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ABSTRACT
High-accuracy neuromorphic devices with adaptive weight adjustment are crucial for high-performance
computing. However, limited studies have been conducted on achieving selective and linear synaptic
weight updates without changing electrical pulses. Herein, we propose high-accuracy and self-adaptive
artificial synapses based on tunable and flexible MXene energy storage devices.These synapses can be
adjusted adaptively depending on the stored weight value to mitigate time and energy loss resulting from
recalculation.The resistance can be used to effectively regulate the accumulation and dissipation of ions in
single devices, without changing the external pulse stimulation or preprogramming, to ensure selective and
linear synaptic weight updates.The feasibility of the proposed neural network based on the synapses of
flexible energy devices was investigated through training and machine learning.The results indicated that
the device achieved a recognition accuracy of∼95% for various neural network calculation tasks such as
numeric classification.

Keywords: neuromorphic computing, MXene, flexible device, high accuracy, adaptability, ion dynamics

INTRODUCTION
Neuromorphic computing is an information-
processing model that emulates the efficiency,
versatility and flexibility of the human brain
[1,2]. Artificial synaptic devices have been used
to construct artificial neural networks (ANNs)
for neuromorphic calculations [3–5]. However,
the training and learning of neural computing
determines the adjustment direction of the weights
based on the gradient of the error function. And the
weights are subsequently adjusted using an artificial
synaptic device. Moreover, using the known data
for training and adapting to the most unmarked
real-time changing input data is challenging due to
fixed weights [6]. Therefore, continuously adapting
neural networks to environmental changes in
applications remains challenging. If an artificial
neuromorphic chip is appropriate for real-time
applications with a massive amount of unlabeled
data, the neural plasticity of the brain, especially its
synaptic plasticity, should be simulated in electronic
devices [7]. Various resistive and phase-change

memories have been used to simulate synapses
[8–10]. However, in these memory techniques,
synaptic intensity is reconstructed primarily through
software programming and varying the pulse time,
which may result in low efficiency and high energy
consumption in neuromorphic calculations [11].
Furthermore, the following challenges occur in
conventional memory: excess write noise, write
non-linearity (NL) and diffusion under zero bias
pressure.

Similar to synapses, charge-based energy storage
devices can perform conductance modulation and
retention under low-energy conditions [12]. The
unique characteristics of ion shuttles inspired novel
artificial synaptic simulation of synaptic gap infor-
mation transmission for energy storage devices. Ex-
perimental results have revealed that a battery-like
switch device can be used as an artificial synapse for
brain-power-level low-energy calculation [13,14].
However, achieving selective and linear weight up-
dates to satisfy the requirements for neuromorphic
computing with high-accuracy and self-adaption re-
mains challenging.
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Figure 1. Structure and electronic states of an FMES device. (a) Structural and functional illustration of the biological synapse. (b) Illustration of the
FMES device. Inset shows dynamic diffusion process. (c) Optical image of the FMES device. (d) Schematic explaining the corresponding circuit diagram
and the decoupling of the read and write operations. (e) Monitored postsynaptic current under several sequential voltage pulses.

In this study, a novel hardware neural network
based on a tunable flexible MXene energy storage
(FMES) system is proposed. The synaptic weights,
represented by �w in machine learning, could be
changedwithout varying the external stimulus. Cou-
pling MXene and gel electrolyte could control the
accumulation and dissipation of ions by tuning
the resistance, which modulates �w. Results of
machine-learning simulationsprove that the synapse
based on tunable FMESdevice can be used in neuro-
morphic calculation tasks (e.g. number classification
and pattern recognition). For a dataset of handwrit-
ten patterns, by changing the resistance and seeking
the best learning rate, the proposed system achieved
a recognition accuracy of ∼95%. Furthermore, the
FMES device can be adaptively adjusted according
to the stored weight value. Therefore, the time and
energy loss caused by recalculation was prevented.
This study is crucial for simulating human memory
features and artificial neural systems.

RESULTS
Tunable FMES device
Supercapacitors exhibit considerable potential as en-
ergy devices for the simulation of synaptic behav-

iors based on the energy storage and voltage change
caused by ionicmovements and adsorption [13,15].
As displayed in Fig. 1a, an FMES device was inte-
grated into a resistance-controlled system to con-
struct a synaptic device.The system comprises a flex-
ible postsynaptic electrode and anMXene nanoflake
and is bounded by an MXene flexible presynap-
tic electrode through an electrolyte (Fig. 1b). This
FMES device exhibits considerable potential for
manufacturing low-cost flexible artificial synaptic
systems (Fig. 1c) to integrate neuromorphic learn-
ing and computing in neural electrode arrays, im-
plantable prosthetics or any other large-area flexible
electronic system (Supplementary Fig. 1). Trans-
mission electron microscopy images of the few-
layered MXene nanoflakes (Supplementary Fig. 2)
[16] exhibited excellent lattice fringes (Supple-
mentary Fig. 3), indicating high crystallinity. Such
high conductivity and low ion diffusion barriers in
Ti3C2Tx MXene contribute to its surface adsorption
(Supplementary Fig. 4). When a set of excitatory
current spikes (Ispike) is applied to the FMES sys-
tem, cations in the electrolytemove toward the elec-
trodes and are adsorbed on their surfaces.Therefore,
the amount of charge that can be stored increases.
When excitatory current Ispike is removed, because
of the long self-discharge time, the output voltage of
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Figure 2. Principles and characteristics of the FMES device. (a) Operating principle circuit diagram of the FMES device.
(b) I–V curves measured in sweep cycles of 0 to 0.8 V with 50 mV s–1 sweep rate. (c and d) Change in the PSV as a function
of (c) presynaptic pulse intensity and (d) width, with various resistance levels. (e) Dynamic PSV change curves of the FMES
device where the resistance increases at the same spike time.

the FMES device can be maintained in this state for
a long time after a short decrease. When this current
is applied to the device again, ions are continuously
attracted to the electrodes to charge the device.This
phenomenon results in a higher output voltage than
in previous processes. In this process, the voltage of
the FMES system represents the synaptic weight of
the connection between two neurons, which is a ba-
sic feature of an artificial synapse (Supplementary
Fig. 5). Furthermore, the I–V curves of the FMES
device vary with the sweep rates (Supplementary
Fig. 6).This phenomenon confirmed that the FMES
system can be used as a synaptic device, and its stor-
age state can be modulated by the amplitude, dura-
tion and frequency of the input pulse (Supplemen-
tary Figs 7 and 8 and Supplementary Note 1).

Although FMES devices exhibit non-volatile
memory functions, an FMES device was devel-
oped by introducing a resistance to adapt to the
frequent weight updates of neuromorphic memory
calculations. Without changing the external pulse
stimuli, non-volatile weight-change characteristics
of biological synapses are realized by regulating
the movement and accumulation of cations in the
electrolyte (Fig. 1d and Supplementary Note 2).
Figure 1e displays the potentiation and depression

behaviors of the artificial synapses. These synapses
were distributed in various conductance regions
with excellent linearity based on various resistance
rates. These results revealed that the synaptic
weight could be effectively adjusted by changing
the resistance, to realize neuromorphic memory
calculations, which reflects the building blocks of
neuromorphic computing.

Principles and characteristics of the
FMES device
Figure 2a displays the circuit structure of the entire
FMES system and the resulting ionic motion. This
design facilitates the FMESdevicewith a proper par-
allel resistance and enables a change in its synaptic
properties [17]. When a current Ispike (I = I1 + I2)
is applied to the presynaptic terminal, currents
I1 and I2 flow through the regulating resistor and
the FMES in the synaptic device (state I). Under
current spike (I2), ions in the FMES device move
to positive and negative poles and are adsorbed
on the surface of MXene to realize charge storage
(Q = ∫ t

0 I2dt). At this moment, a postsynaptic
voltage (PSV)U=Q/C appears at the postsynaptic
terminal. When the resistance value decreased, Q
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stored in the FMES device decreased; consequently,
the output PSV of the entire system also decreases.
Therefore, a change in the resistance can change the
synaptic behavior of the entire system during presy-
naptic current (Ipre) stimulation (state III). When
Ispike is removed, because of self-discharging, the
two carriers adsorbed on the surface of MXene are
re-released into the electrolyte. This phenomenon
results in an output current flowing to the regulating
resistor and consuming the charge stored in the
FMES device [13,14,18]. The process results in
a PSV reduction of the entire system (state II).
Because the PSV is related to the residual charge in
the FMES system, according to the preceding as-
sumption, the following expression can be deduced:

u(t) = 1
C

·
(
Q0 −

∫ t

0

u(t)
R

dt
)

,

where u(t) is the PSV, t is the forgetting time of
the synaptic system after Ispike is removed, Q0 is
the amount of charge stored in the FMES system
when Ispike is removed, and R is the value of the
regulating resistance. Because of the constant t,
the PSV of the synaptic system decreases with a
decrease in R. When the value of the regulating re-
sistance decreases, the PSV of the artificial synaptic
system also decreases, which increases the forgetting
speed (state IV). Thus, the synaptic behavior of the
entire artificial synaptic system can be controlled by
adjusting the regulating resistance.

When the resistance is tuned from500 to8000�,
the magnitude of the synaptic current decreases
from 1.6 to 0.47mA at 0.6 V (Fig. 2b). Furthermore,
thePSVexhibits a considerable increase from0.12 to
0.74 V at 0.5 mA, which is a typical trait of synaptic
plasticity [19]. To detail the changes in the synaptic
plasticity in the FMES system and the effects of the
changes resulting from regulating the resistance on
the synaptic learning behavior, excitatory presynap-
tic currents with the same stimulating time (1 ms)
and various intensities were applied to investigate
the changes in thePSV that correspond to various re-
sistance states (Fig. 2c).The results indicate that the
PSV increaseswith an enhancement in thepresynap-
tic current intensity. In addition to the effect of the
stimulation intensity on the PSV of the synaptic sys-
tem, the PSV increases with an increase in resistance
(Supplementary Fig. 9) [20]. Moreover, the PSV
value increases with an enhancement in the pulse
width (Fig. 2d). When the pulse width was fixed,
the PSV increasedwith an increase in resistance, and
vice versa (Fig. 2e).These results indicate that the re-
sistance can regulate not only synaptic plasticity but
also the activity of the synaptic system. Generally,
endurance determines the long-term working capa-
bility of artificial synaptic devices. To evaluate the

durability of the device (Supplementary Fig. 10 and
Supplementary Note 3) and the stability between
devices (Supplementary Fig. 11 and Supplementary
Note 3), we fabricated an array, displayed as in Sup-
plementary Fig. 11a. Durability tests on the device
and the difference of the device array revealed that
the variability of devices is limited (Supplementary
Fig. 11b–d).

Weight updates
In the human brain, learning and forgetting per-
formance depends on the management of synaptic
weights [21] (e.g. synaptic plasticity). This man-
agement can be categorized as either short-term or
long-term synaptic plasticity (STSP or LTSP) [22].
STSP is a key factor in neuromorphic computing,
and paired-pulse facilitation (PPF) is a typical STSP
feature of a synapse [23]. Figure 3a and b displays
the PPF under various resistances and time intervals
(�t).The results indicate that the excitatory postsy-
naptic voltage (EPSV) caused by the second spike
increased when it followed the previous spike. The
peak voltage of the EPSV activated by the second
contact–separation spike (A2 = 0.115 V, 7000 �)
was higher than that activated by the first spike
(A1 = 0.094 V, 7000 �) at �t = 0.01 s (Fig. 3c).
In addition to the influence of the time interval,
the PPF (A2/A1) index decayed rapidly with the
decrease in resistance, and the time of decay to
100% accelerated [24]. This phenomenon directly
indicates that increasing the resistance value can also
increase the potential plasticity and simultaneously
improvememorizing capability as well as reduce the
forgetting speed of the FMES system. According to
the calculation of the autocorrelation function of the
corresponding PSV curve under various resistance
states presented in Fig. 2d, the standard deviation
of the curve was extracted to prove the effect of the
change in resistance on the memory ability of the
FMES system (Supplementary Fig. 12 and Supple-
mentary Note 4). With continuous improvement
of resistance and stimulation time, the memorizing
capability of the FMES system improved gradually
(Fig. 3d). Figure 3e and Supplementary Fig. 13
indicate that the memory time is particularly long,
and the system exhibits an excellent LTSP. As dis-
played in Fig. 3f, the learning behavior of the FMES
system was studied by adjusting the change in the
regulating resistance under the stimulation of a
presynaptic stimulation current (1 mA) with a fixed
frequency of 500 Hz. Moreover, the learning speed
could be changed by adjusting the resistance. As
the resistance increased, learning became easier.
When the resistance was in the open state, the PSV
of the FMES system increased rapidly again, which

Page 4 of 10



Natl Sci Rev, 2022, Vol. 9, nwac158

6000

4000

2000

Time (s)
0.2 0.4

Re
sis

tan
ce

PPF index (%)
121

118

116

113

111

108

105

103

100

Δt (s)

7000 Ω
6000 Ω
5000 Ω
4000 Ω
3000 Ω
2000 Ω
1000 Ω
700 Ω
500 Ω
300 Ω
200 Ω
100 Ω
50 Ω

120

115

110

105

100

PP
F 

ind
ex

 (%
)

0.2 0.4 0.6 0.8 1.0

1 2 3

0.12

0.08

0.04

0.00

V p
os

t (V
)

50 Ω
500 Ω
2000 Ω
7000 Ω 0 1 2 3

t (s)

Ipre (mA)

Time (s)0

A1
A2

Δt=10 ms

500
900

1000
2000
2500
3000
3500
4000
5000
6000

8000

Re
sis

tan
ce

 (Ω
)

0.1
Time (ms)

0.2 0.3 0.4 0.5 1.0 1.5 2.0 3.0

Standard
deviation

1.0

0.8

0.6

0.4

0.2

0.0

0 5 1 0 15 20 25

1.2

0.8

0.4

0.0

Vo
lta

ge
 (V

)

Time (s)

Low-resistance

High-resistance

0

1

I pr
e (

mA
)

0.15

0.10

0.05

0.00

Vo
lta

ge
 (V

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

Low-resistance
High-resistance

0 25 50 75

2.5

2.0

1.5

1.0

0.5

0.0
100

V p
os

t (V
)

Time (s)

Δ W
 (V

)

2.4

2.0

1.6

1.2

0.8

No
nli

ne
ar

ity

500 2000 Open
Resistance

0.007

0.006

0.005

0.004

0.003

LTP 2.242

1.07 0.85580.0028
0.00349

0.00654

Δ W
 (V

)

2.4

2.0

1.6
1.2

0.8
0.4

0.0

No
nli

ne
ar

ity

500 2000 Open

0.005

0.004

0.003

Resistance

LTD 2.027

1.021

0.3317

0.00496

0.00354
0.00281

a b c

d

g
h

i

e

f

Figure 3. Weight updates to various resistance conditions. (a) Plot and (b) heat map of the PPF index (A2/A1) and interval time �t, where A1 and A2

are the first and second EPSV. (c) PSV curves triggered by two consecutive excitatory current pulses in FMES device. (d) The standard deviation of the
autocorrelation function of the corresponding PSV curve. (e) Dynamic LTP characteristic curves for the FMES device under a prolonged condition of
presynaptic current stimulation. (f) Dynamic learning behavior of FMES device. (g) The EPSV response under continuous excitatory current stimulations
(500 Hz, 1 mA). Calculated non-linearity and �w of (h) LTP and (i) LTD as the function of resistance.

proved the associative memory of the artificial
synapse.

To prove the LTSP behavior of the FMES
system, a continuous presynaptic current (500 Hz,
1 mA) was used to stimulate the system without
considering the change in resistance. Long-term
forgetting (>100 s) was subsequently performed.
Notably, the PSV remained almost unchanged dur-
ing the forgetting process (Fig. 3g). Furthermore,
during the learning process, the learning efficiency
improved by adjusting the synaptic weight. LTSP
is a key component of memory control in hip-
pocampal neurons and is primarily composed of the
long-term potentiation and depression (LTP and
LTD) of the synaptic weights [25]. In contrast to

reported devices, the LTP/LTD performance of the
proposed FMES device was optimized by adjusting
the resistance state to regulate the ion transmission
and accumulation behavior. This modulation of
the weight updates, which corresponds to various
resistance states, was tested experimentally and used
to define synaptic plasticity for the simulation of
ANNs. Figure 1e and Supplementary Fig. 14 display
the LTP/LTD characteristics of the FMES devices
measured by the application of 150 potentiation
pulses (1 mA) and 150 depression pulses (−1 mA)
under various resistance states, respectively. The
LTP/LTD performance strongly depended on
the resistance state; that is, during the learning
process, the slope of the PSV growth changed with a
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Figure 4. Accuracy of neuromorphic computation. (a) Tri-layer neural network structure. (b) Hardware neural network com-
prising FMES devices. (c) Mapping a representative input digit of 784 synaptic weights connected to the output digit ‘3’ at
initial and various resistance states of training. (d) Comparison of the classification accuracy rates at initial and 100 training
cycles. Distribution of the FMES devices’ PSV (e) before and (f) after training.

change in regulatory resistance. The dynamic range
(Wmax/Wmin) values of the FMES device under the
resistances of 500, 1000 and 8000 � and the open
state were>6, which is theminimum value required
for a successful completion of pattern recognition
tasks (Supplementary Fig. 15).

The NL values at various resistance values under
LTP and LTDwere calculated (Fig. 3h and i; the fit-
ting method is detailed in Supplementary Note 5),
and the influenceof theNLon the learning efficiency
of the FMES device-based neural network was ana-
lyzed. At various resistance values, the device exhib-
ited excellent synaptic behavior in the LTP andLTD
regions (i.e. the highest effective number of states
(NSeff) and lowNLvalues) [26].The resistance state
affected the weight change. High resistance values
induced a higher weight change than lower resis-
tance values, which decreased the NL in the LTP
and LTD regions. This phenomenon indicated that
the learning rate gradually increased. Furthermore,
degradation was not observed on the proposed de-
vice during the bending tests, which indicated a reli-
able LTP/LTD behavior (Supplementary Fig. 16).
This phenomenon enables the facile integration of
neuromorphic computation and learning into neu-
ral electrode arrays, implantable prosthetics and any
other flexible large-area electronic system [13,27].

Neuromorphic pattern-recognition
accuracy
A single-layer perceptron model was designed
to classify handwritten digits (adopted from the
Modified National Institute of Standards and Tech-
nology (MNIST) dataset) in 28 × 28 pixel images,
and the back-propagation algorithm was used for
supervised learning (see Supplementary Note 5)
[28]. Figure 4a displays the neural network for
learning the MNIST data, which were categorized
into three layers, namely 784, 100 and 10 neurons
in the input neural, hidden and output layers,
respectively. Supplementary Fig. 17 displays the
specific operation mode of the simulation process
(Supplementary Note 5) [22,29]. Figure 4b dis-
plays an example of the 2T1C cell structure used for
circuit implementation, in which NMOS2 regulates
the resistance of the synaptic system to control the
electric currents for FMES device manipulation,
which determines the amount of the weight change
(learning rate; the verification results are displayed
in Supplementary Fig. 18 and Supplementary Note
6) [30]. Supplementary Fig. 19 shows the feasi-
bility of conceptual neural networks for MNIST
digit patterns, image processing and recognition
tasks.
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Figure 4c displays the representative digit ‘3’ in
theweightmapof theANNafter 100 training epochs
under four states of resistance. The other weight
maps of the ANN are displayed in Supplementary
Figs 20–22. At 8000 � resistance, the image of the
weight mapping obtained by the weight updating
formula was the clearest. As illustrated in Fig. 4d,
the recognition accuracies for digital images of hand-
written numbers at various resistance states, which
reflect the synaptic plasticity in the FMES devices,
were calculated. Notably, the proposed neural net-
work (simulated by LTP/LTD pulses with a resis-
tance value of 8000�) achieved a maximum recog-
nition accuracy of 90%, which was higher than that
achieved in the open state (89%). For deployment

in neural networks, improving the accuracy of the
FMES device by using an algorithm is difficult be-
cause the learning rate achieved under resistance in
the open state is faster than that at 8000 �. Thus,
the optimal weight value could bemissed during the
learning process, resulting in a failure to achieve the
best recognition accuracy.

Furthermore, the recognition rates for imagepro-
cessing and recognition are displayed in Supplemen-
tary Fig. 23. Figure 4e and f displays the distribution
of synaptic weights in the neural network before and
after learning, respectively. In the early stageof learn-
ing, the synaptic weights were random, and their
distribution was average. After a period of learning
and training, the synaptic weights in the network
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changed considerably, and the distribution began to
gather on both sides regularly (Fig. 4f), which sup-
ports the applicability of the reported synaptic de-
vice to complex neural networks.

Adaptive handwritten digit recognition
simulation
The FMES device can be adjusted using an adap-
tivemethod based on the storedweight value, which
avoids the time and energy loss caused by recalcu-
lation [31] (see Supplementary Note 5). To prove
that the FMES system can self-adjust the weights in
an adaptive method and then complete the switch
of classification and identification similarity dataset
types, we divided the MNIST dataset into two parts
(Fig. 5a). The constructed neural network and de-
tailed information are displayed in Supplementary
Fig. 24. A schematic of the constructed ANN is dis-
played in Fig. 5b (similar to Fig. 4d). The weight-
mapping images in the ANN after 100 training
phases exhibited distinct digits ‘8’, ‘6’, ‘2’ and ‘4’.
The ANN was able to successfully classify dataset1
(Fig. 5c). The corresponding accuracy is displayed
in Fig. 5d (top), and can reach 95%. During train-
ing, we set the regulatory resistance of the FMES
devices in the ANN to the open state, for two rea-
sons: (i) according to Fig. 1e, the FMES system ex-
hibits the widest range of the weight change in the
open state. Therefore, the weight can be adjusted to
the largest range; (ii) in the open state, the ANN ex-
hibits high recognition accuracy for dataset1. Sub-
sequently, we used the trained ANN to classify and
recognize dataset2.Theextremely lowaccuracy indi-
cates that the trained ANN cannot be used to iden-
tify and classify dataset2 (Fig. 5d, bottom).

We extracted some samples from dataset2,
converted the pixels into the regulatory resistance
value, and realized the adaptive adjustment of
the weight stored by the FMES device through
continuous mapping images (Fig. 5b). The specific
adaptive process and weight adjustment are detailed
in Supplementary Note 7. Figure 5e displays the
weight-mapping images of the post-adaptive ANN.
The weight-mapping images in the ANN change
fromdistinct digits ‘8’, ‘6’, ‘2’ and ‘4’ to distinct digits
‘9’, ‘5’, ‘7’ and ‘1.’This indicates that after adaptation,
the ANN can adapt to the recognition and classifica-
tion of dataset2. Figure 5f reveals that as the number
of images in dataset2 mapped to the trained ANN
increases, the classification and recognition accu-
racy of dataset2 by the ANN continues to improve,
with an enhancement from 8% to 73%. We used the
adaptive ANN to identify the aforementioned 200
sampleswith results shown inFig. 5g.Unlike thepre-
adaptive ANN, the post-adaptive neural network

results in superior sample recognition and higher
accuracy [32].The post-adaptive ANNpredicts that
the correct probability of the sample is improved,
and the probability distribution is highly regular
(Fig. 5h and i). Furthermore, we considered the per-
formance of the device in the calculation to explain
the conditions and results of the device in the neural
morphology calculation, to a certain extent (Supple-
mentary Fig. 25 and Supplementary Note 8). These
results revealed that the automatic adjustment of
the weight values of the trained ANN, through the
adaptive method, can realize the classification and
recognition of another dataset without retraining.

CONCLUSION
In this study, FMES with resistance-tunable ion
diffusion dynamics was developed to realize
high-accuracy and self-adaptive neuromorphic
computation. The accumulation of mobile ions
in the electrolyte on the surface of MXene could
be modulated by tuning the externally introduced
resistance. Therefore, the value of �w, which can
increase or decrease the learning rate for neuro-
morphic computing, can be effectively modulated.
FMES device exhibited diverse synaptic character-
istics through resistance-induced ion movement.
In particular, the FMES device exhibited excellent
linearity and symmetries under various resistance
states, which assisted in frequent updating of the
weights in neuromorphic calculations. Based on the
resistance-tunable electronic characteristics, a high
recognition rate of 95% was achieved for MNIST
digit patterns. Moreover, the automatic adjustment
of the weight value of the trained ANN, through the
adaptive method, could realize the classification and
recognition of another dataset without retraining.
Therefore, this study presented a novel method
of utilizing flexible energy storage devices for
highly accurate and self-adaptive neuromorphic
computational networks.

METHODS
Preparation of the few-layer Ti3C2Tx
MXene
The 3 g of Ti3AlC2 MAX powder was added to
4.8 g of LiF. This mixture was added to 60 mL of
9 M of HCl at room temperature. Next, the mixed
solution was magnetically stirred for 48 h to ob-
tain multilayer Ti3C2Tx powders. To peel off a few-
layered Ti3C2Tx, the obtained powders were dis-
solved in 75 mL of deionized water and centrifuged
at 3500 rpm for 10 min. The procedures were re-
peated three times and the supernatant containing
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Ti3C2Tx MXene flakes was collected each time for
film fabrication.

Fabrication of the FMES system
First, the electrodes of the supercapacitors were
made on the polyethylene terephthalate (PET) sub-
strate using a standard photolithography-thermal
evaporation-stripping process, which was the Au
film. Next, the MXene film was applied on the elec-
trode surfacewith brushes. Finally, theH2SO4/PVA
gel electrolyte (Supplementary Note 9) was evenly
spread over the surface of the device.

SUPPLEMENTARY DATA
Supplementary data are available atNSR online.
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