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Abstract
Background: We identified the hub genes and pathways dysregulated in acute myeloid leukemia and the potential molecular
mechanisms involved.

Methods: We downloaded the GSE15061 gene expression dataset from the Gene Expression Omnibus database and used
weighted gene co-expression network analysis to identify hub genes. Differential expression of the genes was evaluated using the
limma package in R software. Subsequently, we built a protein–protein interaction network followed by functional enrichment
analysis. Then, the prognostic significance of gene expression was explored in terms of overall survival. Finally, transcription factor-
mRNA (ribonucleic acid) and microRNA-mRNA interaction analysis was also explored.

Results: We identified 100 differentially expressed hub genes. Functional enrichment analysis indicated that the genes were
principally involved in immune system regulation, host defense, and negative regulation of apoptosis and myeloid cell differentiation.
We identified 4 hub genes, the expression of which was significantly correlated with overall survival. Finally, 26 key regulators for hub
genes and 38 microRNA-mRNA interactions were identified.

Conclusion:We performed a comprehensive bioinformatics analysis of hub genes potentially involved in acute myeloid leukemia
development. Further molecular biological experiments are required to confirm the roles played by these genes.

Abbreviations: AML = acute myeloid leukemia, BM = bone marrow, DEGs = differentially expressed genes, GEP = gene
expression profiling, OS = overall survival, LGA = Leukemia Gene Atlas, PB = peripheral blood, PPI = protein–protein interaction,
RNA = ribonucleic acid, TCGA =Cancer Genome Atlas, TF = transcription factor, WGCNA =weighted gene co-expression network
analysis.
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1. Introduction

Acute myeloid leukemia (AML) is a heterogeneous hematological
malignancy characterized by the clonal expansion of myeloid
blasts in peripheral blood (PB), bone marrow (BM), and/or other
tissues. AML is the most common form of adult acute leukemia,
with an annual incidence of 2 to 4 cases per 100,000 adults. The
median age at diagnosis is 64 years. As populations age, the
incidence of AML increases.[1] Despite advances in our
understanding of AML molecular heterogeneity and pathogene-
sis, the standard therapy has not greatly changed over the past
few decades. The 5-year median overall survival (OS) is roughly
40% in patients younger than 60 years, but the disease is more
serious in older individuals, with a 5-year survival rate of only
10% to 20% in those older than 60 years.[2,3] Hence, it is
essential to identify biomarkers predicting AML progression and
prognosis to facilitate the development of new therapeutic
approaches.
High-throughput platforms (such as microarrays) allowing

analysis of gene expression can be used to explore the complex
biological network involved in AML development. Many
microarray studies on AML have appeared,[4–6] substantially
unraveling AML pathogenesis and identifying new molecular
markers. Microarray-mediated gene expression profiling (GEP)
can be used to diagnose leukemia with high accuracy.[4] Gene
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expression signatures associated with distinct clinical subtypes of
leukemia have been identified by microarray studies.[5] More-
over, GEP analysis is also useful for predicting AML prognosis.[6]

In recent years, many GEP microarrays have been used to
identify differentially expressed genes (DEGs) in AML; a few such
genes are promising biomarkers in terms of AML diagnosis and
prognosis.[4] However, most previous studies were focused on
DEG screening, not on the interactions among genes. Weighted
gene co-expression network analysis (WGCNA) can be used to
identify correlations among DEGs using microarray or RNA
(ribonucleic acid) sequencing data. WGCNA identifies modules
of highly correlated genes and links the modules to certain clinical
phenotypes. Correlation networks facilitate network-based gene
screening of candidate biomarkers or therapeutic targets.[7]

In the present study, we compared the GEPs of primary AML
and non-leukemia BM samples; we collected data from the
National Center of Biotechnology Information Gene Expression
Omnibus database. The WGCNA algorithm was used to
construct a scale-free weighted genetic interaction network
featuring specific gene modules that play common biological
roles during AML development. Furthermore, we identified
certain hub genes as potential candidate biomarkers or novel
molecular therapeutic targets for AML.
2. Methods

2.1. GEP

This study as approved by the Institutional Review Board of the
Guangdong Second Provincial General Hospital. The GSE15061
dataset (Platforms GPL570) was downloaded from the Gene
Expression Omnibus database. GSE15061 data were derived
using Affymetrix Human Genome U133 Plus 2.0 GeneChips
(Thermo Fisher Scientific, Waltham, MA, USA). The dataset is
part of the MILE Study (Microarray Innovations in Leukemia)
program, headed by the European Leukemia Network (ELN),
contains information on 164 myelodysplastic syndrome, 202
AML, and 69 non-leukemia BM samples. The AML samples
include different subtypes, such as AML with t(15; 17), t(8; 21),
inv(16), or t(11q23)/MLL. We analyzed only the AML and non-
leukemia samples.
2.2. Data preprocessing and probe re-annotation

All probes and samples were first checked to ensure that no data
were missing. The data were then quantile-normalized and log-
transformed, and the probe sequences weremapped to the RefSeq
transcript database (www.ncbi.nlm.nih.gov/refseq/) using seq-
Map software (Wong Lab, Stanford University, Stanford, CA,
USA).[8] Only probes exhibiting perfect matches to RefSeq
transcripts were retained, and these probes were then annotated
at the gene level.
2.3. Selection of genes exhibiting the most variation

We ranked the probes according to the coefficient of variation
(CV) of their expression profiles and selected the top 5000 genes.
The CV is commonly used to measure relative variability among
subjects of interest. The CV is simply the standard deviation
divided by the mean. We selected probes in descending order of
CV, while ignoring repeat genes, until the number of selected
genes attained reached 5000.
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2.4. Co-Expression network construction and module
detection

The R package WGCNA was used to build a weighted gene co-
expression network for the gene expression matrix, as described
elsewhere.[7] First, we cleaned up the data by removing obvious
outliers as well as genes and samples with excessive missing
entries. We next constructed pairwise Pearson correlation
matrices. The weighted gene co-expression network was
constructed using the b function; this is a soft thresholding
parameter that retains strong correlations between genes but
removes weak correlations. The adjacency data were trans-
formed into a topological overlap matrix (TOM) measuring not
only between-gene correlations but also the extent of their shared
correlations across the weighted network. We next performed
average linkage hierarchical clustering using the TOM-based
dissimilarity measure, with a minimum module size of 30 and a
medium sensitivity of 2 (the other parameters were set to the
default values). A dynamic TreeCut algorithmwas used to cut the
hierarchical clustering dendrogram and the branches were
defined as modules. We associated modules with clinical traits
and calculated the associated gene significance (GS) and module
membership (MM) values. Finally, by setting minimum thresh-
olds for these 2 parameters, we selected the hub genes with the
highest GSs and MMs for each module.
2.5. DEG screening

The R package limma was used to identify DEGs between AML
and non-leukemia samples. Screening was performed using an
adjusted P-value< .05 and a log2-fold change (FC) ≥ 2. The DEG
screening results were validated using the Cancer Genome Atlas
(TCGA)-AML gene expression profiles identified by GEPIA
(http://gepia.cancer-pku.cn/) at a P-value < .01 and a log2 FC
value ≥ 1. GEPIA is a newly developed interactive web server
used to analyze RNA expression data fromTCGA andGenotype-
Tissue Expression projects, using a standard processing pipeline.
2.6. Functional annotation and protein–protein interaction
(PPI) network construction

We used the ClueGO plugin in Cytoscape to perform gene
ontology (GO) (http://www.geneontology.org/), Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) (http://www.kegg.jp/kegg/
), and REACTOME (https://reactome.org/) pathway enrichment
analyses of the selected genes. PPI information was also assessed
employing the GeneMANIA plugin of Cytoscape. The plugin
MCODE was used to screen the PPI network identified by
Cytoscape using a degree cutoff of 2, a node score cutoff of 0.2, a
K-core of 2, and a maximum depth of 100.
2.7. Survival analysis

The association between hub DEGs and OS was examined using
GEPIA. OS curves obtained using the Kaplan–Meier method
were generated by reference to the median gene expression levels.
The data were validated employing the Leukemia Gene Atlas
(LGA) (http://www.leukemia-gene-atlas.org/) consisting of AML
gene expression profiles created by Verhaak et al.[9] We used the
50% quantiles of gene expression as cutoffs for the Kaplan–
Meier curves generated by the LGA public platform supporting
analysis of molecular leukemia data.
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2.8. Transcription factor (TF)-mRNA and microRNA-mRNA
interaction analysis

We used TRRUST (https://www.grnpedia.org/trrust/), a manu-
ally curated database of human and mouse transcriptional
regulatory networks for TF-mRNA interaction analysis within
hub DEGs. We also used miRWalk to perform microRNA-
mRNA interaction analysis. MiRWalk (http://mirwalk.umm.uni-
heidelberg.de/) is an online resource for prediction of microRNA
binding sites, which stores predicted data obtained with a
machine learning algorithm including experimentally verified
microRNA-target interactions. We chose intersection of 2
Figure 1. Flow chart diag
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database Targetscan (http://www.targetscan.org/vert_72/) and
miRDB (http://mirdb.org/index.html) to present the results.
3. Results

3.1. Data preprocessing and probe re-annotation

Data analysis pipeline is shown in Figure 1. All sample and probe
data were complete. The dataset contained 54,675 probes, and
after re-annotation 41,373 remained, which mapped to 20,604
unique genes. We selected the top 5000 genes according to CV.
ram of data analysis.
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Table 1

Functional enrichment analysis of 100 differentially expressed hub genes with representative pathways for each group.

Pathway ID Term
Pathway
P-value

Pathway
group Associated genes

GO:0006968 Cellular defense response 3.41E–04 Group 0 C5AR1, CLEC5A, CXCR2, GNLY
GO:0032677 Regulation of interleukin-8 production 6.45E–03 Group 1 BPI, FCN1, PRG3
GO:0045638 Negative regulation of myeloid cell differentiation 7.01E–05 Group 2 CEACAM1, HOXA5, HOXA7, HOXA9, MEIS1
GO:0048704 Embryonic skeletal system morphogenesis 1.26E–04 Group 3 HOXA3, HOXA5, HOXA7, HOXB6, MYCN
KEGG:04640 Hematopoietic cell lineage regulation 1.39E–04 Group 4 CD24, CD8A, FLT3, IL7R, MME
KEGG:05202 Transcriptional dysregulation in cancer 4.95E–06 Group 5 CCNA1, CEBPE, FLT3, HOXA10, HOXA9, JUP, MEIS1,

MYCN
KEGG:05150 Staphylococcus aureus infection 3.99E–07 Group 6 C5AR1, CFD, FCAR, FCGR3A, FPR1, FPR2
GO:0002456 T cell-mediated immunity 9.24E–05 Group 7 ARG1, CD8A, CEACAM1, IL18RAP, IL7R
GO:0051668 Localization within membranes 2.96E–04 Group 8 ATP1B1, CD24, CD8A, NRXN2, SHANK3
GO:0042119 Neutrophil activation 1.29E–29 Group 9 ALOX5, ANXA3, ARG1, BPI, C5AR1, CDA, CEACAM1,

CEACAM21, CFD, CKAP4, CLEC5A, CRISP3, CXCR2,
CYBB, EGFL7, FCAR, FCN1, FPR1, FPR2, HK3, HP,
IL18RAP, JUP, MCEMP1, MGAM, MME, MMP25,
PADI2, PRG3, QPCT, RETN, S100A12, S100P,
SIGLEC5, TCN1

Figure 2. The top cluster of the protein–protein interaction (PPI) network
involving the differentially expressed hub genes. Gray circles indicate the top
18 genes.
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3.2. Co-Expression network construction and module
detection

The 5000 genes mentioned above were used in subsequent
analyses. Seven outliers were excluded. We chose a soft threshold
b of 6 when constructing the co-expression network. TOM-
based hierarchical clustering yielded 14 gene modules, and
module–trait associations and their P-values were evaluated. We
selected modules with absolute correlations > .5, thereby
obtaining 4 modules (blue, 430 genes, P=3e�12, correlation=
�0.64; brown, 386 genes, P=6e�56, correlation = 0.78; green/
yellow, 113 genes, P = 3e�23, correlation = �0.56; yellow, 248
genes, P = 1e�27, correlation = 0.6). We set minimum GS and
MM thresholds and selected those hub genes with the highest GS
andMMvalues in eachmodule. Initially, we set aminimumGS of
0.3 and a minimum MM of 0.6. Because of the relatively small
number of genes obtained in the green/yellow module, we
reduced the GS and MM thresholds for this module to 0.2 and
0.4, respectively. The selected hub genes were further analyzed
(blue, 151; brown, 131; green/yellow, 94; yellow, 119;
Supplementary Tables S1–S4, http://links.lww.com/MD/E809).

3.3. Identification of DEGs

Using the limma package of R software, and employing P< .05
and log2 FC ≥ 2 as cut-offs, we identified 197 DEGs, of which 63
were upregulated and 134 downregulated (Supplementary
Table 5, http://links.lww.com/MD/E809 and Fig. S1, http://
links.lww.com/MD/E808). Using cutoffs of P< .01 and log2 FC≥
1, 133DEGswere validated byGEPIA using the RNA sequencing
data from TCGA-AML.

3.4. Functional enrichment analysis

To obtain further insights into the biological relevance of hub
DEGs (Intersection of hub genes and DEGs, n=100) associated
with AML, we performed GO, KEGG, and REACTOME
pathway enrichment analyses using the ClueGO plugin of
Cytoscape. As shown in Supplementary Figure S2, http://links.
lww.com/MD/E808 and Table S6, http://links.lww.com/MD/
E809, the following 28 pathways were significantly enriched
4

among the hub DEGs (P< .01): neutrophil activation, cellular
defense, regulation of interleukin-8 production, negative regula-
tion of myeloid cell differentiation, embryonic skeletal system
morphogenesis, hematopoietic cell lineage regulation, transcrip-
tional dysregulation in cancer, Staphylococcus aureus infection,
T cell-mediated immunity, and postsynaptic density organization
(Table 1).
3.5. PPI network analysis

GeneMANIA showed that the PPI network of the hub DEGs
featured 117 nodes and 1464 edges. The MCODE plugin of
Cytoscape revealed 4 clusters (using the default settings). The top
cluster, featuring 38 nodes and 611 edges, was selected for further

http://links.lww.com/MD/E809
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Figure 3. High SUSD3, SCHIP1, and SPINK2 expression and low STAR expression were correlated with poor survival as revealed.
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analysis (Fig. 2). Gene functional enrichment analysis revealed
significant enrichment of the following 34 pathways (P< .01):
neutrophil activation, icosanoid biosynthesis, neutrophil chemo-
taxis, cellular defense, mast cell activation, positive regulation of
cytokine secretion, regulation of interleukin-8 production,
superoxide anion generation, response to fungi, complement
receptor-mediated signaling, Dectin-2 family activity, and
negative regulation of myeloid cell apoptosis (Supplementary
Fig. S3, http://links.lww.com/MD/E808 and Table S7, http://
links.lww.com/MD/E809).

3.6. Survival analysis

The associations among the hub DEGs in the module that were
most associated with AML and OS were examined using GEPIA
to data-mine TCGA-AML information. Log-rank OS curves
showed that FLT3, CEACAM21, SUSD3, RETN,MME, FGF13,
HOXA9, HOXB6, FAM30A, CFD, GNLY, CLEC5A, S100P,
PRG3, SCHIP1, SPINK2, STAR, CCNA1, and CRNDE
expression levels were significantly associated with 100-month
OS (Supplementary Fig. S4, http://links.lww.com/MD/E808).
These results were validated using LGA; high SUSD3, SCHIP1,
and SPINK2, and low STAR expression were all significantly
5

associated with poor 200-month OS (P= .0329, .0046, .0206,
and .0032, respectively) (Figs. 3–4).
3.7. TF-mRNA and microRNA-mRNA interaction analysis

Using the TRRUST, we identified 26 key regulators for our hub
DEGs (Fig. 5, Supplementary Table S8, http://links.lww.com/
MD/E809). Of note, we found 6 key TFs (CEBPA, CEBPB,
NR4A1, CREM, SP1 and JUN) for gene STAR, the expression of
which was significantly correlated with OS. 49 microRNA-
mRNA interactions were identified by miRWalk analysis.
However, we chose 38 microRNA-mRNA interactions from
the intersection of 2 database Targetscan and miRDB to present
the results (Fig. 6), 4 genes (COL24A1, TRIM71, HOXA9, and
MYCN) were regulated by more than 4 microRNAs.

4. Discussion

AML is a complex heterogeneous malignancy caused by
malignant transformation of hematopoietic stem cells and
accumulation of immature myeloid progenitors in the PB and
BM. Over the past few decades, AML treatments have remained
largely unchanged; chemotherapy, and stem cell transplantation
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Figure 4. Survival afforded by acute myeloid leukemia hub genes as revealed by the Leukemia Gene Atlas. High SUSD3, SCHIP1, and SPINK2 expression and low
STAR expression were correlated with poor.
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are commonly employed.[10] In recent years, considerable
progress has been made in our understanding of disease
pathogenesis and identification of biomarkers used to diagnose
AML and aid treatment. Survival outcomes have improved,
especially in younger patients. However, AML has a very poor
prognosis in older patients, most of whom die from disease
relapse. Therefore, the mechanisms of leukemogenesis and
progression require further attention.
GEP uses cDNA microarrays or oligonucleotide probes to

measure the levels of many mRNA transcripts simultaneously,[11]

allowing abnormalities and variations to be assessed on a
genome-wide basis. In recent years, many studies have explored
AML gene expression using microarrays,[4–6,12] identifying new
clinical subgroups[5] and providing valuable diagnostic and
prognostic information.[4,6,12] Previously, AML progression-
related genes were identified using basic methods such as DEM
screening.[4] WGCNA is a new algorithm identifying correlation
patterns among genes across multiple microarray samples,
creating modules of highly co-expressed genes and relating these
modules to clinical phenotypes.[7]

Here, we identified 100 hub DEGs in AML and non-leukemia
BM samples. Functional enrichment indicated that the hub genes
were significantly enriched in 28 pathways divided into 10
groups, including regulation of the immune system, defense, and
negative regulation of apoptosis and myeloid cell differentiation.
Many of these pathways have already been reported to be active
in AML. We found that as AML developed, negative regulation
of myeloid cell apoptosis, and differentiation triggered accumu-
6

lation of immature myeloid progenitors in PB and BM,
accompanied by immune system activation and dysregulation.
We constructed a hub gene PPI network and identified the genes
with significant interactions; the most significant cluster was
evaluated further. We found 4 hub genes, the expression of which
was correlated significantly with OS.
Of these hub DEGs, some have been reported previously to be

expressed in AML patients. FLT3 is a receptor tyrosine kinase
expressed by immature hematopoietic cells and is involved in the
normal development of stem cells and the immune system. FLT3
mutations have been detected in many AML patients with poor
prognoses.[13] CEBPE is a member of the CCAAT/enhancer
binding protein family that plays important roles in normal
myelopoiesis. Loss of CEBPE activity may play a role in AML
pathogenesis. Increased CEBPE activity suppresses the leukemia
phenotype of acute promyelocytic leukemia, suggesting that
targeted modulation of CEBPE activity may constitute a new
form of acute promyelocytic leukemia therapy.[14] HOX gene
dysregulation is a common feature of AML. Dysregulation of
HOXA9 or HOXA10 triggers transformation to leukemia by
altering hematopoietic stem cell self-renewal and differentiation
properties. HOX overexpression is a poor prognostic marker in
AML patients.[15,16] S100A8, a member of the damage-
associated molecular pattern family, is differentially expressed
in many cell types but abundant in myeloid cells and involved in
the progression of various cancers including leukemia. The
S100A8 expression level is correlated with poor AML outcomes.
S100A8 also plays an important role in drug-resistance



Figure 5. 26 transcription factors identified by TRRUST for hub differentially expressed genes.
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development in leukemia cells by promoting autophagy and
inhibition of apoptosis.[17,18] CCNA1 is a cell cycle protein
overexpressed in many myeloid leukemia cell lines and in AML
patients; its overexpression plays a role in the growth and
apoptotic suppression of leukemia cells via repression of WT1
synthesis.[19] Other hub genes (ATP1B1, CDA, MEIS1, MN1,
HK3, CAMP, SIGLEC5, MNDA, FCER1G, ALOX5, and
CSF3R) have been associated with AML previously.
Of the various hub genes, some are also active in non-AML

hematological or solid tumors. CLEC5A is a type II membrane
protein critical for myeloid differentiation. CLEC5A dysregula-
tion plays a role in the pathogenesis of myelodysplastic
syndromes.[20] NFE2 is overexpressed in most patients with
myeloproliferative neoplasms, and its expression is regulated by
epigenetic mechanisms that are perturbed in myeloproliferative
neoplasms.[21] TAL1 (SCL/TAL1, T-cell acute leukemia protein
1) is a TF involved in hematopoiesis and leukemogenesis. PADI4
is a promoter-dependent epigenetic cofactor of Tal1, which
creates important epigenetic histone markers, and is a potential
target of molecular therapy in some leukemias.[22] MMP9 is a
proteolytic enzyme that degrades components of the extracellular
matrix and basement membrane; its overexpression is correlated
with poor survival in ovarian cancer patients and promotes
cancer cell invasion.[23] C5AR1 (the receptor for the complement
anaphylatoxin C5a) is a potent immune system mediator that
plays amajor role in malignant growth and dissemination of non-
small cell lung cancer cells. Disruption of C5AR1 signaling in
lung cancer cells abrogates tumor-associated osteoclastogenic
activity, in turn impairing osseous colonization.[24]
7

Of the 4 hub genes significantly correlated with OS in AML,
SUSD3 is a cell-surface protein with unknown function that may
be involved in the growth and development of breast cancer via
the estrogen receptor pathway. Some evidence indicates that the
gene acts downstream of the estrogen receptor and that estrogen
enhances its expression. Lack of SUSD3 expression in breast
cancer tissue was the most significant predictor of non-
responsiveness to an aromatase inhibitor.[25] Hippo signaling
is an evolutionarily conserved pathway modulating organ
growth, and SCHIP1 is a newly discovered member of the
Hippo pathway. Loss of the SCHIP1 protein triggers over-
proliferation via upregulation of genes targeted by Yorkie (YAP
in mammals), indicating that this protein serves as a tumor
suppressor regulating the YAP oncogene.[26] SPINK2 is amember
of the family of Kazal-type serine proteinase inhibitors that
inhibit trypsin/acrosin; SPINK2 is synthesized principally in the
testes and seminal vesicles, promoting fertility. Dysregulation of
SPINK2 is closely associated with cancers such as lymphomas;
high levels of SPINK2 transcription in patients with primary
cutaneous follicular center cell lymphomas are associated with
improved prognosis and reduced mortality.[27] Recently, SPINK2
expression was shown to predict poor outcomes in pediatric
AML patients.[28] Steroid hormones are synthesized by steroido-
genic cells in various tissues and influence many developmental
and physiological processes. STARmediates the rate-limiting step
in steroid biosynthesis, and a great deal of evidence supports the
crucial role played by STAR in the regulation of steroid
biosynthesis. Appropriate regulation of steroid hormone expres-
sion is essential for appropriate biological functioning, aiding

http://www.md-journal.com


Figure 6. 38 micro ribonucleic acid -mRNA interactions were identified by miRWalk analysis based on Targetscan and miRDB database.
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geriatric populations to live longer and healthier.[29] However,
whether such genes play roles in AML pathogenesis requires
further investigation.
5. Conclusion

We performed a comprehensive bioinformatics analysis of hub
genes that may be involved in AML development. The genes and
signaling pathways identified may be of clinical utility. However,
further in vitro and in vivo molecular biological experiments are
required to confirm the functions of the identified genes.
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