying or
overlaid labels of any segments of the image which are less credible,
allowing clinicians to exercise appropriate caution while inspiring trust
in the system.10

As emphasized here, in our former work,1 and by Higaki et al.,2 crit-
ical translational challenges, including robust and proper evaluation
and validation, scalability, and mitigation of misdiagnosis risk, need to
be overcome before synthetic imaging can realize its promise in the
clinic. However, these challenges are not insurmountable and should
not preclude or deter further work in the field. We continue to look
forward to the time when medical images generated by AI—devel-
oped with caution and thoughtfulness—augment the cardiologist’s vis-
ual clinical workflow and enhance clinical practice.
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