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ABSTRACT

DNA-binding proteins (DBPs) perform diverse bi-
ological functions ranging from transcription to
pathogen sensing. Machine learning methods can
not only identify DBPs de novo but also provide in-
sights into their DNA-recognition dynamics. How-
ever, it remains unclear whether available methods
that can accurately predict DNA-binding sites in
known DBPs can also identify novel DBPs. Moreover,
sequence information is blind to the cellular- and
disease-specific contexts of DBP activities, whereas
the under-utilized knowledge from public gene ex-
pression data offers great promise. To address these
issues, we have developed novel methods for pre-
dicting DBPs by integrating sequence and gene
expression-derived features and applied them to ex-
plore human, mouse and Arabidopsis proteomes.
While our sequence-based models outperformed the
gene expression-based ones, some proteins with
weaker DBP-like sequence features were correctly
predicted by gene expression-based features, sug-
gesting that these proteins acquire a tangible DBP
functionality in a conducive gene expression envi-
ronment. Analysis of motif enrichment among the
co-expressed genes of top 100 candidates DBPs
from hitherto unannotated genes provides further av-
enues to explore their functional associations.

INTRODUCTION

DNA-binding proteins (DBPs) perform diverse biological
functions ranging from pathogen recognition, transcription
initiation and regulation and DNA packaging; they are also
involved in modifications such as methylation and acety-
lation (1–14). Despite their functional diversity, however,

they share remarkably similar attributes such as biases in
the overall and binding site-local amino acid compositions.
This feature allows a relatively accurate identification of
DBPs from sequence or structural information alone with-
out necessitating further characterization (15,16).

In general, the DNA-binding site residues (DBS) of
DBPs are enriched in positively charged Arg residues, a sig-
nal which is further fine-tuned by their sequence and struc-
tural environments (17). These compositional biases can
be accurately captured by statistical and machine learning
models trained over carefully prepared non-redundant and
accurately characterized datasets of DNA-binding proteins
(18–20). These datasets are almost always derived from the
known three-dimensional structures of protein–DNA com-
plexes and do not include any non-DBPs (21,22). Thus,
these trained models represent an internal discrimination
of the DBS from the rest of the amino acid sequence and
it is unclear whether they can also distinguish DBPs from
other proteins. DBP prediction models, on the other hand,
exploit the compositional biases in the DBPs compared to
other proteins and these biases are not exactly the same as
the DBS biases (16,23).

While a number of methods have been proposed for pre-
dicting DBPs and DBS separately (15,16,20,21,23–38), to
the best of our knowledge, no study has been conducted to
develop a prediction system that employs DBS as an engine
for the DBP prediction, combined with the amino acid com-
positional biases of the full length proteins, and to evaluate
it comprehensively on an entire genome.

In this study, we first investigated the various levels of
DBP annotations, ranging from the existence of protein–
DNA complexes in the crystal structures to protein domain
assignments (39) and gene ontology (GO) term associa-
tions. For each level of DBP annotations, we examined the
enrichment of features derived from the predicted DBS and
provided background scores to these predictions. To ensure
a strong predictive performance, we also predicted binding
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residues for adenosine triphosphate (ATP), carbohydrates,
RNA and proteins using our previously published methods
(40–43). This step was performed to exclude the binding
sites for other ligands from the prediction models as the se-
quence descriptors for different types of binding sites are
very similar and may prove to be a confounding factor. To
these scores, we added the whole protein amino acid com-
position and trained models for the entire human proteome
using these features. This procedure resulted in a highly ac-
curate and elaborately benchmarked method for DBP pre-
diction. Top scoring novel predictions were manually exam-
ined to assess their potential for being DBPs.

Next, we evaluated an alternative approach to DBP pre-
diction via global expression analysis of their source genes.
Gene expression (GE) profiles and the features derived from
them are promising for two reasons. First, it may be possi-
ble to annotate DBPs directly from the expression profiles
of their coding genes in the same way as the prediction of
more general gene functions (44–46). Such GE-based an-
notations would be especially useful if the sequences alone
were insufficient to confer a DBP function on a gene (e.g.
if the function was altered by the GE context). Global GE
profiles have been previously employed for gene function
prediction based on the principle of ‘guilt by association’,
whereby a gene is assigned a particular function if the other
genes co-expressed with it are known to have that func-
tion (44,45,47). Here, we go beyond the guilt by associa-
tion principle and specifically investigate the distributions of
expression levels (ELs), degree of co-expression with other
genes and populations of GO terms in the co-expression
network. Rather than assigning a function directly by guilt-
by-association, we employ a machine learning approach to
take into account the enriched and depleted GO terms with
appropriate and implicit weights assigned to each occur-
rence of the GO terms.

Finally, as a natural corollary to the two analyses above,
we investigated the interplay between the GE and sequence
information in determining DBP annotations. Specifically,
we investigated if the GE profiles could improve the accu-
racy of the sequence-based DBP prediction and whether
specific functional subgroups showed varied levels of im-
provement. Further characterization of the top 100 cur-
rently unannotated, prioritized candidate DBPs in the hu-
man proteome, suggested that two of them, C6ORF23 and
C6ORF15 are likely to be novel transcription factors (TFs).

Although the current study was performed primarily on
human proteins, the analytical methods described here are
of a general nature and can easily be extended to other sys-
tems, as we have demonstrated here using mouse and Ara-
bidopsis proteins.

MATERIALS AND METHODS

The experimental design of the current study is summarized
in Figure 1.

The first step involves developing methods to predict
DBPs or DBP-coding genes independently from their se-
quences and GE patterns.

Subsequently, the two independently generated scores are
integrated to gain insights into their interplay in predicting

if a protein binds to its DNA targets. Individual steps illus-
trated in Figure 1 are explained below:

Predicting DBPs from sequence features

Genome-wide proteins datasets and DBP annotations. This
study is focussed on the prediction of human DBPs, even
though the methods developed are general and easily appli-
cable to other datasets, as we demonstrate on two other or-
ganisms. Detailed procedures to compile sequence datasets
from the human proteome and their DNA-binding annota-
tions are explained in Supplementary Methods SM1–3. A
brief summary is provided here.

UniProtKB is the primary source of sequence and an-
notation data used in this study (48). At the time of car-
rying out this study, UniProt consisted of 20,195 manu-
ally curated human proteins (the SwissProt dataset). This
dataset will be referred to as SP human in the rest of the
manuscript. The term DNA-binding often differs in scope,
as used by different sources of annotation. In the strictest
sense of these annotations, a direct interaction between
some residues from the protein and the target DNA is re-
quired, while a broad-based annotation may be assigned
to proteins that participate in a protein–DNA interaction
but indirectly, e.g. as a co-factor of a TF. To create a work-
ing database of both these groups of annotations, we re-
lied upon four DNA-binding annotation sources: (i) the
‘Sequence features’ field of Uniprot entries (hereafter re-
ferred to as SeqFT), (ii) occurrences of sequence domains
assigned a DNA-binding annotation in the Pfam database,
(iii) sequence similarity with proteins that were observed
in protein–DNA complex structures in the Protein Data
Bank (PDB) and (iv) GO annotations. Proteins annotated
as DNA-binding in each of these repositories were labelled
“DBP bySeqFT”, “DBP byPfam”, “DBP byPDB” and
“DBP byGO”, respectively and the number of DBPs in each

Figure 1. Overall experimental design of the study: DNA-binding pro-
tein predictions were performed independently using the sequence-derived
data and the gene-expression profile-derived data in multiple steps and us-
ing different ways for feature extraction. The optimum models obtained
through these twin steps were then compared in terms of performance and
insights into the biological mechanism.
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of these categories were 601, 684, 361 and 2407, respectively.
Overlaps between these groups and a discussion of key ob-
servations from this analysis are provided in Supplementary
Methods SM3.

Computing sequence features of proteins for analysis and pre-
diction. We have previously developed methods for pre-
dicting DNA-binding site residues in proteins from single
sequences as well as from evolutionary profiles using neural
networks and other machine learning models (49,50). Pre-
dictive features in each case share essentially the same local
sequence features, even though class labels and hence the
trained models differ depending on the carefully prepared
datasets (24–27,51–54). These methods have been recently
reviewed comprehensively in the context of their predictive
performances (28,51).

Many of these prediction models are based on a direct
or indirect assessment of conservation scores derived from
evolutionary profiles. Interestingly, methods for detecting
binding residues for different ligands such as RNA, ATP
and carbohydrates also rely on evolutionary features and it
is therefore, likely that high scores for binding residues for
one ligand type can be obtained for proteins that may ac-
tually bind to a different ligand type. Thus, a simultaneous
prediction of binding residues for several ligands can pro-
vide more useful information about detecting DBPs de novo
than from predicted DBS alone.

We have previously reported that even though DNA-
binding sites are enriched in positively charged residues (pri-
marily arginine), DBPs as such may not have identical bi-
ases. Indeed, DNA-binding can be achieved by the inter-
nal compositional biases and concentration of positively
charged residues in one region of the structure, leading to
the dipole-based recognition of DNA (55). Since distant
charged residues can come together to form such regions,
whole-protein level compositional biases are difficult to de-
tect. On the other hand, there may be signals in the DBPs
beyond the binding sites, such as overall amino acid com-
positions.

Based on these considerations, we defined three groups of
features to identify novel DBPs:

(i) pDBS features: features derived from the prediction of
DBS.

(ii) pOBS features: features derived from the prediction of
binding site residues for other ligands.

(iii) AA-composition features: whole protein amino acid
composition.

The sequence-based prediction of DBS assigns a numer-
ical score to each residue in a protein. To define sequence
features unbiased to the protein length, we calculated the
following measures from the DBS prediction scores:

(i) The average score for the top five pDBSs.
(ii) The average score for the top 10 pDBSs.

(iii) The average score for the top 25 pDBSs.
(iv) Third quartile score for all pDBSs.

(These measures have significant redundant information,
but a clear choice for the right feature was not obvious at
the outset.)

A similar set of four pOBS features were derived for each
of the four other ligands considered, i.e. ATP, RNA, other
proteins and carbohydrates, thereby creating 16 additional
pOBS features (40–43).

The AA-composition features are simply the relative
number of each of the 20 amino acids in the protein chain
and an additional feature of sequence length was added to
this set.

Cross-validated training and prediction of DBPs from se-
quence. A multiple linear regression (MLR) model and
a Random Forest (RF) model were independently con-
structed and a consensus was taken by averaging the pre-
diction scores from the two models. (Taking the average
of the two models instead of using only one of them was
found to be more effective after several iterations of param-
eterization and model selections over small sample datasets,
which tried to mimic the cross-validation strategy of the fi-
nal approach on the entire data.) MLR was chosen as the
simplest model for the relationship between training inputs
and class labels (DBP versus non-DBP), whereas RFs were
used to obtain the high fitting values. Other models such
as non-linear support vector machines (SVMs) and neural
networks were found to be computationally too expensive
and to add little value to the predictions based on the com-
bination of MLR and RF (data not shown).

To avoid overfitting and to select the best combination
of features, we developed a 10-fold cross-validation scheme
with feature-selection steps. By dividing the data into sets
of 10% of SP human proteins each, we merged nine sets at
a time to derive a training set for selecting the best predic-
tive features and model training. After feature-selection and
training were completed, the predictions on the remaining
10% of the proteins (test set) were obtained using the trained
model. The cumulative prediction performance over the en-
tire set of proteins (collected from the test sets) was then
evaluated. We used two methods for feature selection. First,
we eliminated highly redundant features so that the filtered
features included only those with a mutual Pearson corre-
lation <0.95. Further feature selection was performed by
a method known as ‘recursive feature selection’ as imple-
mented in the Caret package of R (56), which simultane-
ously selects features and fits a trained model.

All cross-validation cycles of feature-selection and model
fitting were performed by using various definitions of DBPs
and averages from these models were used as the final pre-
diction scores corresponding to each definition of DBP in-
dependently (see Supplementary Methods for DBP defini-
tions).

Predicting DBP coding genes from global gene expression de-
rived features

Compiling gene expression profiles. Gene expression om-
nibus (GEO) contains about 1.2 million gene expression
profiles, accumulated over some 13,000 different ‘plat-
forms’. Of these, >2,000 platforms correspond to human
samples (https://www.ncbi.nlm.nih.gov/geo/) (57). Despite
continuing efforts (58–60), cross-platform data comparison
poses serious problems, including batch effects, normaliza-
tion and scaling. To avoid these issues, we decided to use

https://www.ncbi.nlm.nih.gov/geo/
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the transcriptome data from a single platform, GPL570
(Affymetrix platform with the largest number of available
samples among the human platforms) for our analysis. Fur-
thermore, to quantify the data uniformly across experi-
ments without the assumption of normality, the absolute
ELs in each sample were replaced with simple within-array
ranks and only the samples with an identical number of
probe-level EL values were retained, resulting in 72,488
samples or expression profiles. Hereafter, we use the phrase
EL but it actually refers to the rank.

Compiling DBP annotations for genes in Affymetrix microar-
ray chip. Probe-level annotations of the Affymetrix plat-
form were converted to gene names by the dictionary pro-
vided in the GEO platform file. DBP coding genes were
selected by virtue of their GO annotations, obtained from
TargetMine data analysis platform (61,62). All levels of GO
associations for biological process, molecular function and
cellular component were utilized for this purpose, leaving
the non-discriminating features to be eliminated to later fea-
ture selection and training models implicitly.

Computing gene expression level (EL) features. First of all,
for a gene with multiple probes, the highest EL among these
probes was selected. This treatment is consistent with the
practice adopted in similar studies (46). Thus the EL fea-
tures of each gene were calculated from these values. Two
set of features were found to be useful: the average EL and
the EL histograms as per pre-defined equal-probability bins
on the entire data pooled together. Equal-probability bins
come from M × N EL-values, where M is the number of
genes and N is the number of EL-values for each gene. In
this study, M = 20,318 and N = 72,488 as stated above. For
the 20 equal bin values defined from a global pool of genes
and samples, individual EL feature profiles for each gene
were computed by counting the relative number of occur-
rences (out of M-values) in each of the 20 bins. These 20
values represent our EL feature set for each gene.

Computing co-expression level (CEL) features. To com-
pute the co-expression features for each of the M genes,
their EL values in N samples were compared with those for
all the other genes. The resulting M-values (Pearson cor-
relation coefficients over within array ranks) were summa-
rized as co-expression histograms similar to the EL prob-
ability features described above. Again, the histogram bins
were recomputed by considering all the N × (N−1)/2 co-
expression values from unique pairs of genes and the distri-
butions of co-expression level (CELs) in these 20 bins were
used as CEL features of that gene.

Computing network gene ontology composition (NGC) fea-
tures. Network gene ontology composition (NGC) fea-
tures were derived by computing a histogram of GO terms’
occurrences; given a gene, GO terms for its T top co-
expressed (positive correlations) and L least co-expressed
(negative correlations) genes were pooled and counted. In
this study, both T and L were set to 50, resulting in GO his-
tograms based on the annotations of top 100 ‘co-expressed
genes’ for each query gene. Overall 138 GO terms were
found to be present in at least 200 genes in the entire list

(used for filtering) and hence the NGC features were com-
posed of 138-dimensional integer valued vectors.

Predicting DBP genes from EL, CEL and NGC features.
Similar to the cross-validation training strategy adopted for
predicting DBPs from sequence features, we trained MLR,
SVM and RF models by using EL, CEL and NGC fea-
tures (together forming a 20 EL + 20 CEL + 138 NGC
= 178-dimensional feature vector) as model inputs and the
GO DBP gene assignment as targets. The 10-fold cross val-
idation scheme described earlier was adopted to ensure no
overfitting in the trained models.

RNA-binding protein (RBP) annotations. To assess if
there was any potential contamination of RNA-binding
protein (RBPs) in the predicted DBPs, we also included
RBP annotations in our analysis. To achieve this, we sim-
ply retrieved all human proteins associated with the GO
term RNA-binding GO:0003723 using TargetMine and as-
signed them as RBPs. We employed only the GO-based an-
notations for selecting the RBPs since they happened to be
the most lenient of annotations and therefore, provided the
largest repertoire of candidates for comparison.TargetMine
contains robust annotation data for human, mouse and rat
but this analysis can be easily extended to other species by
making use of the GO annotations provided with UniProt
data sets.

Training data for reproducibility and for other organisms

The feature sets used for training the models for hu-
man, mouse and Arabidopsis thaliana genomes are pro-
vided through our web site for this project (http://gigeasa.
sciwhylab.org). Additional datasets and detailed protocols
are also available on this URL. The binding site-based fea-
tures employ the predictions using several of our previously
published methods. We have also made available a docu-
ment how-to.pdf to enable the users to understand the spe-
cific components of the predictive models developed for this
work. To facilitate their computations for a new set of se-
quences, we have created an integrated web server to predict
such features for hundreds of proteins in a single submis-
sion. Since the calculation of gene expression based features
is computationally intensive, the standalone tools to com-
pute them from a gene expression matrix are also provided
on the above URL.

Integrated analysis of GE and sequence-derived predictions

To integrate the two approaches, the list of genes used in
our GE-based method was compared to the UniProt hu-
man proteins, resulting in a total of 15,658 genes mapped to
15,710 proteins. The Uniprot-supplied gene/protein map-
ping and the Affymetrix annotations were used for this pur-
pose. Prediction results for the genes mapped to multiple
proteins were repeated for every protein entry to compare
prediction performances. Sequence-based prediction scores
were re-computed by excluding the proteins that did not
map to any of the genes in the overlapped set.

http://gigeasa.sciwhylab.org
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Scoring model performances

Prediction performances of all the trained models were
measured by calculating the area under the receiver oper-
ating characteristic (ROC) curves obtained by pooling to-
gether predictions from the test datasets of all the cross-
validation iterations.

Motif enrichment analysis

For each candidate novel DBP, the top 50 positively co-
expressed genes and an equal number of negatively co-
expressed genes were collected as described above. For each
gene in the two sets, DNA sequences within 1000 bases from
their genomic location were collected and aligned using a
well known software called ‘MEME-CHIP’ (63,64). From
each run of MEME-CHIP, the significant motif as sorted by
E-value was retained to examine their basic properties such
as being a palindrome and the number of genes that con-
tained that specific motif. The threshold of the motif search
algorithm was fixed to be upto 10 bases with default param-
eters.

RESULTS AND DISCUSSION

The most significant results obtained in this study are sum-
marized in three sections below: (i) results from the predic-
tion of DBPs from sequence-derived features, (ii) predic-
tion results from GE-derived features and (iii) integrated
analysis of these results and estimates of cooperativity be-
tween sequence and GE-derived features. Detailed findings
for each of the stated objectives are provided in Supplemen-
tary Tables ST1–10, Figures SF1–6 and Results SR1. Please
note that most discussion in the following sections is related
to the human genome, unless otherwise specified.

Prediction of DBPs from sequence features

A detailed statistical analysis of the 41 sequence features is
shown in Supplementary Results SR1, which provides the
rationale for their use in a predictive model.

Figure 2A shows the relative efficacy of different
sequence-based feature sets in predicting DBPs (as defined
by UniProt SeqFT). Clearly the amino-acid composition re-
mains the best predictor, followed by features derived from
predicted binding residues with their area under the curve
(AUC) of ROC being 83% and 79%, respectively. An inte-
grated model using all these features produced an AUC of
ROC equal to 89% (see Supplementary Figure SF3c). Com-
plete sets of prediction from this model, along with the DBP
definitions for each protein, are provided in Supplementary
Table ST9.

The highest scoring proteins can be classified into the fol-
lowing categories:

(i) True predictions as per the DBP bySeqFT annotations
(DBP-by SeqFT).

(ii) Proteins that are annotated to be DBPs by one or more
definitions, i.e. PDB, Pfam or GO annotations, but not
bySeqFT.

(iii) Proteins with none of the known annotations as DBPs.

Figure 2. (A) Cross-validation prediction performance of linear regression
models by different feature sets. Amino acid composition of the proteins
was found to be the most effective predictor for DBP annotation. DNA-
binding site residue prediction score summary, by itself is not very effective
unless combined with binding residue prediction scores for other ligands
such as RNA, proteins, ATP and carbohydrates (B) Estimate of the plausi-
bility of apparent false positives to be novel discoveries as some of them are
already annotated as DBPs by the critereon other than DBP bySeqFT. Of
the top-scoring 687 predictions from SeqFT-trained models, 135 novel pre-
dictions are supported by at least one non-SeqFT annotation, while 50%
of the remaining is true positives as per SqFT annotation. Additional data
leading up to this Figure is shown in Supplementary Table ST9.

Figure 2B shows how the number of novel predictions,
unannotated in UniProt SeqFT (groups 2 and 3 combined),
changes with the number of known DBPs (group 1) or the
number of unsupported predictions (group 3) at various
thresholds applied to our final prediction scores. We chose a
cut-off so that the total number of novel DBPs was equal to
those already annotated as DBPs by UniProt SeqFT (corre-
sponding to at least 50% confidence, if all novel predictions
were false). At this cut-off, there were 276 DBP-bySeqFT
proteins and an equal number of those not supported by
SeqFT, of which 135 were completely novel (group 3), while
141 others are supported by one or more annotations from
other sources (group 2) (Supplementary Table ST9).

We then examined the top predicted DBPs both in groups
2 and 3 for the likelihood of their engaging in DNA bind-
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ing. First, we identified seven proteins (#1–7 in sheet #3
in Supplementary Table ST9), which had both Pfam and
PDB-derived annotations as DBPs. They are in fact all well-
known DNA binding proteins, and their missing SeqFT
was rightly corrected by our analysis. The next 14 proteins
(#8–21 in sheet #3 in Supplementary Table ST9) were an-
notated in PDB. This list contains several known DNA-
binding proteins such as CCAAT/enhancer-binding pro-
teins � and � (P49715 and P23771) and Trans-acting T-
cell-specific TF GATA-3, which further supports the effec-
tiveness of our method, because these proteins are generally
missed by a standard UniProt search for the DNA-binding
sequence features or even the Pfam domains associated with
this function.

After inspecting these high priority hits individually, we
surveyed other novel predictions and found that many of
them are already known DBPs with varying degrees of con-
fidence and knowledge, strongly endorsing the power of our
predictive method and suggesting that many of our novel
predictions may indeed have a DNA-binding function.

Prediction of DBPs from gene expression-derived features

To develop prediction models to identify DBP genes from
GE profiles, we used three feature sets: (i) EL, (ii) CEL and
(iii) NGC features (see ‘Materials and Methods’ section).
Prior to their combined use in training the prediction mod-
els, we examined their statistical patterns to make a prelim-
inary assessment of their ability to identify DBP genes.

Global expression levels of DBP genes. To estimate a gen-
eral trend of ELs of DBP genes, we divided all observed EL
values from all sample from GEO into 20 equal-frequency
bins. The relative number of samples in which a gene was
observed in each of these 20 bins was then counted (see ‘Ma-
terials and Methods’ section). A high frequency in lower (or
higher) bins thus indicates that the gene is expressed poorly
(or highly) in most samples. Figure 3A presents these data
for all DBP and non-DBP genes, pooled together in the two
groups. We observed that the distribution of DBPs is sys-
tematically skewed toward the higher ELs and peaks near
the 15th of the 20 bins, implying that a larger number of
DBP genes are expressed in ranges close to the 75th per-
centile of the global EL values than in lower EL ranges.

Figure 3B shows this distribution from a different per-
spective by simply taking an average of the ELs of DBP and
non-DBP genes. The average ELs of DBP and non-DBP
genes differ statistically significantly with a P-value in the
order of e-11. However, a very broad spread of data in the
two categories and overlapping box plots in Figure 3B also
indicate that this difference in the mean EL values is not
very useful to distinguish individual DBPs from non-DBPs.

To examine whether a more detailed distribution of ELs
will improve the predictive power of EL-derived features,
we plotted a heatmap showing the distributions of ELs of
each individual gene across the GE dataset (Figure 3C). The
heatmap revealed that many (compared to non-DBPs) but
not all DBPs are highly expressed across the samples.

To investigate this further, we sought to examine three dif-
ferent aspects: (i) what are the typical examples of highly
expressed DBP genes, (ii) which DBP genes are poorly ex-

pressed on the average, defying the overall shift in DBP
expression and (iii) what are DBP-like non-DBPs genes,
which show an EL pattern that is similar to the major-
ity of the DBP genes. Figure 4A–C explore the answers to
these questions, respectively. In Figure 4A and B, we list
the typical genes falling into these categories and investi-
gate their general annotations, whereas in Figure 4C we per-
form a more comprehensive GO enrichment analysis. As
shown in Figure 4A, many genes in the highly expressed cat-
egory of DBPs are associated with housekeeping and ubiq-
uitously expressed functions such as ribosomal assembly
and ribonucleoproteins. Figure 4B shows that DBP genes
that are most significantly different from general DBP genes
and thus cannot be identified by a GE-based method are
frequently associated with development and pluripotency.
Figure 4C supports the observations from Figure 4A and
B and identifies additional GO terms that can character-
ize genes (either DBPs or non-DBPs) identifiable by global
GE analysis. In summary, we conclude that even though
global ELs are not sufficient to categorically distinguish be-
tween DBPs and non-DBPs, there exists a significant bias
that may potentially be exploited in combination with ad-
ditional knowledge about these genes.

Global co-expression level (CEL) and network GO compo-
sition (NGC). To further identify the differential GE fea-
tures between DBPs and non-DBPs, we first compared the
overall CELs of each DBP and non-DBP gene with all
the other genes. Basic comparisons of these co-expression
profiles (CEL features) are shown in Supplementary Fig-
ures SF4 and 5. Even though DBP genes were found to
have overall higher CELs than the non-DBP genes, dif-
ferences in the CEL features were relatively small. How-
ever, a stronger signal for DBP genes was found when we
identified the top and bottom 50 genes co-expressed with
each gene and computed the enrichment of their GO terms
(see ‘Materials and Methods’ section). We found that the
GO composition of genes co-expressed with DBPs (net-
work genes) were significantly different from the GO com-
position of the non-DBP network genes. Figure 5 shows
a summary of the comparison of GO terms, which were
found to be most significantly enriched in DBP networks
compared to the non-DBP networks. Many GO terms such
as ‘nucleus (GO: 0005634)’ and ‘DNA-templated transcrip-
tion (GO:0006351)’ and terms intuitively related to DNA-
binding were enriched in the DBP gene co-expression net-
works. On the other hand, certain GO terms such as ‘inte-
gral component of membrane (GO:0016021)’ were depleted
in the DBP gene networks compared to the non-DBP gene
networks. In other words, a DBP gene is more likely to co-
express with other genes with similar GO annotations. This
phenomenon leads to the enrichment of these GO terms
in the co-expression network. Genes that are less likely to
be co-expressed with the DBP genes lead to a depletion
of certain other GO terms. This result is not surprising as
DBP genes often associate with co-factors and specifically
and contextually co-localize with other genes to enable their
function. This finding is useful in computing a GE-derived
NGC features for predicting DBP genes.
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Figure 3. Distribution of DBP and non-DBP genes among the 20 bins of average global ELs. (A) Even though the DBP genes are distributed in all these
bins, their distributions are skewed toward higher ELs. (B) The same data as in (A) seen as gene-wise average EL confirms these observations. (C) A detailed
frequency histogram of expression values of each gene in the 20 global quantile bins. In the heatmap, each row represents a gene and columns are 20 bins
of their EL (increasing order). The colors annotate the relative number of times that a gene is expressed in the EL range described by the column. The
heatmap corroborates the conclusions in (A) and (B).

Assessing cumulative power of gene-expression derived fea-
tures. As we noted above, the three feature sets derived
from the GE profiles of DBPs carried useful information
about their annotations. Their cumulative ability to pre-
dict DBP genes was estimated by training machine learning
models using all of the features as inputs. Figure 6A shows
the results from three independently trained machine learn-
ing models (SVM, RF and Logistic Regression) using a 5-
fold cross-validation scheme (see ‘Materials and Methods’
section). The prediction scores from these three methods
were combined to develop an all-model consensus by tak-
ing a simple average. As seen in Figure 6A, the all-model
consensus worked slightly better than individual models,
which showed very similar levels of accuracy. Specifically,
the AUC of ROC for RF, SVM radial, Logistic Regression
and all-model consensus was 63.90, 62.74, 63.92 and 66.0%,
respectively. In contrast, the AUC of ROC for the sequence-
based prediction results mapped to a common dataset was

85.46%. Thus, the sequence-based prediction of DBPs com-
prehensively outperformed the GE-based prediction.

Integrating sequence and gene expression based predictions

We then examined whether the sequence-based prediction
of DBPs could be improved by combining it with the GE-
based prediction scores. We adopted two approaches, as
explained below, to combine the sequence and GE-based
predictions and their results are shown in Figure 6B, to-
gether with the prediction results before combining. Note
that the GE data are not available for all the proteins used
in the sequence-based predictions and vice versa, so these
prediction performances were re-computed for the common
dataset.

A simple consensus obtained by combining the sequence
and GE-based prediction scores did not improve the high
performance of the former model. However, a manual in-
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Figure 4. Typical global gene EL distributions of selected DBP genes and the co-occurring biological themes: (A) Many DBP genes, specially associated to
ribosomal assembly are ubiquitously highly expressed as their ELs (X-axis) are almost always (Y-axis) in the top bins. (B) Some well-known development-
associated and other DBPs are expressed less frequently and at a lower EL. (C) Specific GO terms are enriched in top and bottom expressed DBP genes,
providing a clue useful for their predictions.

spection of the uniformly rescaled prediction scores from
the sequence and GE models for DBP genes revealed that
GE scores were particularly high for DBPs when their
sequence-based scores were below a certain level (Z < 3.5).
On the other hand, GE scores were low for DBPs with
high sequence-predicted scores and therefore, added little
substance to the sequence-based prediction. Based on this
observation, we have proposed a conditional consensus,
wherein the GE-predicted scores were combined with the
sequence-based prediction only if the sequence scores were
below the specific cut-off. This heuristic-based conditional
consensus bested the sequence-only and simple-consensus
based prediction scores, resulting in the final AUC of ROC
of 86.5% for the common dataset.

Biologically, it suggests that high sequence scoring DBPs
would likely perform that function irrespective of gene ex-
pression environment, wheres there are other DBPs, which
carry a weak sequence-based DNA-binding signal. This
group may consist of proteins, which do not bind to DNA
on their own and need assistance from co-factors or those
that can bind to DNA only when over-expressed. (Alter-
natively, they may be co-factors themselves, which contain
a weakly interacting DBS, as predicted by sequence in-
formation.) We, therefore, investigated the correlations be-
tween functional categories of DBPs and the extent to which
their GE features can improve the sequence-based predic-
tion performance. GO terms with sufficiently large popula-
tions of DBPs and non-DBPs were collected and individual
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Figure 5. Most significantly enriched/depleted GO terms in the top and last N genes co-expressed with DBP genes. N = 50 for the current plots. P-values
in the negative log10 scale are written in the insets.

Figure 6. Gene expression features and DBP predictions: (A) DBP prediction performance of gene expression-based models using simple and complex
computational models and their consensus (B) Comparison of sequence-based prediction models with GE-based models on the overlapping gene list and
the ability of the consensus to improve prediction performance over the two methods. Performance could only be improved by a conditional consensus
where GE-based scores are added to only those genes in which sequence-based DBP prediction score was low, suggesting a compensatory or cooperative
mechanism of DNA-binding activity.
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groups associated with each of them were analyzed. Gains
in the prediction performance upon taking a simple con-
sensus for the genes corresponding to each GO term were
computed. A histogram of these performance gains across
GO terms is shown in Figure 7A.

Figure 7A showed that for most GO terms, the perfor-
mance of sequence-based models is not affected much when
a consensus with GE-derived features is included. However,
a few GO terms showed a large variation in performance, by
either working in tandem with the sequence-based predic-
tion by increasing the prediction performance or by impact-
ing them negatively through the generation of potentially
contradictory prediction scores. The GO terms in these two
extreme groups are plotted in Figure 7B. As shown, the GE-
based prediction was found to be most useful for genes as-
sociated with metabolic process (GO:0008152), as the AUC
of the ROC for 361 genes in this group was merely 62.7%
from the sequence-based models. The GE-based prediction
for this group was 87.2% and the consensus performance
was 78.0%, clearly indicating their superiority in identify-
ing these DBP genes over the sequence-based models.

There are a few other GO terms such as those associated
with GTPase and ATPase activity, which do not show large
differences between sequence and GE-level performances
but nonetheless potentially contribute to the DNA-binding
functions of these genes. On the other hand, GO terms such
as Golgi membrane, ER membrane and even sequence-
specific DNA-binding TFs are apparently best predicted
by sequence-information and GE-features negatively affect
their predictability.

The two observations presented here, i.e. the DBPs with
a poor sequence signal are better predicted by GE features
and the differential performance gains of genes with certain
GO terms, suggests an interplay between sequence-encoded
functions and the cellular contexts defined by GE patterns.
Our results suggested that the GE dynamics can compen-
sate for low DNA-binding signal at the sequence level. Pre-
sumably, the proteins coded by these genes have relatively
fewer DNA-binding residues that are probably insufficient
to recognize DNA at the same level as other DBP genes.
Greater EL values, the presence of co-expressed genes aid-
ing their DNA-binding activity and the functional dynam-
ics of co-expressed genes, which are the basis of GE-based
predictions in this work, may likely facilitate the DNA-
binding ability of these genes.

Alternative prediction models and RNA-binding protein con-
tamination

To examine if the proposed model performance could also
be obtained from alternative computational approaches, we
investigated two additional approaches to evaluate how the
current model performs in comparison. Furthermore, we
also evaluated the extent of ‘contamination’ of the signals
from RBPs in our DBP prediction models, which is fre-
quently a confounding factor in such models (28).

Post-training/pre-training combination of sequence and GE
features. In this study, we have trained the prediction mod-
els with GE-based and sequence-based features indepen-
dently and integrated them post-training. To test if a pre-

training integration of features and training models with all
the features together would perform better, we also trained
models by taking all the features together. Figure 8A shows
the results of various models trained by an integrated fea-
ture set made up of all the 175 computed features (using
GO-based DBP annotation as the target class) compared
with the post-training integration models described above.
We observed that the RF is the best computational model
for training all the features together. Figure 8B shows that
the strategy presented above, i.e. training the sequence and
GE based models separately and integrating them post-
training, outperforms all the other models that employ
feature-level pre-training integration. We also developed
several training models with different combinations of fea-
ture sets and parameters in feature selection and found that
the difference caused by tweaking the feature size is about
1–2% points in terms of AUC (see Supplementary Figure
SF5).

DBP prediction using sequence alignments. The results
presented in this study lend themselves to the question if the
elaborate models presented here could be replaced by a sim-
pler method to annotate a new DBP if it shows a sequence
similarity to other known DBPs. The caveat remains, how-
ever, that the sequence similarity between proteins may oc-
cur both within the DBP and non-DBP regions and for
many DBPs the actual DBS may not be known. This consid-
eration puts our proposed model at an advantage because it
is driven by the binding site prediction at the sequence level.

To evaluate this issue in detail, we performed a 10-fold
cross validation on alignment-based DBP prediction, i.e. di-
vide the data into 10 parts, pool 9 of them, create a database
of DBPs from these pooled data and find the best matching
DBP sequence (based on the e-value) for the tenth fold test
data and assign the DBP prediction score from this e-value.
These data pooling from nine of the parts and predicting
DBP for the 10th part is repeated for all the 10 parts, leading
to the predicted DBP scores for each protein in our dataset.
Figure 8C shows the prediction results of such an approach.
The integrated models clearly outperformed the alignment-
based approach by 1.5 percentage points. This difference
may appear trivial at first, but Figure 8C shows that our
integrated models have a substantial advantage in the low
false positive range of predictions. For example, with a 5%
false positive rate, our integrated model-based predictions
achieve a true positive score about twice as better as the
alignment-based predictions, thereby, providing a 100% im-
provement. In terms of the actual number of predictions
made, this is substantial, as the false positive rates are rel-
ative to the large negative data and 10% of the false posi-
tive rate would amount to 2000 proteins! Moreover, the low
false positive range is in fact the actual prediction range of
interest, as there are likely to be very few true cases per false
prediction if the false predictions are too high.

In the alignment-based predictions, the first point on the
ROC curve is observed at a significant number of false pos-
itive. This observation is due to the fact that the first true
positive hit by the method of sequence alignment is also
accompanied by a large number of non-DBPs aligning to
the DBPs in the reference data, presumably in the non-
binding regions and the non-DB domains, which are often
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Figure 7. Improvement in sequence-based DBP prediction by adding GE-based prediction scores in DBP subgroups with co-occurring GO terms. (A)
Number of GO terms, showing a specific range of improvement (gain in AUC) in prediction (B) most significantly impacted group of GO terms and
corresponding improvements in prediction performance. Gene-expression related features appear to be crucial for DBP function such as metabolic process,
as they have low sequence-based signal for DBP function.

co-located in the DBPs. We examined some of these false
positive cases and did find a number of such obvious in-
stances. For example, several TLRs, which do not have a
DNA-binding function, align well to other TLRs in their
transmembrane domains, thereby showing up as false pos-
itive hits in the alignment based searches. It is therefore
evident that a priori annotations of the DNA-binding do-
mains are required to construct a robust reference dataset
for DBP annotations based on alignments. Such detailed
annotations are available only for a small number of DBPs
and hence the proposed method, with no requirement of
such reference datasets, is at a clear advantage.

The current models using sequence and GE in the struc-
ture employed here appear to outperform other models (see
also section on ‘Role of redundancy in performance’). How-
ever, this conclusion could also be so because we have opti-
mized only one such approach and we do not rule out that
an improved approach to combining sequence alignments,
GE and predicted binding site based method may perform
better.

Contamination of RNA-binding proteins in predicted DBPs.
A typical concern that has been expressed in recent studies
is that DBP prediction methods often cross-identify RBPs
as DBPs (28,65–66). In our approach, we have incorpo-
rated both the DNA- and RNA-binding site scores with the
hope that the latter could serve as a background score and
thereby improve specificity of predictions (40–43,49). To
evaluate the degree of RBP annotations at various thresh-
olds of DBP prediction score, we computed RBP predic-
tion rates for every fraction of DBPs predicted at different
cut-offs. Figure 8D shows the AUC of ROC for these er-
roneous predictions and Figure 8E shows the fraction of
RBPs at various levels of true DBP predictions. Again, we
observed that the model performs very well in discriminat-
ing DBPs and RBPs in the top prediction score range, as a
very small proportion of RBPs were predicted to be DBPs
in this range. For example, 40% DBPs could be detected at
a cut-off, which also picked up about 10% of RBPs in the

final predictions. At a more relaxed threshold, when many
more DBPs are selected, the number of predicted RBPs as
DBPs also increased, but since a high false positive range
is less desirable as explained above, we concluded that our
approach is successful in distinguishing many RBPs from
DBPs.

Motif enrichment analysis

Our work is focused on identifying novel DBPs irrespective
of their detailed functions such as TFs, histones, DNA sen-
sors or enzymes. While the functional analysis of each of
these categories is beyond the scope of this work, we de-
cided to analyze the enriched motifs in co-expressed genes,
assuming that the proposed DBP, if it were a TF, could po-
tentially target these genes. We primarily focussed on genes
that at the time of this study were assigned only an open
reading fam (ORF) and not proper gene names and had no
or little functional annotations in UniProt (see Supplemen-
tary Table ST10). For each of the top 100 proposed novel
DBPs, the top 50 positively co-expressed genes (with highest
Pearson correlation) were gathered. Another group of top
50 negatively co-expressed (with highest negative correla-
tion) genes were also selected. For each of the co-expressed
genes in the each of the two datasets, DNA sequences within
1000 bases upstream of their transcription start sites were
retrieved and aligned using ‘MEME-CHIP’ (63,64). Sup-
plementary Table ST10(b) contains the summary of the top
motif detected by MEME-CHIP for each candidate DBP.
As the table shows, enriched motifs that are present in as
many as all the 50 co-expressed genes are observed for some
candidate DBPs. A detailed investigation and characteriza-
tion of individual motifs is beyond the scope of this work,
nonetheless, our observations have provided useful insights
into the potential functions of these ORFs and are well
primed to facilitate their further characterization. Among
specific examples, we observed two candidate ORFs namely
C6ORF23 (CCTGGG in 44 of the top 50 positively corre-
lated genes) and C6ORF15 (CCAGCCTGG in 10 of the
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Figure 8. Evaluating the DBP prediction performance using various predictive approaches. (A) Using jointly trained features versus proposed independent
training (B) sequence-alignment based annotation. (C) DBP prediction using sequence-based alignments is less effective than integrated models. (D) RBP
prediction as a fraction of predicted DBPs at different cut-offs. (E) fraction of RBPs at various levels of true DBP predictions.

top 50 positively correlated genes), whose consensus motifs
resemble those of known TFs in terms of palindromic se-
quences separated by a linker. In the future studies, we pro-
pose to undertake a more detailed characterization of these
candidate DBPs.

To examine if C6ORF23 and C6ORF15 could be as-
signed putative TF annotations based on homology-based
functional transfer, we performed a sequence search of
Uniprot, SwissProt database (Human) for C6ORF23 and
C6ORF15 homologs using the SSEARCH program (67).
SSEARCH did not pick up any known TFs as close ho-
mologs of either C6ORF23 or C6ORF15 at an E-value
threshold of <0.05. However, SSEARCH did identify
SF3A2 HUMAN (Splicing factor 3A subunit 2), an RBP,

as a homolog of C6ORF15 with marginal statistical signif-
icance (E = 0.087). Taken together, our results suggest that
it would have been difficult to assign a definitive TF anno-
tation to C6ORF23 or to C6ORF15 based on homology-
based approaches alone, which became possible using our
proposed approach.

Applicability of results to other genomes

Our study is primarily based on the annotations of human
genomes and the training exclusively of the corresponding
datasets. To evaluate whether the current models were also
applicable to other genomes, we performed the sequence,
GE and integrated predictions for mouse and Arabidop-
sis thaliana, the organisms with the next highest number
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of reported experiments in GEO. Keyword annotations in
UniProt have undergone significant updates since our first
analysis on the human proteome, started much earlier in
this work. Thus, we limited our analysis of the two genomes
to the other four annotations, namely, SeqFT in Uniprot,
GO, Pfam and PDB. Figure 9 summarizes the results from
these predictions and the final predicted scores are available
through the gigeasa project web site (gigeasa.sciwhylab.org).
Key findings from such models were as follows:

(i) Barring PDB-based annotations, the prediction per-
formances across human, mouse and Arabidopsis
thaliana follow similar trends. PDB-based annota-
tion was particularly poor in the case of the Ara-
bidopsis thaliana, because very few (only 26 in our
dataset) DBPs could be annotated by this method
in this genome. Apparently most DBPs in Arabidop-
sis thaliana have not been characterized structurally
and share poor sequence similarities with the existing
protein–DNA complexes in the PDB.

(ii) Gene expression alone achieved a prediction perfor-
mance of 66.7 and 68.1% for Arabidopsis thaliana and
mouse, respectively, which are comparable to the re-
sults obtained for the human genome.

(iii) While both mouse and Arabidopsis thaliana show a
consistent level of improvement on applying condi-
tional consensus as against sequence-only or the sim-
ple consensus approach, the gains are relatively small
(0.5% points) in the latter compared to human and
mouse, both of which showed an improvement of >1%
point. This variation may be due to the conditions im-
posed (adding the GE at a fixed cutoff) were optimized
for human and adopted without adjustments to the
other two genomes. This could also be due to better
GO annotations available for human and mouse or ad-
ditional factors that need to be further investigated.

Taken together, the models based on conditional consen-
sus appear to work the best in all the three cases considered
here and could even be improved in the future studies.

Role of redundancy in performance

The results presented above were obtained by training data
taken from one entire genome at a time, wihout filtering for
similarity thresholds. This obviously leads to redundancy
in the datasets. Consequently, the presence of similar pro-
teins in the training and test datasets may lead to overesti-
mates of prediction performance levels. It may be recalled
that even though it is customary to train prediction mod-
els after removing redundancy, there are instances where
entire available datasets have been used. Despite our own
protocol earlier to the contrary, we believe that the identi-
fication of novel DBPs need not be performed with a fully
non-redundant dataset and maximum amount of informa-
tion, even if somewhat redundant should be allowed in the
trained models. However to gain a more realistic estimate
of the prediction performance, we retrained our models of
the pooled data and the human genome at various degrees
of non-redundancy. We ran blastclust and selected a repre-
sentative from each cluster computed at 25, 50 and 90% se-

quence similarity and retrained our models. Figure 9B and
C show the results from these predictions. Two points are
immediately noteworthy in these plots. First, the removal
of redundancy from 100 to 25% sequence identity thresh-
olds leads to a fall in performance by about 5% points,
but even at 25% sequence identity threshold, our models
retained their strong performances thereby demonstrating
their predictive prowess. Obviously, this is a huge advan-
tage over sequence alignment based annotations discussed
above. Second, we observed that even at the redundancy re-
moval at 25%, the pooled data performance is higher than
the human-only data. This may be because the pooled data
are more diverse and have more predictive power but may
also indicate that some degree of redundancy remains de-
spite the strict cut-off. We leave this issue to be resolved in
the future work, but it is clear that the performance levels
in each approach are strong enough to support the conclu-
sions drawn in this study.

Related studies in the public domain

There are nearly 30 published studies, which report a
method to predict DNA-binding proteins from sequence
or predicted structure, whereas many more predict DNA-
binding site residues. We have compiled a list of all such
studies in Supplementary Table ST12a–c. To the best of our
knowledge, there are no studies that have attempted to in-
tegrate gene expression profiles and sequence information
for predicting DBPs. Moreover, the integration of DNA-
binding site residues and DNA-binding proteins has not
been attempted in a comprehensive manner so far. The only
study where such an effort was attempted performed only
a count of the predicted DNA-binding residues. Further-
more, in most of the studies, DBP datasets were compiled
from protein–DNA complexes in the PDB and models were
evaluated on various degrees of data redundancy and with
different performance scores. There is only one study (68)
that was based on first predicting a protein–DNA com-
plex, in which an entire human proteome was the subject
of prediction. In general, prediction performances have ap-
proached close to 0.80–0.90 in terms of AUC and 80% ac-
curacy (the number of correct predictions in a mix of DBPs
and negative controls). Due to high variance in the back-
ground datasets and DBP annotations, it is unclear as to
which of these methods would perform well on the datasets
that we have considered in this study. It is possible that some
of the binding site prediction methods other than those used
in this work perform better in predicting DBPs. However,
the primary goal of this work was to establish a rational ap-
proach to combining binding sites and binding proteins and
to evaluate if the gene expression-based features would add
value to such predictions. Therefore, an apparent coopera-
tive mechanism toward DBP function, as suggested by our
work, generates confidence in the presented findings and
opens up new avenues to investigate context-specific func-
tional annotations of DBPs.

Even though the benchmarking of the effectiveness of
each binding site prediction method neither feasible nor de-
sirable as above, it is worth evaluating whether the novel
feature sets of DNA-binding site statistics and those from
other ligand binding sites play any role in prediction per-

http://www.sciwhylab.org/gigeasa/
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Figure 9. Various prediction performance scores for sequence based models and their counterparts with gene expression integrated scores in proteoms of
different organisms. (A) Sequence-based training (whole genome) (B) Integration of GE and sequence based predictions (C) Data trained by pooling three
proteomes and redundancy removed at 25, 50, 70 and 90% sequence identity thresholds. (D) Human only training at different redundancy levels.

formance. A clear answer to this can be better obtained by
performing controlled experiments on training and bench-
marking instead of published web servers where many of the
proteins being predicted may have been variously included
in training. Thus, we re-trained our prediction models by
dividing our feature sets into three subgroups viz: (i) fea-
tures derived from predicted DNA binding sites (ii) derived
from binding sites from other ligands and (iii) amino acid
composition of the whole protein. We computed the predic-
tion performances of trained models by excluding (ii) and
(i) to estimate their effectiveness in improving prediction re-
sults. Table 1 shows the results from such experiments under
various redundancy conditions and DBP definition. We ob-
served that the amino acid composition remains a good pre-
dictor of DBPs as reported earlier. DNA-binding site based
features alone are weak predictors but when combined with
the background binding site features of other ligands and
amino acid composition, they outperform the other mod-
els lacking such features by a statistically significant margin
(based on the P-value) over the distributions of prediction
performances.

CONCLUSION

In this work, we have established a comprehensive sys-
tem to predict DBPs from the amino acid composition
and the predicted binding-site residues. Simultaneously, we
also developed DBP prediction models from the global GE

data. Even though the GE-based predictions were less ac-
curate, we argue that the GE data provide greater value over
their sequence counterpart, as they can introduce context-
specificity into the computational models. Combining GE-
derived signatures with sequence-encoded annotations will
open up exciting possibilities of context-specific functional
annotations. We observed that the many proteins associated
with certain GO terms e.g. genes associated with metabolic
process (GO:0008152) were better predicted as DBP or oth-
erwise by combining the prediction scores with GE than
the sequence models alone. Low sequence-based signals for
such proteins could be successfully boosted by the GE-
based prediction models, allowing a more accurate predic-
tion without a priori knowledge of their GO term associ-
ations. We hypothesize that the GE patterns and network
properties of DBP genes can function as an additional reg-
ulatory mechanism by not only defining a given biological
function but also assigning a DBP function in a conditional
manner. Many instances of multiple and independent bio-
logical functions of a single gene have emerged (69,70) and
it is impossible to evaluate experimentally the conditional
functional diversity for each DBP gene. While we do not ad-
dress the issue of context-specific functional annotations in
this work, we believe that a detailed analysis of GE patterns
of DBP genes (as presented here) will help establish general
principles of obtaining GE-derived annotations, which can
be extended to context-specific annotations in the future.
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Table 1. Sequence-based prediction performance of DBP prediction under various redundancy conditions and DBP definition

DBS only AA composition only AA + DBS All features

NR90-FT 63.50 86.00 86.20 86.40
NR70-FT 63.00 85.60 84.90 86.20
NR50-FT 61.30 84.40 84.90 85.30
NR25-FT 63.00 82.80 83.30 83.60
NR90-GO 64.60 85.60 85.50 85.60
NR70-GO 65.00 85.40 85.60 85.40
NR50-GO 64.70 82.60 82.90 83.10
NR25-GO 62.30 79.90 80.00 80.20
NR90-Pfam 61.90 85.40 85.30 86.10
NR70-Pfam 61.10 85.00 85.40 85.50
NR50-Pfam 61.60 83.20 83.80 83.90
NR25-Pfam 62.70 81.40 81.80 82.20
NR90-PDB 56.60 79.70 79.80 80.60
NR70-PDB 53.40 80.30 79.50 81.50
NR50-PDB 55.60 77.70 76.70 77.30
NR25-PDB 55.60 75.90 75.90 75.20
Mean 60.99 82.56 82.59 83.01
P-values (t-test)AA + DBS versus all features 0.0058

Feature set based on amino acid composition is the best of the three in most cases. However, adding DBS features to the model improves its performance
in almost all the prediction models with a statistical significance in the improvement being observed by a P-value of 0.0058 by t-test. Abbreviations: FT:
DBP definition taken from Uniprot Sequence features, NRxx: Data are non-redundant at xx% sequence identity threshold, GO: DBP definition taken
from GO, DBS: DNA-binding site predictions, AA composition: amino acid composition of the full length protein.

Our results provide a framework to generate condition-
specific DBP annotations by creating condition-specific GE
profiles and establishing their roles in DBP functions. We
believe that the functions of other groups of genes can
also be readily fine-tuned by their gene expression patterns.
However, detecting such an influence (or a lack of it) in all
categories of proteins is much more challenging and has not
been attempted in this work.

In this work, we have focussed on DBPs in general. How-
ever, a more specific functional prediction will be helpful
for these DBPs and thus, our future works will be aimed
at this broader objective. In the current work, we have ex-
amined the potential of top predicted candidates to be TFs.
Of the top 100 scoring candidates that were examined, two,
C6ORF23 and C6ORF15 were hypothesized to be novel
TFs that may recognize predicted DNA motifs that closely
resemble those of known TFs. A more elaborate analysis of
the functional annotations described in this study is under-
way.

Finally, we have made our prediction results available on
the web together with tools and data sets for computing fea-
tures used in this work. This integration will enable users to
examine the predicted DBPs in the context of their own gene
set analysis with the associated biological information. To
this effect, we plan to incorporate our predicted DBPs into
the TargetMine data analysis platform (61,62).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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