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LETTER TO TH E EDITOR

Indirect targeting of MYC sensitizes pancreatic cancer cells
to mechanistic target of rapamycin (mTOR) inhibition

Dear Editor,
Pancreatic ductal adenocarcinoma (PDAC) remains a

significant health problem with an increase in the inci-
dence and a five-year survival rate of only 10% [1]. The
Phosphoinositide 3-kinase-protein kinase-B-mechanistic
target of rapamycin (PI3K-AKT-mTOR) pathway is a driver
pathway in PDAC and an important therapeutic target
[2]. We [3] and others [4–6] have demonstrated that the
mTOR kinase is a therapeutic target in PDAC, and ratio-
nally designed mTOR inhibitor (mTORi)-based combina-
tion therapies are emerging [2]. However, clinical suc-
cess has not been satisfactory so far [2] due to tumor
adaption, resistance, and lack of predictive biomarkers.
This implicates the need to decipher resistance mech-
anisms, develop rationally defined combination thera-
pies, and find reliable biomarkers. Therefore, we aimed
to understand the molecular underpinnings of mTORi
resistance and treated 20 well-characterized (transcrip-
tomics, single nucleotide polymorphisms [SNPs], copy
number variations [CNVs]) murine PDAC cell lines [7]
with the potent mTORi INK128 (Sapanisertib) to deter-
mine the half-maximal growth inhibitory concentration
(GI50) (Figure 1A). The detailed Methods of this study can
be found in the Supplementary Methods.

Abbreviations: 7-AAD, 7-Aminoactinomycin D; AKT, protein kinase
B; ANOVA, analysis of variance; BET, bromodomain and extra-terminal
motif; BETi, BET inhibitor; BrdU, 5-bromo-2’-deoxyuridine; CI,
Combination Index; CNV, Copy Number Variation; E2F, E2 factor (E2F)
family of transcription factors; EGFR, epidermal growth factor receptor;
ERBB, Erb-B receptor tyrosine kinases (EGFR family); FDR, False
Discovery Rate; GI50, Half-maximal growth inhibitory (GI50)
concentration; GSEA, gene set enrichment analysis; KEGG, Kyoto
Encyclopedia of Genes and Genomes; MAPK, Mitogen-activated protein
kinase; MEK, MAPK/ERK kinase; mRNA, messenger ribonucleic acid;
mTOR, mechanistic target of rapamycin; mTORi, mTOR inhibitor;
MYC, myelocytomatosis oncogene; PDAC, pancreatic ductal
adenocarcinoma; PI3K, Phosphoinositide 3-kinase; PLK1,
Serine/threonine-protein kinase PLK1; qPCR, quantitative Polymerase
Chain Reaction; RNA, ribonucleic acid; RNA-seq, RNA-sequencing;
SNP, single-nucleotide polymorphism; ZIP, Zero interaction potency
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Resistant cell lines showed enrichment of myelocy-
tomatosis oncogene (MYC) signatures (Figure 1B). Simi-
lar signatures were enriched in human INK128-resistant
PDACcell lines (Supplementary Figure S1A andB). Data of
a CRISPR/Cas-drop out screening of PDAC lines showed
a significant correlation between mTOR and MYC gene
effect scores (Supplementary Figure S1C), demonstrating
that some PDACs were co-addicted to MYC and mTOR. In
PPT-9091MYCER cells, a conditional MYC gain-of-function
model [8], activation of MYC led to a doubling of the
INK128 GI50 value (Figure 1C), corroborating that MYC
confers mTORi resistance, which is consistent with a
recent report [9]. However, considering the heterogeneity
of human cancers and complexity of the MYC network,
additional pathways might also contribute to mTORi resis-
tance.
Next, we generated a murine PDAC cell line that allows

for the Cre-mediated deletion of exon 3 of the Mtor
gene, called PPT4-ZH363-Mtor∆E3/lox [3]. We used Mtor-
proficient (n = 4) and -deficient (n = 3) single-cell clones
to find vulnerabilities associated with genetic mTOR inhi-
bition (Supplementary Figure S2A, B). Downstream sig-
naling, as measured by investigating the phosphorylation
of the mTOR target Eukaryotic translation initiation fac-
tor 4E-binding protein 1 (4E-BP1), was distinctly reduced
in the deficient clones (Supplementary Figure S2B). Sta-
ble Mtor knockouts showed increased phosphorylation
of AKT (Supplementary Figure S2B and C). Function-
ally, inactivation ofMtor was associated with reduced pro-
liferation (Supplementary Figure S2D). Analysis of tran-
scriptomes demonstrated depletion of mTOR signatures
in deficient clones (Supplementary Figure S2E). Further
proteomics analyses revealed that proteins correspond-
ing to MYC target genes (Supplementary Figure S2F) and
metabolic pathways were the main downregulated sig-
natures (Supplementary Figure S2G). As measured by
phospho-proteomics, signaling by Erb-B receptor tyrosine
kinases/epidermal growth factor receptors (ERBB/EGFR),
Insulin, Mitogen-activated protein kinase (MAPK), and,
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F IGURE 1 MYC confers mTORi resistance. (A) Heterogeneity in responsiveness to mTORi. Twenty murine PDAC cell lines were
treated with a seven-point dilution of the mTORi INK128 (1000, 500, 100, 50, 10, 5, 1 nmol/L) and analyzed by Thiazolyl Blue Tetrazolium
Bromide (MTT) assay after 72 hours. Half-maximal growth inhibitory concentration (GI50) values were determined and separated into
quartiles. (B) MYC and mTOR signatures are enriched in mTORi resistant cells. RNA-seq data from the most sensitive cells from A (Q1) were
compared to the more resistant cells (Q2, Q3 and Q4) by gene set enrichment analysis (GSEA) using the GeneTrail 3.0 platform. The
enrichment score and the q values are depicted. (C) Conditional activation of MYC renders cells resistant to mTORi. The murine
PPT-9091MYCER cell line, which has been transduced with a MYCER fusion protein was used. Cells were treated with INK-128 in the presence
or absence of 4-Hydroxytamoxifen (600 nmol/L) for 72 hours as indicated. Afterward, MTT viability assays were performed. Experiments
were performed in n = 3 independent biological experiments and the GI50 values were depicted. (D) Heatmap displaying a hierarchical cluster
with the intensities of phosphopeptides (rows) showing statistically significant abundance (two-sample t-test, FDR < 0.05, S0 = 1) between
Mtor-proficient and -deficient clonal cell lines. Columns display the biological replicates for the individual clones and rows the
phosphopeptides intensities (z-scored, imputed). Phosphopeptides from MYC target proteins (GSEA HALLMARKMYC TARGETS) are
indicated in dark pink on the left side. (E) Enriched KEGG pathways inMtor-proficient clones, enrichment factor and P value from a Fisher’s
exact test corrected according to Benjamini-Hochberg (FDR) performed with each cluster compared to the total phosphoproteome. In
addition, the GSEA HALLMARKMYC TARGETS signature is depicted. (F-H) Reduced clonogenic growth inMtor-deficient clones upon
BETi treatment. 2,000 cells per well of theMtor-proficient clones (n = 4) and the parental cell line PPT4-ZH363-Mtor∆E3/lox or 3,000 cells per
well of theMtor-deficient clones (n = 3) were seeded in 12-well plates and treated in duplicates with (F) OTX015 (111 and 333 nmol/L) on the
following day. Dimethyl sulfoxide (DMSO) was used as vehicle control. (G) Quantification of F. (H) Clonogenic assay as described in (F) was
performed using JQ1 (55 and 165 nmol/L). The quantification is depicted. (G) and (H) Unpaired t-test: *P < 0.05, **P < 0.01. The blue dot
marks the parental cell line. (I) Human PDAC organoids (n = 7) were treated with a combination matrix with 4 dilutions of the mTORi
INK128 (5, 15, 45, 135 nmol/L) and 5 dilutions of the BETi OTX015 (37, 111, 333, 1000, 3000 nmol/L). After 72 hours viability was measured
using CellTiter-Glo assays. The % inhibition for each combination is shown on the left-sided panel and the calculated overall ZIP score on the
right-sided panel. (J) Synergistic mode of action between INK-128 and OTX015 in a subset of murine and human PDAC cells. Overview of ZIP
scores for the combination of INK128 with OTX015 in a panel of conventional human PDAC cell lines (n = 7) (data based on MTT), murine
PDAC cell lines (n = 8) (data based on clonogenic growth assays) and human PDAC organoids (n = 7) (data based on CellTiter- Glo assays).
(K) and (L) BrdU Incorporation is reduced upon combination of mTORi and BETi. The murine PDAC cell line PPT-53631 (K) and the human
PDAC cell line PaTu8988T (L) were seeded out in white 96-well plates and treated in triplicates on the following day with 50 nmol/L INK128,
500 nmol/L OTX015 or the combination thereof. BrdU (10 μmol/L) was added after 24 hours for an additional 2 hours. BrdU incorporation
was assessed by a chemiluminescent BrdU Cell Proliferation ELISA Kit and luminescence values were normalized to untreated controls (n =
4–5). One-way ANOVA with correction for multiple testing according to Tukey: *P < 0.05, **P < 0.01. (M) Combination of mTORi and BETi
induces G1 growth arrest. The cell cycle profile of PPT-53631 after 24 hours treatment with 50 nmol/L INK-128, 500 nmol/L OTX015 or the
combination of the two was determined by 7AAD-BrdU flow cytometric analysis. Shown is the fraction of cells in sub-G1, G1, S and G2/M
phases of the cell cycle (n = 4). One-way ANOVA with correction for multiple testing according to Tukey: *P < 0.05. (N) Representative
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as expected, mTOR were inhibited in deficient clones
and therefore, vice versa enriched in proficient clones.
(Figure 1D and E, Supplementary Table S1). Phosphoryla-
tion of proteins corresponding to MYC target genes were
also downregulated upon Mtor deletion with borderline
significance (FDR = 0.06) (Figure 1D and E).
Since we and others have demonstrated synergism

of mTORi with MAPK/ERK kinase (MEK) and AKT
inhibitors [3], we tested such inhibitors. The efficacy of
MEKi at a dose of 5.5 nmol/L (Supplementary Figure S2H)
and AKTi (Supplementary Figure S2I) was higher inMtor-
knockout clones, underscoring the value of the model to
define vulnerabilities associated with genetic inhibition of
mTOR.
Direct and indirect modes to inhibit MYC have been

described [10]. MYC was efficiently blocked by inhibitors
of bromodomain and extra-terminal motif (BET) proteins
(Supplementary Figure S3A). We used the BET inhibitors
OTX015 and JQ1, and the dual Serine/threonine-protein
kinase PLK1/BET inhibitor BI2536 to evaluate the poten-
tial synergism between BETi and mTORi. We observed a
strong significant reduction of clonogenic growth induced
by all BETi in Mtor-deficient clones (Figure 1F-H, Sup-
plementary Figure S3B). Note that the parental cell line,
marked as blue dots (Figure 1G and H), responded like
the proficient clones. We interpreted from the data of the
genetic model that blocking mTOR signaling and MYC
might be synergistic in PDAC cells. To directly test the
synergism, we used parental PPT4-ZH363-Mtor∆E3/lox cells
and observed, indeed, a synergistic reduction of clonogenic
growth upon combined INK128 and JQ1 treatment (Sup-
plementary Figure S3C). We extended this finding to a
larger panel ofmurine and human PDACmodels using the
BET degrader ARV771 and the BET inhibitors OTX015 or
JQ1. All inhibitors increased the INK128 sensitivity (Sup-
plementary Figure S3D and E). We calculated the com-
bination index (CI) in 23 human and murine PDAC cell

lines using different dose combinations of INK128 and
OTX015, and observed values below 1 for most combi-
nations, demonstrating a synergistic effect (Supplemen-
tary Figure S3F). Cell lines with the lowest CI values dis-
played enriched MYC signatures (Supplementary Figure
S3G), pointing to the possibility to stratify for combina-
tion therapy responders. In addition, we used different
assays, treatment periods, and dose matrices via the Syn-
ergy Finder platform (https://synergyfinder.fimm.fi/) to
calculate a zero-interaction potency (ZIP) score. High ZIP
scores, which indicate synergism of both inhibitors, were
found in a proportion of established, two-dimensional
human PDAC cell lines (Supplementary Figure S3H), pri-
mary murine PDAC cells (Supplementary Figure S3I), and
primary human, three-dimensional organoid PDAC mod-
els (Figure 1I and J). These data demonstrate the exis-
tence of a PDAC subtype sensitive for the combination of
an mTOR and BET inhibitor across models and species
(Figure 1J).
Using live-cell imaging over a period of 114 hours, we

observed a profound growth arrest in the INK128 and
OTX015 combination (Supplementary Figure S4A). Con-
sistently, BrdU incorporation was synergistically reduced
by the combination therapy in PPT-53631 (Figure 1K) and
PaTu8988T cells (Figure 1L). 7AAD-BrdU flow cytometric
analysis demonstrated that cells treated with the combi-
nation therapy were arrested in the G1-phase of the cell
cycle (Figure 1M), a finding corroborated by flow cytomet-
ric analysis of propidium iodide-stained cells (Supplemen-
tary Figure S4B and C).
To define the contribution of MYC to growth inhi-

bition, we investigated MYC expression over time. In
INK128 treated cells, MYC was maintained with even a
trend of increased expression (Figure 1N and O). In con-
trast, the INK128 and OTX015 combination reduced MYC
expression in cells compared to the INK128 monotherapy
(Figure 1N and O), pointing to an explanation of the syn-

Western Blot and quantification showing MYC protein expression is reduced upon combined treatment with INK-128 and OTX015 in
PPT-53631. The MYC protein expression in the murine PDAC cell line PPT-53631 after treatment with 50 nmol/L INK-128, 500 nmol/L OTX015
or the combination thereof for 24 and 72 hours was determined by immunoblot. MYC protein expression was normalized to loading control
and is depicted as relative protein expression normalized to DMSO treated controls. One-way ANOVA with correction for multiple testing
according to Tukey: *P < 0.05, **P < 0.01. (O) Representative Western Blot and quantification showing MYC protein expression is reduced
upon combined treatment with INK-128 and OTX015 in PaTu8988T. The MYC protein expression in the human PDAC cell line PaTuT8988T
after treatment with 50 nmol/L INK128, 500 nmol/L OTX015 or the combination thereof for 24 and 72 hours was determined by immunoblot.
MYC protein expression was normalized to loading control and is depicted as relative protein expression normalized to DMSO treated
controls. One-way ANOVA with correction for multiple testing according to Tukey: *P < 0.05. Abbreviations: 24h: 24 hours, 72h: 72 hours,
ANOVA: analysis of variance, BET: bromodomain and extra-terminal motif, BETi: BET inhibitor, BrdU: 5-bromo-2’-deoxyuridine, cl: clone,
def: (Mtor) deficient, DMSO: dimethyl sulfoxide, ELISA: enzyme-linked immunosorbent assay, FDR: False Discovery Rate, GI50:
Half-maximal growth inhibitory concentration, GSEA: gene set enrichment analysis, h: hours, KEGG: Kyoto Encyclopedia of Genes and
Genomes, mTOR: mechanistic Target of Rapamycin, mTORi: mTOR inhibitor, MTT: Thiazolyl Blue Tetrazolium Bromide, MYC:
myelocytomatosis oncogene, MYCER: MYC–estrogen receptor (ER) fusion gene, PDAC: pancreatic ductal adenocarcinoma, prof:
Mtor-proficient, def:Mtor-deficient, q: q value, RNA: ribonucleic acid, RNA-seq: RNA-sequencing, ZIP: zero-interaction potency
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ergistic growth defect. We hypothesized that a more pro-
found inhibition of the mTOR kinase would increase the
need of the cells to restore MYC expression. Therefore, we
repeated the kinetic analysis using an increased dose of
INK128, which was approximately 6–7 fold over the GI50
values. Indeed, at this dose, INK128 increasedMYC expres-
sion, especially after 72 hours of treatment (Supplemen-
tary Figure S4D and E). To different extents, compared to
the OTX015monotherapy, MYC expression was less down-
regulated by the INK128 and OTX015 combination treat-
ment (Supplementary Figure S4D and E). We analyzed
RNA-seq data in the high-dose setting. Even if the results
were not identical in murine PPT-53631 and human PaTu-
8988T cells, the combination of INK128 and OTX015 had
a profound impact on pro-proliferative transcriptional net-
works (Supplementary Figure S4F). This was also evident
in mRNA expression profiles of INK128-treated cells com-
pared to those treated with the combination of OTX015
and INK128. Pro-proliferative networks, includingE2F and
MYC, were distinctly inhibited by the combination treat-
ment (Supplementary Figure S4G and H). These results
are thus in agreement with the arrest in the G1 phase of
the cell cycle and the reduced BrdU incorporation. Fur-
thermore, the partial block in the transcriptional output
of E2F and MYC might explain the growth defect also in
the INK128 high dose setting, even though MYC protein
expression remains. Molecular details of the mechanism
that are responsible for the described regulatory circuits
remain to be deciphered. Furthermore, heterogeneity of
PDACs might impact the circuits activated by the BET and
mTOR inhibitor combination therapy.
In summary, we developed a concept to enhance the

anti-tumor activity of mTORi in a subtype of PDACs.
Biomarker-stratified mTORi-based combination therapies
seem promising for further pre-clinical and clinical devel-
opment.
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