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OBJECTIVE—Obesity is associated with monocyte-macroph-
age accumulation in adipose tissue. Previously, we showed that
glucose-stimulated production by adipocytes of serum amyloid A
(SAA), monocyte chemoattractant protein (MCP)-1, and hyaluro-
nan (HA) facilitated monocyte accumulation. The current objec-
tive was to determine how the other major nutrient, free fatty
acids (FFAs), affects these molecules and monocyte recruitment
by adipocytes.

RESEARCH DESIGN AND METHODS—Differentiated 3T3-
L1, Simpson-Golabi-Behmel syndrome adipocytes, and mouse
embryonic fibroblasts were exposed to various FFAs (250
�mol/l) in either 5 or 25 mmol/l (high) glucose for evaluation of
SAA, MCP-1, and HA regulation in vitro.

RESULTS—Saturated fatty acids (SFAs) such as laurate, myris-
tate, and palmitate increased cellular triglyceride accumulation,
SAA, and MCP-1 expression; generated reactive oxygen species
(ROS); and increased nuclear factor (NF) �B translocation in
both 5 and 25 mmol/l glucose. Conversely, polyunsaturated fatty
acids (PUFAs) such as arachidonate, eicosapentaenate, and
docosahexaenate (DHA) decreased these events. Gene expres-
sion could be dissociated from triglyceride accumulation. Al-
though excess glucose increased HA content, SFAs, oleate, and
linoleate did not. Antioxidant treatment repressed glucose- and
palmitate-stimulated ROS generation and NF�B translocation
and decreased SAA and MCP-1 expression and monocyte che-
motaxis. Silencing toll-like receptor-4 (TLR4) markedly reduced
SAA and MCP-1 expression in response to palmitate but not
glucose. DHA suppressed NF�B translocation stimulated by both
excess glucose and palmitate via a peroxisome prolifterator–
activated receptor (PPAR) �–dependent pathway.

CONCLUSIONS—Excess glucose and SFAs regulate chemotac-
tic factor expression by a mechanism that involves ROS genera-
tion, NF�B, and PPAR�, and which is repressed by PUFAs.
Certain SFAs, but not excess glucose, trigger chemotactic factor
expression via a TLR4-dependent pathway. Diabetes 59:386–
396, 2010

M
acrophage accumulation in adipose tissue is a
hallmark of obesity (1–3). Adipose tissue
macrophages have been implicated in the
pathogenesis of insulin resistance and sys-

temic inflammation (4–6). However, the mechanism by
which monocytes are recruited into adipose tissue to
become macrophages remains elusive. While monocyte
chemoattractant protein (MCP)-1 has been proposed as a
key monocyte chemoattractant (2,7,8), recent studies have
found that neither MCP-1 (9) nor its receptor C-C motif
chemokine receptor 2 (10) are required for adipose tissue
macrophage accumulation. Therefore, other mechanisms
must exist. We recently described another monocyte re-
cruitment pathway responsible for macrophage accumu-
lation in adipose tissue (i.e., a complex containing both an
extrahepatic serum amyloid A [SAA] isoform, SAA3, and
hyaluronan [HA]). SAA3 is chemotactic for monocytes,
whereas HA acts as a scaffold to which both monocytes
and SAA3 adhere (11).

Previously, we showed that glucose-induced adipocyte
hypertrophy increased expression of SAA3, MCP-1, and
hyaluronan synthase (HAS) 2, the enzyme responsible for
HA synthesis in adipocytes, via a nuclear factor (NF) �B
and peroxisome prolifterator–activated receptor (PPAR)
�–dependent mechanism (11). We also demonstrated that
this pathway increases in susceptible mice fed diets rich in
saturated fatty acids (SFAs) and refined sugar (11). More-
over, others have shown that obesity resulting from excess
SFA consumption leads to insulin resistance via a toll-like
receptor-4 (TLR4)-dependent pathway (12,13). Obesity oc-
curs when excess nutrients derived from glucose and/or
fatty acids accumulate in adipose tissue. However, little is
known about the effects of different classes of long-chain
FFAs on SAA, MCP-1, and HAS2 expression in adipocytes.

By exposing differentiated adipocytes to various long-
chain FFAs, we have shown that specific SFAs stimulate
monocyte chemotaxis, whereas specific polyunsaturated
fatty acids (PUFAs) inhibit these monocyte recruitment
pathways. Moreover, glucose and specific SFAs appear to
share a common pathway for macrophage accumulation in
adipose tissue.

RESEARCH DESIGN AND METHODS

Reagents and detailed methods are described in an online appendix, which
can be found at http://diabetes.diabetesjournals.org/cgi/content/full/db09-
0925/DC1.
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Cell culture. 3T3-L1 murine preadipocytes, obtained from American Type
Tissue Culture Collection, and mouse embryonic fibroblasts (MEFs), isolated
from embryos of C57BL/6 mice at 13.5 days postcoitum (a gift from Dr. Carol
B. Ware, University of Washington), were propagated and differentiated
according to standard protocol procedures (14), with the exception that
media containing either 5 or 25 mmol/l glucose with or without 250 �mol/l
FFAs were replenished daily. Human preadipocytes from Simpson-Golabi-
Behmel syndrome (SGBS) were grown and differentiated, as described
previously (15), with daily replenishment of media containing either 5 or 25
mmol/l glucose with or without 250 �mol/l FFAs. U937 and THP-1 monocytic
cell lines were cultured in RPMI-1640 medium for use in the monocyte
adhesion and chemotaxis assays, respectively.
In vitro TLR4 gene silencing. To test the role of TLR4-mediated SAA3 and
MCP-1 expression, 3T3-L1 adipocytes were transiently transfected (2 days
after completion of the differentiation protocol) with small-interfering RNA
(siRNA) duplexes for TLR4 synthesized and purified by Ambion using the
DeliverX system (Panomics), as described previously (11,16).
Reactive oxygen species quantification. Reactive oxygen species (ROS)
generation was assessed as CM-H2DCFDA (Molecular Probes) fluorescence,
which was monitored by fluorescence-activated cell sorting (FACS) (FACS-
can, Becton Dickinson), as described previously (17).
Multiplex real-time quantitative reverse-transcription PCR. Real-time
reverse-transcription PCR (RT-PCR) was performed using the TaqMan Master
kit (Applied Biosystems) in the Stratagene MX3000P system (16) (online
appendix).
Western blot analysis. Differentiated mouse 3T3-L1 and human SGBS
adipocytes were cultured in medium containing 5 or 25 mmol/l glucose with or
without 250 �mol/l FFAs. After incubation, culture media were collected and
proteins separated in 10–20% gradient SDS-PAGE for Western blot analysis
using an anti-mouse SAA3 antibody (a generous gift from Dr. Philipp E.
Scherer, University of Texas, Southwestern) (11) for the 3T3-L1 cells or an
anti-human SAA1 antibody (Anogen, Ontario, Canada) for the SGBS cells.
Monocyte adhesion assay. Monocyte adhesion to 3T3-L1 adipocytes was
assessed using U937 cells, as described previously (18) (online appendix).
Monocyte chemotaxis assay. The chemotactic activity of conditioned media
from 3T3-L1 adipocytes grown in 5 or 25 mmol/l glucose with or without 250
�mol/l FFAs was studied in a 96-well microchamber (ChemoTx; Neuro
Probe), as described previously (19) (online appendix).
FACS analysis for cell death. Since specific FFAs can elicit apoptosis (20),
we also measured cell death in adipocytes cultured in 5 or 25 mmol/l glucose
with or without FFAs by FACS (online appendix).
Statistical analysis. Statistical significance was determined by Student’s t

tests. Data are reported as means � SD of two or three independent
experiments performed in triplicate. P � 0.05 was considered significant.

RESULTS

Adipocyte hypertrophy after exposure of differenti-
ated 3T3-L1 cells to excess glucose and FFAs. To
mimic the metabolic milieu that promotes obesity, a
condition of chronic energy excess, we exposed differen-
tiated 3T3-L1 and SGBS adipocytes and adipocytes differ-
entiated from MEFs to high glucose concentrations and/or
FFAs. We have shown previously that 3T3-L1 adipocytes
exhibit increased hypertrophy following exposure to 25
mmol/l (11). In this study, daily replenishment of medium
for 7 days with the SFAs, laurate (12:0), myristate (14:0),
palmitate (16:0), and stearate (18:0), and the monounsat-
urated fatty acid, oleate (18:1), all induced adipocyte
hypertrophy in both 5 and 25 mmol/l glucose. However,
the n-6 PUFAs, linoleate (18:2) and arachidonate (C20:4),
and the n-3 PUFAs, eicosapentaenoate (EPA; 20:5) and
docosahexaenoate (DHA; 22:6), decreased lipid droplet
size induced by 25 mmol/l glucose (supplemental Fig. 1).
These findings are similar to the reduction of glucose-
induced adipocyte hypertrophy by the PPAR� agonist,
rosiglitazone (11). Triglyceride content was increased by
25 mmol/l glucose, each of the SFAs, and oleic acid.
Triglycerides increased in an additive fashion with a
combination of 25 mmol/l glucose and either SFAs or oleic
acid. In contrast, n-3 and n-6 PUFAs decreased triglyceride
content, even in the presence of 25 mmol/l glucose (sup-
plemental Fig. 1). Thus, the FFAs studied have divergent

effects on adipocyte hypertrophy. As with 3T3-L1 adipo-
cytes, laurate, palmitate, stearate, and oleate induced,
while DHA decreased, adipocyte hypertrophy in human
SGBS adipocytes (supplemental Fig. 1) and adipocytes
differentiated from MEFs (data not shown).
SAA and MCP-1 expression. Previously we have shown
that 25 mmol/l, but not 5 mmol/l, glucose upregulated
SAA3 and MCP-1 mRNA expression in differentiated
3T3-L1 cells time dependently (11). We now exposed
differentiated 3T3-L1 adipocytes to various FFAs for 7 days
in both 5 and 25 mmol/l glucose with daily media replen-
ishment. The SFAs, laurate, myristate, and palmitate, all
increased SAA3 and MCP-1 mRNA levels in both 5 and 25
mmol/l glucose (Fig. 1A and B). SAA3 mRNA was in-
creased in a dose- and time-dependent manner by expo-
sure to palmitate, with increased expression observed by
24 h (data not shown). Linoleate neither stimulated gene
expression nor caused cellular hypertrophy. Despite in-
ducing adipocyte hypertrophy, neither stearate nor oleate
altered SAA3 and MCP-1 gene expression (Fig. 1A and B).
Thus, chemotactic factor gene stimulation and adipocyte
hypertrophy can be dissociated. Arachidonate, EPA, and
DHA decreased glucose-induced expression of SAA3 and
MCP-1 (Fig. 1A and B), similar to results observed with
rosiglitazone (11).

As for mRNA expression, SAA3 protein levels by immu-
noblot increased after exposure to 25 mmol/l glucose,
laurate, myristate, and palmitate and decreased after ex-
posure to arachidonate, EPA, and DHA (Fig. 1C). No
changes in SAA protein were observed with stearate,
oleate, and linoleate. Thus, effects on gene expression also
were seen at the level of protein expression.

To extend the observation in 3T3-L1 adipocytes to other
adipocyte-like cells, differentiated human SGBS adipo-
cytes and MEFs also were studied. Since the isoform of
SAA produced by human adipocytes is SAA1 rather than
SAA3 (21), SAA1 mRNA and protein were measured in
human SGBS adipocytes. As with 3T3-L1 adipocytes, the
SFAs, laurate and palmitate, increased SAA and MCP-1
mRNA levels, while stearate and oleate had no effect
despite inducing adipocyte hypertrophy (supplemental
Fig. 2). However, DHA also decreased glucose-induced
expression of SAA and MCP-1 in these cell lines (supple-
mental Fig. 2). Consistent with mRNA expression, SAA1
protein levels in SGBS adipocytes increased after expo-
sure to 25 mmol/l glucose, laurate, and palmitate and
decreased after treatment with DHA (supplemental Fig. 2).
As with 3T3-L1 cells, stearate and oleate did not change
SAA1 protein in SGBS cells.

To confirm that the protein expression results were not
due to glucose- or FFA-induced apoptosis (20), cell death
was assessed using propidium iodide and annexin V
staining. Exposure of cells to 25 mmol/l glucose, with or
without palmitate or stearate, failed to induce apoptosis in
differentiated 3T3-L1 adipocytes (supplemental Fig. 3).
Effect of glucose and FFAs on HA content and hyalu-
ronan synthase expression. We have shown previously
that HA production and expression of the enzyme respon-
sible for its synthesis in adipose tissue, HAS2, are in-
creased during glucose-induced adipocyte hypertrophy in
vitro and by diet-induced obesity in mice (11). Therefore,
we evaluated the effects of various FFAs on HAS2 expres-
sion and HA content in differentiated 3T3-L1, human SGBS
adipocytes, and MEFs. Although HA content and HAS2
expression increased after exposure to high glucose, they
were not altered by SFAs, the monounsaturated fatty acid,
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oleate, or the n-6 PUFA, linoleate. Interestingly, another
n-6 PUFA, arachidonate, and the n-3 PUFAs, EPA and
DHA, markedly attenuated glucose-stimulated HA content
and HAS2 expression (Fig. 2A and B, supplemental Fig. 2),
an effect similar to that observed previously with rosigli-
tazone (11). Thus, the effect of FFAs on HA differs from
that of glucose excess.

Glucose excess and certain SFAs have proinflammatory
effects, whereas arachidonate and the n-3 PUFAs, EPA and
DHA, have anti-inflammatory properties. We therefore eval-
uated the effect of glucose excess and FFAs on adiponectin,
an anti-inflammatory molecule expressed during adipocyte
differentiation. Exposure of 3T3-L1–differentiated adipocytes
to 25 mmol/l glucose, SFAs, oleate, and linoleate had no
effect on adiponectin mRNA levels. However, adiponectin
mRNA was further increased by exposure to arachidonate,
EPA, and DHA (supplemental Fig. 4).
Monocyte adhesion and chemotaxis. To investigate the
potential of excess glucose and FFAs to recruit mono-
cytes, monocyte adhesion and chemotaxis assays were

performed with 3T3-L1 adipocytes grown in 5 or 25 mmol/l
glucose with various FFAs. Adhesion of monocytes, an
HA-dependent process (11), was increased only in adipo-
cytes exposed to excess glucose. SFAs, oleate, and li-
noleate had no effect on monocyte adhesion, while
glucose-stimulated HA-dependent cell adhesion was de-
creased in cells exposed to arachidonate, EPA, and DHA
(Fig. 3A), consistent with the effect of these FFAs on HA
content and HAS2 expression.

We next compared the chemotactic potency of factors
secreted by adipocytes cultured in 25 mmol/l glucose and
various FFAs. Only conditioned medium from adipocytes
cultured in excess glucose, laurate, myristate, and palmi-
tate increased monocyte chemotaxis. The effects of glu-
cose and these SFAs were additive (Fig. 3B). Conditioned
media from adipocytes cultured in arachidonate, EPA, and
DHA decreased monocyte chemotaxis induced by excess
glucose. In contrast to the effect of FFAs on monocyte
adhesion, the effect of FFAs on chemotaxis mirrored their
effects on SAA3 and MCP-1 expression.
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FIG. 1. SAA3 and MCP-1 expression is stimulated by specific SFAs and inhibited by specific PUFAs. 3T3–L1 adipocytes were differentiated in 5
or 25 mmol/l glucose and cultured for 7 days in the same medium with various FFAs (250 �mol/l). Total RNA was isolated and analyzed by
multiplex real-time RT-PCR using SAA3-specific (A) or MCP-1–specific (B) primers and probes and normalized to GAPDH. C: Conditioned media
were analyzed by immunoblot using anti-SAA3 antibody. *P < 0.001 vs. 5 mmol/l glucose control. **P < 0.001 vs. 25 mmol/l glucose control.
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Effect of glucose and FFAs on NF�B transactivation
and ROS generation. Previously, we showed that NF�B
transactivation increased while PPAR� transactivation de-
creased in differentiated 3T3-L1 cells exposed to high
glucose (11). Since NF�B transactivation regulates tran-
scription of a wide range of proinflammatory mediators
(22–25), whereas PPAR� activation has anti-inflammatory
properties (26,27), we examined the effects of various
FFAs on NF�B transactivation. Laurate, myristate, and
palmitate increased transactivation of NF�B in both 5 and
25 mmol/l glucose, suggesting that these SFAs are proin-
flammatory, whereas oleate and stearate had no effect
(Fig. 4A).

To test potential intermediates by which excess glucose
and certain SFAs might activate NF�B in 3T3-L1 adipo-

cytes, ROS generation was measured using CM-H2DCFDA
(Molecular Probes), a membrane-permeable dye that is
oxidized by intracellular ROS to the fluorescent product
CM-DCF (28). Daily exposure for 7 days of cells to 25
mmol/l glucose and/or palmitate (Fig. 4B), laurate, or
myristate (not shown) increased intracellular CM-DCF
fluorescence. When incubated with palmitate and 25
mmol/l glucose, ROS generation was additive (Fig. 4B).
Stearate, oleate (Fig. 4B), and linoleate (not shown) had
no effect on ROS in either 5 or 25 mmol/l glucose.
Conversely, arachidonate (not shown), EPA, and DHA
blunted the effect of 25 mmol/l glucose (Fig. 4B). These
results raise the question of whether ROS generated by
high glucose and/or palmitate may be involved in NF�B
activation in 3T3-L1 adipocytes.
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FIG. 2. HA content and HAS2 gene expression are increased by high glucose conditions but not SFAs and attenuated by arachidonate, EPA, and
DHA. 3T3–L1 adipocytes differentiated in 5 or 25 mmol/l glucose were cultured for 7 days in the same media with or without various FFAs (250
�mol/l). A: Cell lysates that included cell-associated extracellular matrix were harvested and analyzed for HA content by ELISA. B: Total RNA
was isolated and analyzed by multiplex real-time RT-PCR using HAS2 specific primers and probes and normalized to GAPDH. *P < 0.001 vs. 5
mmol/l glucose control. **P < 0.001 vs. 25 mmol/l glucose control.
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Effect of antioxidants on NF�B translocation, ROS
generation, and monocyte adhesion and chemotactic
factors. To further evaluate this possibility, several anti-
oxidants were added to adipocytes together with 25
mmol/l glucose and/or 250 �mol/l palmitate. Although
CM-DCF fluorescence was observed with several FFAs,
for these and many subsequent experiments we have used

palmitate, since this fatty acid is common in the diet and
constitutes a large proportion of circulating FFAs. N-
acetyl cysteine (NAC), catalase, and superoxide dismutase
(SOD) all inhibited CM-DCF fluorescence induced by
excess glucose and palmitate (data not shown) and NF�B
translocation (supplemental Fig. 5A). All these antioxi-
dants also suppressed SAA3 and MCP-1 gene expression,

FIG. 4. FFAs have differential effects on NF�B translocation and ROS generation. 3T3–L1 adipocytes differentiated in 5 or 25 mmol/l glucose were
cultured on glass for 7 days in the same medium with various FFAs (250 �mol/l) as indicated. A: Adipocytes were fixed and stained using an
anti-p65 NF�B antibody, followed by the addition of a fluorescein isothiocyanate secondary antibody (original magnification �400). B: Cells were
subjected to FACS analysis using CM-H2DCFDA. Results are plotted as counts (number of cells) on the vertical axis versus CM-DCF fluorescence
intensity on the horizontal axis. Cells exposed to 5 mmol/l glucose are shown in the blue color and are used as the negative control. The dashed
lines, which indicate the peak of CM-DCF fluorescence of cells exposed to 250 �mol/l palmitate in the presence of 25 mmol/l glucose, are used
as the high reference. These two conditions are used as low and high standards to compare ROS generation by the different FFAs, which are shown
in red. Cells exposed to 25 mmol/l glucose alone are shown in black. (A high-quality digital representation of this figure is available in the online
issue.)
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SAA3 protein secretion, and monocyte chemotaxis in-
duced by 25 mmol/l glucose and palmitate (supplemental
Fig. 5). They also inhibited glucose-induced HA content.
Thus, ROS might be important intermediates that affect
the production of SAA3, MCP-1, and HA in 3T3-L1
adipocytes.
TLR4 inhibition of palmitate-induced gene expres-

sion. Since SFAs such as laurate and palmitate can
activate TLR4-mediated pathways, we evaluated the role
of TLR4 on the expression of SAA3 and MCP-1 induced by
SFAs. Transfection of differentiated 3T3-L1 cells with a
TLR4-specific siRNA markedly silenced TLR4 expression
compared with transfection of scrambled constructs and
to untreated cells (Fig. 5A). SAA3 and MCP-1 expression
levels were markedly decreased in response to palmitate
exposure in both 5 and 25 mmol/l glucose in TLR4 siRNA-
transfected cells, whereas TLR-4 silencing had no effect on
glucose-mediated stimulation of gene expression (Fig. 5B

and C). These results imply that palmitate increases SAA3
and MCP-1 expression via a TLR4-dependent mechanism.
DHA inhibition of palmitate-induced expression of

SAA3 and MCP-1. Since n-3 fatty acids have anti-inflam-
matory properties (29,30), we examined the effect of DHA
on SAA3 and MCP-1 expression induced by excess glucose
and palmitate. Exposure to DHA for 7 days reduced the
increase in lipid droplet size induced by high glucose
and/or palmitate (data not shown), inhibited SAA3 and
MCP-1 gene expression induced by high glucose and/or
palmitate (Fig. 6A and B), and reduced secreted SAA
protein (Fig. 6C). DHA inhibited palmitate-induced expres-
sion of SAA3 in either 5 or 25 mmol/l glucose in a
dose-dependent manner and at relatively low concentra-
tion (Fig. 6D). DHA also suppressed HA content induced
by exposure of cells to both high glucose and palmitate
(Fig. 6E). These effects of DHA were not an artifact due to
apoptosis (supplemental Fig. 3).

We also examined whether DHA could inhibit the trans-
location of NF�B and ROS generation induced by high
glucose and/or palmitate. DHA inhibited NF�B transloca-
tion, CM-DCF fluorescence (Fig. 7A and B), and monocyte
chemotaxis (Fig. 7D) stimulated by both high glucose
and/or palmitate, consistent with its effect on chemotactic
factor expression (Fig. 6A and B). Moreover, DHA inhib-
ited monocyte adhesion stimulated by high glucose, con-
sistent with its effect on HA synthesis (Fig. 7C).
PPAR� dependence of the effect of DHA on adipocyte-

derived chemotactic factor expression. We showed pre-
viously that glucose-induced expression of SAA3 and
MCP-1 was inhibited by rosiglitazone (11), a PPAR� ligand
with anti-inflammatory properties. To evaluate whether
anti-inflammatory properties of DHA are dependent on
PPAR�, the PPAR� antagonists T0070907 and bisphenol A
diglycidyl ether (BADGE) were added to adipocytes with
daily replenishment of media containing glucose, palmi-
tate, and/or DHA. Strikingly, both BADGE and T0070907
increased basal levels of expression of SAA3 and MCP-1 in
5 mmol/l glucose and amplified the effect of palmitate in
both 5 and 25 mmol/l glucose. They also obliterated the
repressive effect of DHA on high glucose–and palmitate-
induced gene expression (Fig. 8A and B). In a control
experiment, these PPAR� antagonists also abolished the
effect of rosiglitazone on SAA3 expression (Fig. 8C and D).
These results strongly suggest that DHA is working via a
PPAR�-dependent mechanism.

DISCUSSION

Our findings indicate that specific SFAs increase the
expression of the monocyte chemotactic factors, SAA and
MCP-1, by differentiated 3T3-L1 and SGBS adipocytes and
by adipocytes derived from MEFs. They extend our previ-
ous observations on the effects of glucose excess on these
chemotactic factors and HA (11) by showing that SFAs
enhance the effect of glucose on SAA and MCP-1 expres-
sion. Moreover, SFAs stimulate SAA and MCP-1 expres-
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sion via a pathway that is both ROS and NF�B dependent,
similar to findings observed previously with glucose ex-
cess (11) but which is suppressible by exposure to specific
PUFAs. Our findings also implicate TLR4 in SFA-stimu-
lated, but not glucose-stimulated, expression of these
chemotactic factors. Finally, while SFAs have no effect on
HA, specific PUFAs appear to block the increased HA
production associated with glucose excess.

Inflammatory gene activation by SFAs in adipocytes has
been described previously (12). Our studies extend these
observations to genes that are believed to play important
roles in monocyte adhesion (HAS2) and chemotaxis (SAA
and MCP-1), processes key to recruitment of macrophages
into adipose tissue. Moreover, they show that effects
observed on gene expression and protein secretion are
mirrored by changes in cell adhesion and chemotaxis.

Comparisons of several fatty acids yielded some surpris-
ing findings. For example, while the SFAs, laurate, myris-
tate, and palmitate, all increased the expression of these
chemotactic factors, stearate had no effect despite being
only two carbon atoms longer than palmitate. The reason
for this discrepancy is unclear but could represent failure
of stearate to activate TLR4 or other components of the
signal transduction pathway used by the other SFAs
studied. The possibility that stearate was cytotoxic was
excluded by experiments showing no stearate-mediated ap-
optosis. Our findings also differ from a previous report that
myristate, palmitate, and stearate, but not laurate, increased
cytokine expression by macrophages (12). These differences
may represent cell-specific differences in response to SFAs
between adipocytes and macrophages.

Of the unsaturated fatty acids, oleate and linoleate had
no effect on SAA and MCP-1 expression. However, both

EPA and DHA strongly suppressed gene expression in
both high-glucose conditions and/or after exposure to
palmitate. Similar findings were observed with arachido-
nate, which is not an n-3 fatty acid. Although relatively
high doses of n-3 fatty acids were used for these experi-
ments, a dose-response experiment with DHA revealed
similar suppression of glucose and palmitate-mediated
stimulation at lower concentrations. These findings sug-
gest that n-3 fatty acids have anti-inflammatory effects on
activation of these genes in adipocytes. Anti-inflammatory
properties of n-3 fatty acids have been reported (31,32),
including in adipose tissue (33) and in mice, where feeding
fish oil resulted in adipocyte hypertrophy without inflam-
matory gene expression or insulin resistance (33). More-
over, EPA, DHA, and arachidonate further increased levels
of adiponectin, an anti-inflammatory adipocytokine.

We found evidence that lipid accumulation and chemo-
tactic factor gene expression could be dissociated in
adipocytes. For example, while all SFAs studied induced
adipocyte triglyceride accumulation, stearate and oleate
had no effect on chemotactic factor gene expression.
Moreover, all PUFAs studied reduced adipocyte triglycer-
ide content, but only linoleate failed to inhibit glucose or
palmitate-mediated gene expression. Although increased
adipocyte size is associated with adipose tissue macro-
phage accumulation (1–3) and increased insulin resistance
(34) in vivo, dissociation between adipocyte hypertrophy
and adipose tissue inflammation also has been reported in
several animal models. For example, mice fed a fish
oil–enriched diet became obese with hypertrophic adipo-
cytes but did not develop adipose tissue macrophage
accumulation or insulin resistance (33). Overexpression of
acyl CoA:diacylglycerol acyltransferase 1 (35) or phos-
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phoenolpyruvate carboxykinase (36) resulted in hypertro-
phic obesity without insulin resistance, suggesting that
adipose tissue in these mouse models was not macrophage
enriched. Very obese ob/ob mice with modest adiponectin
overexpression were insulin sensitive without macro-
phage accumulation in adipose tissue (37). Thus, the
ability to expand adipose tissue mass appropriately in
response to nutrient excess may preclude the develop-
ment of adipose tissue inflammation and insulin resistance
(37). Therefore, the mechanism by which adipocytes be-
come hypertrophic may be more important in determining
whether macrophages will accumulate in adipose tissue
and lead to insulin resistance and systemic inflammation
rather than the presence of adipocyte hypertrophy, per se.
Our findings suggest that dietary FFA composition (i.e.,
SFA enriched versus PUFA enriched) may underlie at least
some of the dissociation between obesity and adipose
tissue inflammation. While we confirmed our previous
observation that glucose excess increased HA accumula-
tion (11), none of the SFAs tested, nor oleate or linoleate,
affected HA content in either 5 or 25 mmol/l glucose.
However, EPA, DHA, and arachidonate suppressed glu-
cose-stimulated HA accumulation and SAA3 and MCP-1

expression in these adipocytes. Monocyte adhesion and
chemotaxis are critical to tissue macrophage accumula-
tion (38), and HA plays an important role in monocyte
adhesion by binding to CD44 and other receptors on
monocytes (39). Absence of CD44 markedly decreased
macrophage accumulation in the artery wall (40). In
experiments assessing monocyte adhesion and chemo-
taxis, changes in both processes closely mirrored the
effects seen with HA content and the expression of SAA3
and MCP-1, respectively. Conditions that altered HA con-
tent led to parallel changes in monocyte adhesion, and
conditions that altered the expression of SAA3 and MCP-1
were mirrored by changes in chemotaxis.

EPA, DHA, and arachidonate inhibited both HA content
and chemotactic factor expression, similar to the effects of
the PPAR� agonist rosiglitazone, suggesting that these
PUFAs might be working via a PPAR�-dependent mecha-
nism. Moreover, these PUFAs increased the expression of
adiponectin, which is regulated by PPAR� (41). The ex-
periment using the PPAR� antagonists further supports a
role for PPAR�.

The observation that baseline expression of these che-
motactic factors is increased by PPAR� antagonism is
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mirrored by findings in other tissues. For example, the
absence of PPAR� is associated with an increased base-
line expression of adhesion molecules in endothelial cells
(42) and expression of the inflammatory molecules SAA1
and SAA2 in liver (16). Thus, PPAR isoforms may exert a
“braking” effect on the expression of several inflammatory
genes, suppression of which is removed by deficiency or
antagonism of the nuclear receptor. In the current study,
the PPAR� antagonists also overrode the effects of DHA in
suppressing the expression of SAA3 and MCP-1, suggest-
ing that DHA is working via a PPAR� mechanism.

A common pathway for inflammatory gene activation is
via NF�B. In the present study, NF�B nuclear transloca-
tion mirrored the effect seen with chemotactic factor
expression, suggesting that they are linked. SFAs that
activated SAA3 and MCP-1 expression were associated
with NF�B translocation, FFAs that had no effect on
chemotactic factor expression had no effect on NF�B
translocation, and FFAs that inhibited gene expression
also inhibited nuclear translocation stimulated by either
high-glucose conditions or palmitate. Several other studies
(13,25,43,44) indicate that SFAs activate NF�B, whereas
PUFAs do not. Future studies will need to use chemical
and molecular inhibitors to directly link NF�B activation
with chemotactic factor gene expression.

Another common feature associated with SAA3 and
MCP-1 gene activation was ROS generation, as assessed by
CM-DCF fluorescence. ROS can play important roles in
signal transduction, including activation of NF�B (45).
Although ROS have been implicated in activating several
NF�B-mediated inflammatory signals (46), their direct role
has been challenged as being potentially facilitatory rather
than causal (47). Our data show that high glucose and
palmitate, conditions that lead to increased expression of
SAA3 and MCP-1, also increased ROS generation in adipo-
cytes. These findings suggest that ROS-mediated activa-
tion of NF�B in response to certain nutrients is linked to
generation of these chemotactic factors.

The finding that palmitate-mediated activation of che-
motactic factor gene expression is markedly inhibited
by silencing TLR4 is consistent with previous observa-
tions that suggest that the TLR4 pathway can be acti-
vated by certain SFAs (12,13,48). While the specific
SFAs that activate TLR4 may differ between macro-
phages and adipocytes (12,13,48), others have also
observed activation of TLR4 by palmitate and myristate
in adipocytes (12). The effect of stearate on TLR4
activation is not known. However, our data suggest that it
may not activate TLR4 in adipocytes. Since there is no
evidence that glucose exerts effects via the TLR4 signaling
pathway, the absence of inhibition of glucose-mediated
activation of SAA3 and MCP-1 gene expression by TLR4
silencing is not surprising.

Our findings have important implications for under-
standing the obese state in vivo in that the specific nature
of the nutrient leading to obesity could potentially result in
different degrees of activation, or even suppression, of
chemotactic factors in adipocytes. This in turn could affect
macrophage accumulation in adipose tissue, an important
determinant of insulin resistance. Thus, nutritional excess
from SFAs and glucose, rather than high glucose levels,
per se, are likely to be proinflammatory and might have
more adverse metabolic consequences than obesity result-
ing from excess consumption of stearate, oleate, or
PUFAs. Conversely, fish oil consumption might actually
have anti-inflammatory effects in adipose tissue despite

weight gain and obesity. Indeed, findings consistent with
our in vitro observations have been made in several mouse
models. Thus, consumption by LDL receptor–deficient
mice of a diet rich in SFAs and sucrose led to SAA3 and
MCP-1 overexpression and accumulation of macrophages
in adipose tissue, together with increased insulin resis-
tance (49). Deficiency of TLR4 was associated with re-
duced insulin resistance in response to diet-induced
obesity (12), and mice fed a diet rich in fish oils had large
fat cells yet little macrophage accumulation and insulin
resistance (33). Whether differences in dietary composi-
tion have similar effects in human obesity remains to be
determined.
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