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A B S T R A C T   

In the rapidly expanding field of peptide therapeutics, the short in vivo half-life of peptides represents a 
considerable limitation for drug action. D-peptides, consisting entirely of the dextrorotatory enantiomers of 
naturally occurring levorotatory amino acids (AAs), do not suffer from these shortcomings as they are intrinsi-
cally resistant to proteolytic degradation, resulting in a favourable pharmacokinetic profile. To experimentally 
identify D-peptide binders to interesting therapeutic targets, so-called mirror-image phage display is typically 
performed, whereby the target is synthesized in D-form and L-peptide binders are screened as in conventional 
phage display. This technique is extremely powerful, but it requires the synthesis of the target in D-form, which is 
challenging for large proteins. Here we present finDr, a novel web server for the computational identification and 
optimization of D-peptide ligands to any protein structure (https://findr.biologie.uni-freiburg.de/). finDr per-
forms molecular docking to virtually screen a library of helical 12-mer peptides extracted from the RCSB Protein 
Data Bank (PDB) for their ability to bind to the target. In a separate, heuristic approach to search the chemical 
space of 12-mer peptides, finDr executes a customizable evolutionary algorithm (EA) for the de novo identifi-
cation or optimization of D-peptide ligands. As a proof of principle, we demonstrate the validity of our approach 
to predict optimal binders to the pharmacologically relevant target phenol soluble modulin alpha 3 (PSMα3), a 
toxin of methicillin-resistant Staphylococcus aureus (MRSA). We validate the predictions using in vitro binding 
assays, supporting the success of this approach. Compared to conventional methods, finDr provides a low cost 
and easy-to-use alternative for the identification of D-peptide ligands against protein targets of choice without 
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size limitation. We believe finDr will facilitate D-peptide discovery with implications in biotechnology and 
biomedicine.   

1. Introduction 

Advances in peptide synthesis and peptide functional screening 
methods in the last decades have brought about a renaissance in peptide 
drug discovery [1]. The potential of peptides and peptide-based com-
pounds as diagnostic, theragnostic and therapeutic tools is increasingly 
recognized in academia and industry, leading to a steady increase in 
peptide drugs in clinical trials and among FDA approvals, like Setme-
lanotide™ for the treatment of genetically determined obesity [2,3]. 
Next to hormone analogues such as insulin substitutes, peptide thera-
peutics are increasingly used to target protein-protein interactions 
(PPIs) to interfere with a variety of pathology-related cellular processes 
[4]. Especially as personalized medicine is advancing, the need for 
nontoxic and high-affinity ligands to target PPIs increases. The major 
advantages of peptides as drug candidates are their specificity and af-
finity towards their target, which exceed that of often used small 
molecule drugs and which are, in some cases, even comparable to those 
of antibodies [5]. Due to their small size, peptide drugs are also 
considerably less costly to manufacture and have an increased tissue 
penetration, which is instead a major limitation of antibodies. In fact, 
peptides have even been suggested as an alternative to antibodies. 
However, a considerable shortcoming of conventional peptide thera-
peutics is their short in vivo half-life due to proteolytic degradation [4]. 
This was successfully overcome by the development of so-called 
D-peptides, which are made exclusively of dextrorotatory amino acids 
(D-AAs) – the enantiomers of the canonical levorotatory amino acids 
(L-AAs) [6]. Since all known naturally occurring proteases are exclu-
sively specific for the naturally occurring peptide bonds between L-AAs 
and sterically incompatible with the peptide bond between two D-AAs, 
D-peptides are intrinsically protease-resistant, which dramatically in-
creases their metabolic stability [7]. As a consequence, D-peptides are 
also less immunogenic [8] and have an increased oral bioavailability as 
compared to conventional L-peptides [9]. 

To identify a D-peptide ligand to a target protein of interest, a 
method called mirror-image phage display (MIPD) was developed, as an 
extension of the powerful conventional phage display technology [10, 
11]. Analogous to conventional phage display, MIPD is based on the 
screening of a random peptide library, which is expressed on the surface 
of bacteriophages, against an immobilized target in multiple cycles of 
selection and amplification [12,13]. Since the generation of D-peptide 
libraries in biological protein expression systems such as phages is not 
yet possible, MIPD takes advantage of the principle that the interaction 
of two molecules is analogous to that of their mirror-image counterparts 
[14]. Thus, MIPD is performed by screening an L-peptide phage library 
against the mirror-image version of the target protein – a protein of the 
same amino acid sequence made completely of D-AAs. The interaction 
between L-peptide ligands and the D-protein target will also exist be-
tween the mirror-image D-peptide ligand and the naturally occurring 
L-configuration of the target protein [11] (Fig. 1). 

Several groups have applied MIPD, identifying D-peptide ligands of 
clinical potential, such as inhibitors of the immune checkpoint receptor 
programmed death 1 (PD-1) pathway [15], inhibitors of glycoprotein 41 
to block HIV entry [16] or inhibitors of toxic amyloid beta plaque in 
Alzheimer’s disease [17]. In the latter two cases, D-peptide therapeutics 
reached the clinical trial phase (ClinicalTrials.gov identifiers: 
NCT04672083 and NCT04711486). 

Despite its potential, MIPD suffers from some limitations that impede 
its broader adoption. The current technical means of chemical D-protein 
synthesis limit the choice of target proteins in terms of size and sequence 
[18]. Furthermore, the correct in vitro folding of chemically synthesized 
proteins is not always successful and becomes more challenging the 

longer the protein. The longest D-protein to be synthesized and proven 
to be correctly folded to date is the mirror-image version of the E. coli 
enzyme DapA. This 312 D-AA-long protein was synthesized by Wein-
stock and colleagues using solid phase peptide synthesis (SPPS) and 
native chemical ligation (NCL) [19]. Apart from target-related re-
strictions, MIPD is highly time consuming and costly, and requires 
specialized know-how and equipment for chemical protein synthesis and 
subsequent purification of D-protein targets [20]. Furthermore, MIPD 
often yields off-target polystyrene binding peptides as an artefact [21]. 

An alternative way to identify L- and D-peptide ligands, which does 
not suffer from the abovementioned restrictions, is computational 
modelling of PPIs [22]. Recent publications have shown the feasibility of 
identifying biologically active D-peptide ligands by modelling the 
structure of short helical D-peptide segments with molecular dynamics 
(MD) simulations and by screening peptide libraries generated this way 
for ligand-target interactions via molecular docking [23,24]. These 
programs enable the high-throughput in silico screening of peptide li-
braries; however, with increasing peptide length, the size of peptide li-
braries and, consequently, the search space and computational cost for 
docking-based screenings increase exponentially to a point where they 
are simply too large to be systematically explored. For example, a pep-
tide library of all possible 12-mer peptides made of canonical L-AAs 
would contain 2012 (4.096 × 1015) sequences. The chemical space 
would further be vastly expanded by the integration of noncanonical L- 
or D-AAs. In such cases, where deterministic approaches reach their 
limits, evolutionary algorithms (EA) represent a viable alternative [25, 
26]. EA-based methods apply the principles of Darwinian evolution to 
identify and optimize peptide ligands in a directed selection process. An 
initial population of randomly selected peptides is evaluated for evolu-
tionary fitness, which is, in most cases, defined as their binding affinity 
towards a given target. After scoring, the peptides with the highest 

Fig. 1. Schematic representation of the stereochemistry of a protein - 
peptide interaction. If an L-peptide ligand binds a protein’s mirror-image (D- 
protein), then their corresponding mirror-images (D-peptide ligand and L-pro-
tein) will also bind to each other in exactly the same fashion. 
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fitness are recombined by crossing over their sequences at a randomly 
chosen position to give rise to a second generation of peptides - similar to 
chromosome crossover during meiosis. Furthermore, the algorithm can 
introduce point mutations with a certain probability to avoid sequence 
convergence. The population will then again be subjected to the scoring 
function for evolutionary fitness and be further optimized in multiple 
cycles (“generations”) of the algorithm [27,28]. This approach has been 
successfully employed for peptide design by utilizing in vitro binding 
assays as a scoring function to determine peptide fitness [29]. Circum-
venting the need for extensive peptide synthesis for the validation of 
each generation, an in silico docking step has been integrated into the 
framework of an EA for de novo identification of peptide ligands [25,30]. 

Most of the aforementioned computational tools require either 
commercial software or a strong expertise in bioinformatics. While there 
are plenty of well-established, open-source software tools available for 
performing MD and molecular docking, for example GROMACS [31] 
and AutoDock Vina [32], handling these programs and integrating them 
into an effective pipeline for the purpose of screening requires extensive 
bioinformatics know-how. Recent studies report that the majority of wet 
lab researchers do not feel confident with the use of bioinformatic tools, 
programming languages or handling big data, revealing a gap between 
the rapidly increasing knowledge in the field of bioinformatics and 
university education [33]. This often underappreciated factor restricts 
the accessibility of these highly useful tools for peptide drug discovery. 
The need for computational power for extensive screening presents 
another obstacle. 

To make computational identification and optimization of D-peptide 
ligands available to the scientific community we developed finDr, an 
easy-to-use web server based on established MD and docking software, 
which allows for the identification of L- and D-peptide ligands for any 
given target protein structure. As an extension of mere library screening, 
finDr also allows for the optimization of the ligands using a target-based 
EA. As a proof of principle, we identified D-peptide inhibitors against 
phenol soluble modulin alpha 3 (PSMα3), a protein toxin of the medi-
cally relevant methicillin-resistant Staphylococcus aureus (MRSA) [34]. 
Alongside our computational approach, we chemically synthesized 
D-PSMα3 and performed MIPD. Using in vitro binding assays, we show 
that the peptide optimized by the EA is an even better binder to PSMα3. 

2. Methods 

2.1. MIPD and phage ELISA 

MIPD was performed using the Ph.D.™-12 Phage Display Peptide 
Library from New England Biolabs Inc (NEB) following the manufac-
turer’s instructions (for MIPD principle, see Fig. 3). Briefly, 96-well 
plates were coated overnight at 4 ◦C; first with streptavidin (100 mg/ 
mL in 0.1 M NaHCO₃ pH = 8.6), then with the target protein D-PSMα3, 
attached to a Lys-PEG4-Biotin Linker (obtained from GeneCust) (100 μg/ 
mL in 0.5% TBS-Tween20). The target solution was removed, and the 
wells were blocked with 5 mg/mL bovine serum albumin (BSA) in 0.1 M 
NaHCO₃ for 1 h. Afterwards the plate was washed 6 times with TBS-T 
before a solution of 1011 phages (containing approximately 109 

unique phage clones) were added to the wells and incubated for 30 min. 
Non-binding phages were removed by washing 15 times with TBS-T 
before eluting the target-binding phages with a 0.2 M glycine-HCL so-
lution (pH 2.2). The eluted phages were added to a log phase (OD = 0.5) 
culture of K12 ER2738 E. coli (obtained from NEB) and amplified for 3.5 
h at 37 ◦C, shaking. The amplified phages were purified by PEG pre-
cipitation according to the manufacturer’s instructions and the titer of 
the phage solution was determined by adding serial dilutions of phages 
to K12 ER2738 E. coli and plating them on X-Gal/isopropyl β-D-1-thio-
galactopyranoside agar plates. The number of plaque forming units (pfu) 
was determined by counting blue plaques in the bacterial lawn after 
overnight incubation at 37 ◦C. At least 109 pfu of the amplified target 
binding phages were used for the subsequent round of panning. To 

eliminate nonspecific binders, the blocking step of the second panning 
was performed with 0.1% gelatine in TBS-T. After three rounds of 
panning, the eluted phages were plated with K12 ER2738 E. coli as 
before and single plaques containing individual phage clones were 
picked for DNA isolation and sequencing. Further, the phage clones were 
amplified and purified for verification of their D-PSMα3 binding in a 
phage ELISA. 96-well plates were coated as before and blocked with 
BSA, then 3.5 × 109 pfu of the single phage clones were added and 
incubated for 90 min at 37 ◦C, shaking. The plates were washed 6 times 
with 0.1% TBS-T and then incubated with Horseradish peroxidase 
(HRP)-conjugated anti-M13 antibody (1:5000, Sino Biological, Inc., 
Beijing) for 2 h, washed another three times and incubated with TMB. 
After 3–6 min the reaction was stopped with 2 M sulfuric acid and the 
absorbance was detected at 450 nm using a standard plate reader. D- 
PSMα3 specific binding was determined in comparison to BSA/strepta-
vidin binding in wells without D-PSMα3 coating. Phages obtained from a 
mock panning without D-PSMα3 coating served as negative control. 

2.2. Solid phase peptide synthesis of L-peptide ligands 

L-Peptide ligands were synthesized in a 50 μmol scale using 9-fluore-
nylmethyloxycarbonyl (Fmoc) solid-phase peptide synthesis (SPPS) 
using a MultiPep RSi peptide synthesizer (Intavis Bioanalytical In-
struments). All reagents and protected AAs were purchased from Merck. 
Wang resins pre-coupled with the C-terminal amino acid of the respec-
tive peptide were swollen for 20 min in N,N-dimethylformamide (DMF) 
before synthesis. The subsequent elongation of the peptide chain was 
performed in sequential cycles of coupling to Fmoc-protected amino 
acids (0.5 M). The coupling step was carried out two times for each AA. 
The Fmoc group was removed using 20% piperidine in DMF. For the 
coupling reaction itself the activator O-benzotriazole-N,N,N′,N′- 

Fig. 2. Selective binding of MIPD-derived phage clones to D-PSMα3. Re-
sults of a phage ELISA performed with isolated phages from MIPD displaying 
the indicated peptides on their surfaces. The absorbance resulting from phage 
binding to D-PSMα3 coated wells was normalized to that resulting from un-
specific phage binding to D-PSMα3 free control wells. As negative control, a 
phage clone was randomly chosen from the phage library. Data represent mean 
+ SEM of triplicates. P values were calculated by a two sided, unpaired Stu-
dent’s t-test ***: P ≤ 0.0001. 
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tetramethyl-uronium hexafluorophosphate (HBTU, 4 eq) dissolved in 
DMF and the bases N-methylmorpholine (NMM, 0.1 eq), were added and 
reacted for 30 min. Capping was performed using 2,6-lutidine (5%) and 
acetic anhydride (5%) in DMF for 5 min. This cycle was repeated until 
the full length of the desired peptide was reached. Then the remaining 
Fmoc protection groups were cleaved by 20% piperidine and the side 
chain-protecting groups (tert-butyl ether, tert-butyl, triphenylmethyl 
(Trt) or tert-butyloxycarbonyl (Boc)) removed using trifluoroacetic acid 
(TFA, 95% TFA + 2.5% water, 2.5% Triisopropyl silane (TIPS)). After 
cleavage, the peptides were precipitated in diethyl ether at − 20 ◦C and 
subsequent centrifugation. The fully synthesized ligands were then pu-
rified by preparative HPLC (Knauer) over an acetonitrile water gradient 
and their identity was validated using HPLC-MS. 

2.3. SCORE real-time binding assays 

The binding of the peptide ligands to PSMα3 was measured by single 
colour reflectometry (SCORE), formerly known as 1λ-imaging reflecto-
metric interferometry (iRIf), which was described in detail previously 
[35]. In short, an array of L-peptide ligands (10 μg/mL in PBS) was 
spotted on 3D-N-hydroxysuccinimide (3D-NHS) coated custom SCORE 
glass slides purchased from Biametrics GmbH (Tübingen, Germany) now 
BioCopy GmbH (Emmendingen, Germany). BSA, a scrambled 12-mer 
peptide and biotinylated BSA (all 10 μg/mL in PBS) were used as 
negative controls. PSMα3 (10 μg/mL in PBS) was flushed over 3D-NHS 
slides at a constant flow rate (60 μL/min) and temperature (22 ◦C) 
through the microfluidic flow cell of the SCORE device. Flushing of 
PSMα3 was preceded and followed by a base- and endlining step with 
PBS 0.5% BSA. The association of D-PSMα3 to the peptide-coated spots 
was quantified in real-time by measuring the change of the optical 
properties of the biolayer. Binding of PSMα3 increases the pathlength for 

monochromatic light, leading to an interference-change of the light 
beams that are reflected in different planes of the biolayer resulting in a 
change in intensity. Drift correction of the binding kinetics was per-
formed using the software ANABEL [36] (anabel.skscience.org). 

2.4. Generating model structures of mirror-image D-protein analogues of 
L-proteins 

To obtain the mirror-image of a protein structure, the atoms’ X-co-
ordinates were mirrored along the Y/Z plane (Supplementary Fig. 1). As 
a result of this process, all AAs change their conformation to the D- 
enantiomer and the protein backbone forms left-handed helices. The 
accuracy of this D-protein structural prediction method was verified 
with the natural sweetener protein monellin, which is one of the few 
proteins that have been synthesized in their mirror-image version and 
for which crystal structure information is available for both L- and D- 
protein [37]. The crystal structure of D-monellin and our D-monellin 
model, created by inversion of the L-monellin crystal structure, were 
aligned with a negligible root mean square deviation (RMSD) of 0.052 Å, 
indicating that both structures are indistinguishable (Supplementary 
Fig. 2). 

2.5. Creating a library of 3D helical peptide structures 

A library of helical peptides was generated by extracting the 
sequence and the structural information of all ≥12 AA-long alpha helical 
segments within the 175.434 protein structures within the PDB (as of 
May 2021) [22]. The peptide length of 12 AAs was chosen based on 
results from Ding and colleagues indicating that peptides <12 AAs are 
more likely to assume unstructured conformations in solution [38]. 
Following this step, the structure of every occurring 12 AA-long 

Fig. 3. Schematic representation of the MIPD and MIVS workflow. MIPD: A library of random L-peptides expressed on the surface of bacteriophages is selected 
via surface panning against a chemically synthesized D-analogue of the target L-protein. MIVS: A structural library of helical L-peptide segments extracted from the 
PDB is screened for binding affinity towards an in silico mirrored D-version of the target L-protein structure via molecular docking. Both methods yield L-peptide 
ligands to D-protein targets. Consequently, the corresponding D-peptides bind to the naturally occurring L-protein target (see Fig. 1). 
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sequence within helices of ≥12 AAs was extracted using a sliding win-
dow approach. Upon obtaining these helical segments, all duplicates 
were removed and, in case of alternative rotameric conformations of 
single AAs, only the ‘A’ conformation was kept. To restore the peptides’ 
truncated C-terminus resulting from computational breakage of the 
peptide bond to a biologically correct carboxyl moiety, each PDB file 
was modified. This was achieved by adding a second oxygen atom to the 
C-terminal CA using the two vectors C → O and C → CA, inverting this 
sum and scaling it to 1.262 Å. In this way the bond angles of the OXT to 
CA and O are nearest to 120◦. The bond length was obtained from the 
C-Terminal OXT - C bond of the randomly chosen PDB structure 1N9F 
[39]. 

2.6. Energy minimization and MD simulations 

The structures of the target protein (PSMα3, PDB ID: 5KGY) and the 
ligand peptides were preprocessed by removing any present atoms that 
are not part of the protein, such as crystal waters. Simulations were 
performed with GROMACS v2019.3 [31] using the Amber99sb-ildn 
force field [40,41]. To support the formylated N-terminus of our 
target protein PSMα3, formyl group parameters were generated using 
antechamber [42] and acpype [43] with formyl atom charges generated 
as BCC-AM1 charges [44,45]. The formyl parameters are listed in Sup-
plementary Table 1. The peptides and proteins were simulated in a 
rhombic dodecahedron box with dimensions of 7.63 × 7.64 × 5.44 nm3 

and periodic boundary conditions (PBC) including 10045 SPC-E water 
molecules as solvent [46]. To obtain a simulation box without net 
charges, a suitable number of counter ions was added (2 Cl-ions in the 
case of PSMα3). To prevent steric clashes or aberrant geometry within 
the structure, a steepest descent energy minimization (EM) was per-
formed, followed by two equilibration steps (0.1 ns NVT and 0.1 ns 
NPT). Van der Waals interactions were treated via a 1.0 nm cut-off, 
electrostatic interactions were calculated using PME [47] with a mini-
mal real space cut-off of 1.0 nm. A temperature of 300 K was used with a 
modified Berendsen thermostat [48] (coupling time constant of 0.1 ps). 
The pressure of 1.0 bar was held using a Parinello-Rahman barostat [49] 
(coupling time constant of 2.0 ps). This was followed by 50 ns MD 
simulations with a time step of 2 fs using a leapfrog integrator and 
constraints on all covalent bonds involving hydrogen atoms. Afterwards, 
the trajectories of the atoms were clustered using an algorithm as 
described in Daura et al. [50] with a cut-off of 0.12 Å. Based on this 
clustering, the most populated conformation of the target protein was 
extracted for docking. 

2.7. Molecular docking with AutoDock Vina 

To predict the free energy of binding the protein-ligand complex, the 
docking program AutoDock Vina [32] together with MGLTools [51,52] 
was used. AutoDock scores a ligand binding mode via an empirical 
function. The search space for AutoDock Vina’s search function was 
defined as a cubus with an edge 30 Å larger than the target protein in 
order to avoid steric restrictions in the ligand’s possible binding posi-
tions to the target. The exhaustiveness of the search function for the 
ligand’s optimal binding position to the target protein was set to 10 for 
mirror-image virtual screening (MIVS) and to 1 for the mirror-image 
evolutionary algorithm (MIEA) due to different requirements in terms 
of computational cost. 

2.8. Mirror-image evolutionary algorithm (MIEA) 

An initial population of helical L-peptides was docked against the 
three most occurring conformations of the target protein D-PSMα3, 
taken from 3 respective 50 ns MD simulations. The peptides were then 
ranked according to their binding affinity, which corresponds to 
evolutionary fitness. For evaluation of the peptides’ best binding affin-
ity, three conformations of the target protein were used. A second- 

generation peptide population of the same size was generated in four 
steps (Fig. 5): First, the 30% of peptide sequences with the best binding 
energy were copied to the new population (copy rate). Next, crossover 
recombination of all peptide sequences from the initial population was 
performed at a randomly chosen point in the sequence. Peptides were 
chosen for recombination using a weighted probability distribution 
based on their binding energies. The copied and newly recombined 
peptide sequences of this new population were then subjected to random 
mutations by exchanging single AAs at randomly chosen positions with 
other AAs (mutation rate = 0.7). Finally, adhering to the principle of 
elitism, the two peptide sequences with the highest binding energy were 
copied without any alteration from the previous population to avoid 
losing favourable peptide sequences during recombination. Then, heli-
cal structures for the amino acid sequences in this new population were 
modeled using the peptide building tool of PyMOL (The PyMOL Mo-
lecular Graphics System, Version 2.0 Schrödinger, LLC.) and energy 
minimization of these structures was performed using GROMACS 
(version 2019.3) [31]. The population was then again subjected to 
evaluation by docking and recombination. 

2.9. Web server development 

finDr uses HTTPS for networking, AMQP for job queueing, MySQL 
for job data storage, TypeScript (https://www.typescriptlang.org/), 
React (https://reactjs.org/) and Blueprint (https://blueprintjs.com/) for 
the user interface, JavaScript and Express (https://expressjs.com/) for 
the backend and finally Python for the orchestration of the heavy 
computation carried out by AutoDock Vina (version 1.1.2) [32] and 
GROMACS (version 2019.3) [31]. finDr is served from a virtual server 
running Ubuntu 20.04.2 and can be accessed via https://findr.biologie. 
uni-freiburg.de/. 

Submitted PDB files (e.g. demo file ErbB2, PDB id: 1S78) [53] are 
processed with PDBfixer (https://github.com/caiyingchun/pdbfixer). 
Next, EM is applied by using GROMACS (see Section 2.6) [31]. The 
output is passed to Autodock Vina [32] to proceed in one of the two 
different modalities chosen by the user as MIVS or MIEA. 

2.10. Statistical analysis 

Statistical analysis of all datasets was performed using GraphPad 
PRISM 5.0. 

3. Results and discussion 

3.1. Identifying D-peptide ligands for PSMα3 using mirror-image phage 
display (MIPD) 

We selected PSMα3 as target protein for the identification of D- 
peptide ligands. PSMα3 is a toxin secreted predominantly by multi-
resistant strains of Staphylococcus aureus [54]. It is a helical peptide of 22 
AAs, with a hydrophobic and a hydrophilic face opposing each other. 
Due to this amphipathic nature, PSMα3 can insert itself into biological 
membranes and form pores that induce cytolysis [54]. Blocking PSMα3 
function would reduce the virulence of an MRSA infection. Beside its 
biological relevance, PSMα3 was chosen as a model target due to its 
small size, which facilitates chemical synthesis. For D-peptide ligand 
identification by MIPD, a library of M13 phages expressing 10⁹ random 
12-mer L-peptides fused to the N-terminus of the minor coat phage 
protein pIII was screened for binding to D-PSMα3 via surface panning 
(Fig. 3). D-PSMα3-binding phages were amplified in K12 ER2738 E. coli 
cells and subjected to two further rounds of selection by surface panning. 
The phage clones that survived the selection process were then 
sequenced to obtain the amino acid sequences of the peptide ligands. To 
verify the binding of the phage-bound peptides to D-PSMα3 and to 
exclude nonspecific binders we performed phage ELISA. Three phage 
clones (MIPD 8, 11 and 27) bound selectively to D-PSMα3 as compared 
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to a randomly chosen clone of control phages and one unspecific binder 
(MIPD 3) (Fig. 2). There were no obvious similarities in net charge, 
hydrophobicity or sequence in the different ligands (Supplementary 

Table 1). Considering that phage-bound L-peptides might display 
different binding behaviours than the isolated peptides in solution, 
phage ELISA is not the method of choice to measure binding affinity. To 

Fig. 4. Mirror-image virtual screening of the L-peptide library to D-PSMα3. A: Distribution of binding energies of 28.647 L-peptides, each docked to 5 different 
conformations of D-PSMα3. B: Histogram of the L-peptides’ mean binding energy to the 5 different D-PSMα3 conformers. 

Fig. 5. Diagram of MIEA. The fitness of all peptides in a population Pn is evaluated by molecular docking. Based on this, a population Pn+1 is newly generated by 
copying the peptides with the lowest binding energy, with and without crossover recombination of their sequences, and introducing random mutations. Further, a 
number of X individual peptides with the best binding energy are directly copied into the population Pn+1 without alteration. This population Pn+1 is then again 
evaluated via docking to complete the MIEA cycle. 
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verify their binding to D-PSMα3 under more physiological conditions, 
the L-peptide ligands were synthesized by SPPS and validated by single 
colour reflectometry (SCORE), which is a technique that enables the 
label-free assessment of real-time binding kinetics (see Section 2.3 
Fig. 7). 

3.2. Mirror-image virtual screening (MIVS) as an in silico alternative to 
MIPD 

Despite the success of MIPD, which led to the identification of three 
candidate L-peptides able to bind to D-PSMα3, its costly and labour- 
intensive nature motivated us to create an affordable and accessible 
high-throughput in silico alternative (Fig. 3). Just like MIPD, the work-
flow we established is also based on screening L-peptide ligands for their 
ability to bind to the D-version of the target, with the major difference 
being that the binding is assessed in silico and the mirroring of the target 
to its D-form also occurs only virtually. 

As for MIPD, a target D-protein is required for the MIVS protocol 
(Fig. 3). Similarly to >99% of all crystallized proteins, our target protein 
PSMα3 has only been subjected to structural analysis in its naturally 
occurring L-enantiomeric version. Hence, we used a structural model of 
D-PSMα3 based on X-coordinate inversion of the first model of the NMR 
structure of L-PSMα3 (PDB ID: 5KGY) [55] (see Section 2.4, Supple-
mentary Fig. 2A). 

To generate a large in silico peptide library that could be used to find 
binders to our target of choice, we extracted the sequence and the 
structural information of all alpha helical segments within the 175434 

protein structures deposited in the PDB [22] and fragmented them into a 
structural library of 1458278 12-mer peptide segments (Fig. 3; for de-
tails on the extraction and fragmentation procedures see Section 2.5). 
We provide this structural L-peptide library for free download as well as 

Fig. 6. Improvement of binding affinity of L-pep-
tides to D-PSMα3 over 15 generations of MIEA. A: 
Binding energies of L-peptides to D-PSMα3 per gen-
eration of an MIEA, assessed by molecular docking 
using AutoDock Vina. Only the 20 best binding pep-
tides of each generation are shown. B: Binding energy 
of all 88 peptides to D-PSMα3 in each generation. 
Mean binding energy of each peptide population and 
SEM are shown. Statistical significance of the differ-
ence from the initial population was determined by 
an unpaired, two-tailed t-test. C: Association of the L- 
peptide ligand L-EA2 (sequence FKWRYERDKKQS, 
shown in orange) to D-PSMα3 (shown in blue). D: 
Association of the D-peptide ligand D-EA2 (sequence 
all D-FKWRYERDKKQS, shown in orange) to L-PSMα3 
(shown in blue). Bound states in C and D were ob-
tained by Autodock Vina.   

Fig. 7. SCORE binding assay of MIPD- and MIEA-derived peptide ligands 
to PSMα3. Real-time binding kinetics of L-MIPD27 and L-EA2 to D-PSMα3 as 
measured by SCORE. The mean intensities of four spots (EA2, MIPD27) and 2 
spots (scrambled) with standard deviation are depicted. The association and 
dissociation phases are indicated; the dissociation kinetic starts shortly after 
induction of the washing step due to methodological reasons. 
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for usage on our web server. It has been shown in various circular 
dichroism-based analyses of peptides in solution that the propensity of 
an amino acid sequence to fold as a helix is maintained even after that 
sequence is isolated from the full protein it belongs to Refs. [56,57]. 
Therefore, it is likely that the helical structural models of the peptides in 
our library are representative of their actual secondary structure in 
solution. 

To identify potential ligands binding to our model target protein 
PSMα3, we performed MIVS using the molecular docking program 
AutoDock Vina [32] for the evaluation of the binding of L-peptides from 
our library to the structural model of D-PSMα3. In order to obtain a more 
realistic model of D-PSMα3, taking into account its conformational 
freedom, we performed five molecular dynamics simulations with 
GROMACS [31]. We extracted the 5 most representative conformations 
of the 50-ns MD simulations. Then, a random sample of 28647 helical 
12-mer peptides from our structural L-peptide library was docked 
against these 5 different D-PSMα3 conformations (due to the computa-
tional cost, not the whole library could be docked). On account of the 
variation of the binding surfaces of the 5 different D-PSMα3 conforma-
tions, the average binding energies of the peptides to D-PSMα3 differ by 
0.1–0.3 kcal between conformations (Fig. 4A). To determine the pep-
tides that are most likely to bind to D-PSMα3 under physiological con-
ditions we ranked the docking results according to their average binding 
energy to all 5 most often occurring conformations (Fig. 4B). The most 
promising peptide ligand predicted by MIVS has an average binding 
affinity of − 10.1 kcal/mol and was derived from helix 13 of human DNA 
polymerase beta (PDB id: 1BPY). 

As mentioned above, the MIVS approach for the identification of D- 
peptide ligands to PSMα3 was limited due to restrictions in computa-
tional capacity. The peptides that were screened represent only a small 
fraction (2%) of the whole peptide library. Hence it can be assumed that 
there would exist peptides with an even better binding affinity to PSMα3 
than the ones that were identified by MIVS. In order to further enhance 
sampling, without exorbitantly increasing the computational cost, we 
decided to turn to a heuristic approach to further explore the enormous 
chemical space of 12-mer peptide ligands. 

3.3. A mirror-image evolutionary algorithm (MIEA) for optimization of 
D-peptide ligands 

To overcome the above mentioned inherent limitations of MIVS we 
employed a Darwinian evolutionary algorithm to find D-peptide ligands 
to PSMα3. In the MIEA an initial population of 88 helical L-peptides was 
docked against three conformations of D-PSMα3 and then ranked ac-
cording to binding affinity, which corresponds to evolutionary fitness in 
our setup. A second-generation peptide population of the same size was 
then generated by selection of the fittest individual peptides, as well as 
recombination among peptides, in a process similar to chromosomal 
crossover during meiosis, and random introduction of point mutations. 
The AA sequences of this new population were then modeled with a 
helical structure template using PyMOL and energy minimization of this 
structure using GROMACS. The newly generated population was then 
again subjected to evaluation by docking, selection and recombination 
(see Section 2.8 and Fig. 5). 

For D-peptide ligand identification to our model target PSMα3 we 
customized the MIEA parameters. First, we incorporated the sequences 
of the peptides, that we obtained by MIPD and that bound to D-PSMα3 in 
the phage ELISA, into the initial population. We also included seven 12- 
mer peptides extracted from L-PSMα3, which is known to form com-
plexes with its mirror-image D-protein analogue [58], and 60 peptides 
that were identified as the best binders by MIVS using a randomly 
chosen subset of 30034 L-peptides in our helical library. To maintain 
sufficient diversity in the population we added 16 randomly chosen 
peptides from our helical peptide library as well as Glu12 / Asp12 
polypeptides. Furthermore, during the mutation step, new AAs were 
chosen using a weighted probability distribution, where Glu and Asp 

had a slightly higher chance of being chosen based on the assumption 
that negatively charged AAs would increase the probability of a peptide 
to bind to the functionally relevant, positively charged lysine residues of 
D-PSMα3 [59]. 

After 15 generations of MIEA with the above mentioned parameters, 
a peptide ligand “EA2” emerged that had a 1.6 kcal/mol (17%) better 
binding energy than the best binder in the initial population (Fig. 6A) 
(− 9.5 kcal/mol vs − 11.1 kcal/mol). Also, there was an overall 
improvement of the average binding energy of the peptide populations 
towards D-PSMα3 of 1.5 kcal/mol (18%, from − 8 to − 9.5 kcal/mol on 
average) (Fig. 6B). This demonstrates that not only individual peptides 
with a high binding affinity emerge from the MIEA, but that the whole 
pool of peptides is continually improved during the process. Depending 
on the individual target protein, the choice of initial population and 
parameters, the number of generations necessary to achieve a significant 
improvement of binding energy with MIEA might vary. The binding of 
the L-peptide EA2 to D-PSMα3 is shown in Fig. 6C. To complete the 
cycle, we reverted the structures of L-EA2 and D-PSMα3 to obtain their 
mirror-images: the naturally occurring L-PSMα3 and the D-peptide 
ligand EA2. In order to prove that D-EA2 and L-PSMα3 interact in the 
same manner as their mirror-image analogues, we conducted docking 
simulations. The result confirms that the binding modes for L-EA2/D- 
PSMα3 (Fig. 6C) and D-EA2/L-PSMα3 (Fig. 6D) are identical (RMSD =
0). Hence, we conclude that MIEA successfully identified a D-peptide 
ligand for the Staphylococcus aureus toxin L-PSMα3. 

3.4. Experimental verification of MIEA-derived ligands 

To experimentally validate our in silico predictions we synthesized 
the L-peptide EA2, which was the best binding peptide predicted by 
MIEA, via SPPS. We did not synthesize any of the peptides predicted by 
MIVS, since MIEA covers a larger chemical space as compared to the 
limited MIVS approach. Next, we assessed the binding kinetics of L-EA2 
to D-PSMα3 using SCORE [35]. For comparison we also included in this 
analysis one L-peptide ligand obtained by MIPD, namely MIPD 27. We 
chose to validate the interaction between the L-peptide and the target 
D-protein rather than between the D-peptide and the L-target out of 
convenience, considering that, following the principle of mirror-image 
stereochemistry, the two ligand-protein pairs would interact in exactly 
the same manner. The L-peptide ligands were immobilized on an 
3D-NHS SCORE slide, which was flushed with D-PSMα3. As a further 
control to exclude nonspecific protein binding by the ligands, the spots 
were also flushed with BSA (data not shown). Measuring the real-time 
binding kinetics at each spot revealed that both peptides bound to 
D-PSMα3, with EA2 having higher affinity than MIPD 27 (Fig. 7A). As 
expected, our scrambled 12-mer control peptide did not bind to 
D-PSMα3, demonstrating that the binding of our MIPD- and 
MIEA-derived peptide ligands to D-PSMα3 is specific. Interestingly, 
SCORE also revealed that there is only a low stereoselectivity of the 
EA2/PSMα3 and MIPD27/PSMα3 complexes. The L-peptide ligands bind 
not only to D-PSMα3 but also to L-PSMα3 (Supplementary Fig. 2). The 
lack of complete stereoselectivity in this case is most likely due to the 
small size and amphiphilic structure of PSMα3, where all residues are 
exposed to the solvent and easily accessible. However, for larger bio-
molecules with well-defined binding pockets, which would sterically 
restrict access to most peptides, a very high degree of stereoselectivity 
was reported [14,60]. However, in the physiological context, stereo-
selectivity is not relevant since the D-form of the target protein is not 
present and does not compete with the L-form for binding to the ligand. 
Further experiments are required to evaluate whether the binding of the 
D-peptide ligands to L-PSMα3 has a functional impact on its toxicity. 
Nevertheless, the experimental verification of the L-ligands’ ability to 
bind to D-PSMα3 demonstrates that our docking-based MIEA approach 
for ligand identification is successful. 
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3.5. finDr: a web server for in silico D-peptide identification and 
optimization 

The computational process for in silico D-peptide identification 
described in this work requires bioinformatics know-how and high 
computing power. To facilitate the adoption of this approach for D- 
peptide ligand identification and optimization we developed the web 
server finDr. finDr offers a tool for easy conversion of any L-protein 
structure to its mirror-image D-protein analogue and allows the user to 
perform MIVS and MIEA. 

As its first modality, finDr can perform MIVS for the identification of 
D-peptide ligands to any protein target of choice. For this purpose, finDr 
generates a mirror-image D-analogue of the target protein and screens L- 
peptides from our structural peptide library via molecular docking. The 
identified L-peptide ligands for the D-version of the target are subse-
quently inverted to D-form; these are expected to bind to the naturally 
occurring L-protein target (Fig. 1). Importantly, finDr’s peptide library 
screening modality could also be used to identify L-peptide ligands to an 
L-protein target, whenever the superior stability and pharmacokinetic 
profile of D-peptides are not required. 

The user only has to provide a file containing the structural infor-
mation of the protein of interest in PDB format, which will be used for 
the conversion to D-form whenever requested by the user to perform 
MIVS. To increase the accuracy of the structural model, it is recom-
mended to perform an MD of the target molecule beforehand (for 
example by using web servers such as MDWeb [61] or FG-MD [62]) in 
order to obtain the most frequently occurring conformation of the target 
protein [63]. Then, random peptides from our in silico library of short 
helices will be docked against the target. To make the docking process 
more efficient and specific, the user can also choose a target region of 
interest, such as the active site of an enzyme or the ligand binding pocket 
of a receptor. This helps to reduce the chances of predicting on-target 
off-site binders that do not influence the target protein’s biological ac-
tivity or the PPI of interest, which can always arise from MIPD [64]. 
finDr provides as output a complete list of peptide sequences ranked 
according to their binding affinity to the target. The structures of the 
ligand/target protein complexes resulting from docking can be also 
downloaded. 

In its second modality, finDr allows users to perform MIEA to any 
chosen target protein and to customize parameters such as the size of the 
initial population, the degree of elitism, the recombination and mutation 
rate (see Section 2.8). Furthermore, the user can upload individual 
peptide sequences to be included in the initial population to adjust the 
starting point of the MIEA. While EA has often been successfully used as 
a tool for de novo ligand identification [25], target-based choice of the 
EA initial population and above mentioned parameters can increase the 
performance of an EA as it integrates existing knowledge about the 
binding properties into the process of evolutionary optimization [30]. 
This knowledge can easily be obtained by performing MIVS prior to 
MIEA. Based on the work of Garton and colleagues on retro-inverso 
peptides, it would also be possible to integrate information about 
existing L-peptide ligands from the literature into the MIEA process for 
further optimization of D-peptide ligands with finDr [22]. Alternatively, 
finDr’s EA modality could also be used to optimize conventional 
L-peptide ligands without L-to-D conversion. As output, finDr provides a 
list of all peptide sequences and their corresponding binding energies to 
the target protein conformations, as well as charts visualizing the 
improvement of binding energy over all MIEA generations (Fig. 8). 

3.6. Testing MIVS and MIEA on another target to evaluate finDr’s 
performance 

To test the performance of finDr we conducted MIVS and MIEA to 
identify D-peptide ligands for the human growth factor receptor 2 
(ErbB2) (PDB ID: 1S78), which is overexpressed in several types of 
human cancer and is of critical importance for their pathology [53]. This 

target was also chosen to demonstrate that finDr is capable of handling 
large protein targets. We decided to target the extracellular dimerization 
domain of ErbB2 with the aim to find a D-peptide inhibitor that steri-
cally inhibits its dimerization and thus the associated downstream sig-
nalling, similarly to the mechanism of action of the ErbB2 targeting 
monoclonal antibody Pertuzumab [53]. Guided by the well-described 
dimerization interface of ErbB2 and the knowledge of the residues 
involved in antibody binding, we defined a gridbox for docking, in order 
to exclude on-target off-site binders and to reduce the computational 
cost for docking. 

Within 6 h and 40 min, 4573 12-mer helical peptides were docked to 
the target protein by MIVS (AutoDock Vina exhaustiveness = 1). This 
equals approximately 685 peptides per hour; however, this number may 
vary depending on the size of the target and the chosen gridbox. The best 
binding ligand in this case has the sequence DNRGSHFWLTKF and binds 
with a binding energy of − 13.8 kcal/mol (Fig. 8A, E). 

For the same target protein we performed MIEA with an initial 
population of 55 helical peptides randomly chosen from our library, a 
copyrate of 0.3, mutation rate of 0.7 and an elitism rate of 2 individuals. 
Within 7 h and 10 min, 80 generations of optimization were completed 
and a D-peptide ligand with a binding energy of − 18.3 kcal/mol 
emerged (Fig. 8B-D, F). This represents an improvement of 6.9 kcal/mol 
(60.5%) as compared to the best binder present in the initial population 
(− 11.4 kcal/mol). This demonstrates that, regardless of the target size, 
finDr’s MIEA modality succeeds in identifying D-peptides with high af-
finity for the target protein. 

4. Conclusion and outlook 

We presented a computational method for the identification of D- 
peptide ligands, both in a deterministic approach via MIVS of a helical 
peptide library and by exploring the immensely large chemical space of 
12-mer peptides with an EA in a heuristic manner. In a proof-of-concept 
example, we demonstrated the successful transfer of our in silico pre-
dictions to in vitro conditions by verifying the binding of an MIEA- 
derived peptide ligand to our model target PSMα3. With our web 
server finDr we provide a novel openly accessible, easy-to-use interface 
for the identification of peptide ligands to any chosen target structure, 
using either MIVS, MIEA or a combination of the two (https://findr.bi 
ologie.uni-freiburg.de/). finDr allows the user to either apply default 
settings or customize the screening taking into account specific features 
of the target of choice. Depending on individual settings, such as the 
exhaustiveness of docking or the size of the MIEA populations, the time 
required to apply finDr can vary and is currently limited by the available 
computational capacity (maximum 6 h). The typical limitations of mo-
lecular docking simulations apply to finDr too, especially considering 
that it uses a rigid model of proteins for docking to reduce computational 
cost. Currently almost all computational models of PPIs that take into 
account the proteins’ flexibility are not suitable for large-scale screening 
due to their computational cost. Nevertheless, we were able to experi-
mentally confirm the predictions obtained with the finDr approach. As 
for any virtual screening approach, we propose to test a large number of 
peptides in a subsequent in vitro experiment to validate the predictions 
and to analyze the biological activity of the D-peptide ligands in a 
physiological context. 

In conclusion, we provided a new tool for D-peptide ligand identi-
fication via MIVS and MIEA. We envisage that finDr will facilitate the 
identification of D-peptides and help promote their application in 
biotechnology and biomedicine. 
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Fig. 8. D-peptide ligand identifica-
tion for ErbB2 with finDr. A: MIVS - 
Histogram of the binding energies of all 
docked library peptides, screenshot 
from finDr results webpage. B: MIEA - 
Binding energy of L-peptides to D-ErbB2 
per generation of the MIEA. Only the 20 
best binding peptides are shown. C: 
MIEA - Mean binding energy per gen-
eration D: Binding energy of the best 
binding peptide in each generation of 
MIEA. E, F: L-ErbB2 in complex with its 
D-peptide ligand derived from MIVS (E) 
and MIEA (F) (visualized by PyMOL, 
Gridbox for docking is shown in black).   
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