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Agent‑based analysis of contagion 
events according to sourcing 
locations
Mijat Kustudic, Ben Niu* & Qianying Liu

The first human infected with the Covid-19 virus was traced to a seafood market in Wuhan, China. 
Research shows that there are comparable types of viruses found in different and mutually distant 
areas. This raises several questions: what if the virus originated in another location? How will future 
waves of epidemics behave if they originate from different locations with a smaller/larger population 
than Wuhan? To explore these questions, we implement an agent-based model within fractal cities. 
Cities radiate gravitational social attraction based on their Zipfian population. The probability and 
predictability of contagion events are analyzed by examining fractal dimensions and lacunarity. 
Results show that weak gravitational forces of small locations help dissipate infections across 
country quicker if the pathogen had originated from that location. Gravitational forces of large 
cities help contain infections within them if they are the starting locations for the pathogen. Greater 
connectedness and symmetry allow for a more predictable epidemic outcome since there are no 
obstructions to spreading. To test our hypothesis, we implement datasets from two countries, Sierra 
Leone and Liberia, and two diseases, Ebola and Covid-19, and obtain the same results.

As the world struggles with the Covid-19 pandemic researchers are left asking numerous questions. These 
questions can be directed towards the past, for example, which species are the source of the virus1, towards the 
present regarding what countermeasures should be implemented2 or the future, by trying to predict the economic 
consequences of pandemics3.

To prevent similar events in the future we must understand how this virus jumped from bats to humans. The 
first infected human was traced back to a seafood market in Wuhan, China4. Research shows that a similar type 
of bat lives in Yunnan province and China shares 96% of its genetic sequence with SARS-CoV-25. According to 
these facts, we must ask a question regarding the starting scenario of the virus: what if the virus originated from 
another location, with a smaller/larger population than Wuhan?

Research points to a possibility for managing the risk of pandemics following the extreme value theory (EVT) 
manifested through power laws6. It considers that extremes and not averages are fundamental sources of risk. 
An exploration of these phenomena has prompted the use of fractal geometry7 and fractal reaction principles8. 
In simple terms, fractals are pattern-like shapes that can be seen in snowflakes, lightning, clouds, and numerous 
plants such as broccoli or ferns. There is proof that this pandemic follows some fractal structure rules and shows 
a similar pattern in different regions of the world9,10.

The first question in this paper examines disease dynamics and cross-country disease spreading when the 
disease originates from different sized source populations. The second question analyses event probability, pre-
dictability, and emergent behaviors of agents as they navigate across cities.

To answer these questions, we use two main methodological innovations and approaches. The first one 
comes from implementing an agent-based compartmental, and reservoir arrangement of fractal cities. All cities 
radiate gravitational social attraction based on their Zipfian distributed population. The second methodological 
innovation is based on implementing fractal dimensions and lacunarity for analyzing event probability and its 
consequences.

To test our hypothesis, we implement real datasets from two countries, Sierra Leone and Liberia, and two 
diseases, Ebola and Covid-19. Ebola started in the rural areas with a small populace11 while Covid-19 started in 
China4 and was imported to the capital cities of respected countries. This difference in starting location makes 
for a perfect ground to test our hypothesis.

The remainder of the paper is structured as follows. Section 2 focuses on reviewing literature according to dif-
ferent disease modeling approaches. Section 3 describes the implemented framework based on multi-dimensional 
spatial distribution coupled with a compartmental aspect. Section 4 describes experimental results while Sect. 5 
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shows how real diseases spread according to obtained datasets. Section 6 discusses and compares predicted with 
real disease dynamics. Section 7 discusses future research directions and concludes the paper.

Literature review
Disease modeling approaches.  Disease modeling is a useful tool that can give insight into disease 
dynamics so that an effective response can be developed. The basic notions were defined by12 through their 
compartmental model that uses linear equations. New and more flexible approaches often implement some 
variant of artificial intelligence one of them being agent-based modeling (ABM). The modeled disease can be 
unspecified13 or use exact pathogen characteristics, such as the case of Ebola3 or Covid-1914. Observations can 
be made according to the governmental action and individual reaction15, self-initiated preventive actions16, or 
according to disease-carrying vectors17. AB models have been used to define country-level epidemiological con-
trol and prevention measures18, recently a strategy developed in this manner2 has been implemented in the 
United Kingdom. An important topic regarding Covid-19 is the research of the economic effects of crises caused 
by countermeasures such as lockdowns19. Research can go into such details to explore how better handwashing 
can significantly affect epidemiological outcomes16,20.

Role of geographical factors on disease spreading.  Epidemics can be viewed as diffusion waves 
and should be modeled similarly to other spread and change processes21. Therefore, the key factors for disease 
spreading can be narrowed down to the spatial (geographical) factors, human behavior, and time dependence 
factors22. When observing distances between cities or countries, a strong explanatory potential for their popu-
lations’ behavior can be found in the models that are based on Newton’s gravity law, where the sizes of these 
elements play the role of mass23. Smaller cities are characterized by a smaller population, however, on average, 
all cities have similar sizes of social groups16. In general, large cities have a greater probability to become large 
spreaders compared to smaller locations because of their international connectedness and tight commuting 
relationships24.

In standard economic practice, this form has been used for analyzing migration25, urban population density26, 
transportation27, and so on. The gravitational approach is commonly implemented along with epidemiologi-
cal models for disease prediction or analysis where the observation focus can be on different diseases, such 
as measles28 and influenza29 or to observe disease waves, and their spatial hierarchies of concentration30,31,32. 
Analysis can be focused on urban disease spreading33 and discovering possible solutions for its suppression18. 
Due to Covid-19’s prevalence, containment needs to be done by implementing non-pharmaceutical measures 
such as lockdowns to prevent cross-country spreading2.

Fractal patterns of diseases.  One approach for managing limitations of modeling comes by observing 
event probabilities and their “contagion event sets”9 where the idea of fractality greatly helps. Due to the relative 
mathematically based similarities with epidemiological modeling, pandemics caused by Covid-19 have con-
ceived some fractal observations. Repeating patterns, power-law behaviors and scaling properties across differ-
ent regions of the world have been noted10. Scalability is also explored through different sized social networks 
and clusters pointing out the fractal dimensions9. We note a definite lack of literature in this area requiring fur-
ther exploration due to the present and future dangers of the Covid-19 pandemic as well as other possible ones.

An important class of models that introduces realism through heterogeneity is based on metapopulations33 
also referred to as fractality10. These models divide the network of agents into subpopulations of different sizes. 
This feature is important because it allows for the implementation of cities of different sizes which is an important 
aspect because it sets the limit on how large a fraction of the population a single individual might meet within 
a given period34.

There are two main reasons why the epidemic spreading is likely to follow a fractal pattern, both in line 
with the main characteristics of fractals, recursiveness, and self-similarity. Recursiveness can be traced to the 
underlying framework of epidemics, namely the population, which tends to follow a power-law function in its 
self-organization35. These aspects of human activity in urban centers have been analyzed in the science of cities 
that show how people live and interact in urban environments. The reason for recursiveness lies in the scalability 
of spreading where the transmission dynamics of the individual level (Fig. 1) is the same as the one in the sub-
population, metapopulation, or city to city level10. Since all of these levels have the same transmission dynamics 
it leaves the scale of observation invariant, which is in line with the inherent behavior of cities35.

Self-similarity patterns of the epidemic appear all over the world and have been identified in Romania, Italy, 
Spain, Germany36, as well as in China, the USA, Brazil, and Europe10. This self-similarity of epidemics can be 
viewed as a useful feature because it allows researchers to assess the current condition and predict the next 
modifications in the epidemiological curves36.

Framework description
The used framework consists of two parts, the spatial element, and the compartmental element. The spatial part 
is used to observe the movement and dynamics of the population and their cross-city behavior during epidemics. 
The compartmental element enables pathogen transmission and its observation.

Spatial dynamics of fractal cities.  People can live in a city for a long time, meeting some inhabitants 
often and others, not at all10. This isolation feature of social clusters prevents the exponential spreading of dis-
eases since greater numbers of infected do not directly correlate with a greater probability of getting infected. 
Therefore, the probability of infection refers more to social groups and not individuals because through an indi-
vidual the entire group of closest contacts is in contact with another group.
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Although the fractal scale range can be infinite, we define the lowest scale value as an individual agent. This 
agent is an integer and is in one of the compartmental states S, I or R . A higher scale of observation comes 
from incorporating the surrounding metapopulation and subpopulation of multiple cities within a country, as 
defined by10,33. Agents are distributed across social groups of different sizes with the average one having 10 close 
individuals16. Figure 1 Shows the highly clustered network with a short average path length that is also highly 
intertwined hence it also can be defined as a network with a small-world structure (SWN)37.

Cities are geographically and epidemiologically separate with the distance between them acting as a bar-
rier inhibiting disease transmission. Since this observation coincides with the definition of epidemiological 
reservoirs38 we use the same terminology. There are several population types based on the location of infected 
individuals. If there is an infected individual inside a city and the disease spreads within it, the population (city) 
is considered as host. Population from which the infection starts, meaning that it transmits the infection directly 
to another population, we define as a source population. The target population is the population of interest to 
the observer.

Compartmental organization.  The compartmental organization is based on the SIR model12 that con-
sists of susceptible ( S ), infected ( I ), and recovered ( R ) individuals, where the S  can become I while the R does 
not return to the previous stages (St → It → Rt) . Models may incorporate more compartments (quarantine, 
treated, or vaccinated individuals) as well as recurring movement across compartments. The total population of 
each model is considered to be constant, as noted:

where the total population is N , note that we incorporate time t  since the compartments may differ while still 
having susceptible ( St ), infected ( It ) and recovered ( Rt ) individuals. Formulas presented next define change 
between compartments:

So that β shows the rate of infection, while γ is the removal rate of infected individuals. City observations are 
treated percentage-wise since commuting from (No

c ) and to 
(

Nd
c

)

 a city due to mutual gravitational forces (Fc) 
changes the population of the city Nc but the country N stays constant. The city-specific susceptible population 
can be calculated as:

This formulation defines St as a function of all susceptible individuals spatially distributed across cities at a 
certain moment, other compartments use the same principle. To define and distribute the population size we 
use Zipf ’s law39. To calculate the population of each city we use the following equation:

So that N is the total population size of a country, k is the rank of the city and s exponent represents the value 
that characterizes the distribution which is 1.07 according to39. The calculation begins with the largest city and 
percolates to smaller cities so that the n th the city population is the 1ns  of the largest city. Varying population 
sizes can depict different phenomena by implementing a multilayered observation instead of a node-based one.

(1)N = St + It + Rt

(2)St = −βSt It

(3)It = βStIt − γ It

(4)Rt = γ It

(5)St =

cities
∑

c=1

Sct

(6)f (k; s,N) =
1

ksHN ,s

Figure 1.   Shows different sized cities acting as reservoirs, they are distributed across a country. A bottom-up 
approach is obtained by implementing individuals, metapopulation, and subpopulations within cities. Small-
world networks are implemented for obtaining circulatory dynamics.
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Different population sizes are important for predicting population movement, as described by the law of 
demographic gravitation40. The law is based on Newtonian principles of distance and mass and explains how 
cities have attraction forces that draw individuals to migrate or visit them, as shown by the following formula:

where Fc presents the force of attraction, No
c  is the size of the city population of origin, Nd

c  is the destination city 
population and d is the distance between the two cities. Cities interact via migrating agents and daily migrations 
do not influence their overall gravitational attraction.

Fractal dimensions.  Natural and biological features are often fragmented implying the existence of a fractal 
dimension. Since for each naturally occurring fractal, there is a finite scaling range (zoom), the structure can 
become smooth (Euclidean) or rough and random (non-self-similar). In Euclidean n-space, a bounded set S 
can be considered statistically self-similar if S is the union of Nr non-intersecting subsets for a scaling factor r , 
each of which is of the form r(Sn ) where the Nr and Sn sets are congruent in distribution to S . We can use the 
fractal dimension to measure S the same way as we use a measurement tool in the Euclidean (discrete) space7, 
it is calculated:

So that Nr  is the number of self-similar (invariant) shapes and r is the corresponding scaling factor. On 
the Hausdorff Dimension scale (HD), a smooth line has a dimension of 1 which is a low value while the high 
values are present in the Mandelbrot or the Julia set with the complexity of 2. Thus, often the fractal dimension 
is 1 < HD < 2.

Fractal dimension calculation.  To understand the complexity of a shape we use fractal dimensions as a 
measure, for calculating it we will use the “Minkowski-Bouligand dimension,” or the “box-counting method”, its 
pseudocode is presented in Table 1. Calculations can be made with different sized boxes for more or less accurate 
representation potentially giving different results41. The number of boxes, for proportion, used in this paper is 
160 obtaining a fractal dimension of 1.25 as in41. The calibration image is listed in references42.

With lower HD numbers we examine the speed and impact of the infection, a single wave it will be shown 
by lower numbers. If it is rebounding and multivalve it will show more complexity and thus greater numbers. 
Another dimension is observed through the total mean (cross country) HD where higher numbers show greater 
dynamics and more diversified results. To further differentiate results, we will calculate lacunarity which is 
a measure of the gap structure in patterns and coincides with abrupt declines in dispersal success on fractal 
landscapes43. It can be also be viewed as a measure of “gappiness” and heterogeneity, higher numbers show-
ing greater emptiness. Lower numbers imply a slow and steady infection while higher ones a dynamic and/or 
rebounding one.

It is defined in terms of the ratio of the variance over the mean value of the function where M and N are the 
sizes of the HD for the processed graph (image)44. We will use it for analyzing the numbers of infected.

Experimental parameters.  Table  2. shows experimental parameters that are applied for all scenarios. 
Implemented disease characteristics are based on15 with the infecting probability being 5% per contact and dis-

(7)Fc =
No
c ∗N

d
c

d2

(8)FD =
logNr

log 1
r

(9)L =
1/MN

∑M−1
m=0

∑N−1
n=0 I(m, n)2

(

1/MN
∑M−1

k=0

∑N−1
l=0 I(k, l)

)2
− 1

Table 1.   Pseudocode for the box-counting approach for calculating fractal dimensions.
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ease duration 10 days. The population of the largest city is trickled down by using Eq. 7 to define the populations 
of other cities.

The number of simulation runs for each scenario (3) and each source (2), giving 6 in total, is 50 with each 
run having 350 iterations. For the spatial component, we use a 10-city setting. Since spatial organization and 
interconnectedness play an important role, we use three different scenarios as in Fig. 2 with the average network 
length of 1.5, 1.48, and 1.4 respectfully.

The first scenario is based on an SWN with high interconnectedness of cities, as in37. All cities are equally 
distant from one another, no city is better connected or presents a networking hub, the only difference is the 
population distribution. The second scenario has a semi-circular SWN orientation. Some cities are more isolated 
from the largest one, making them more difficult to reach. The third scenario has better connectedness across all 
city sizes and is more random in its orientation than the first two. Each city is easier to reach than in other cases.

Experimental results
To discover emergent behavior, we compare intra-scenario results. We check cross scenario results to see how 
disease spreading is affected by the interconnectedness of cities. We observe the maximum number of infected 
at a single moment which shows the burden on the health system. The standard deviation of infected population 
presents the dynamics of infecting. With greater incidence comes greater deviation. The total number of infected 
is a key indicator of the epidemic spreading, although alone it doesn’t show the timeframe and dynamics.

Figure 3 is divided into two parts, the top part displays cumulative simulation results (each graph has 50) 
while the bottom contains the mean results of all simulations respectively. From left to right different scenarios 
are shown (1–3) while top to bottom is the sourcing positions of the pathogen, that being the smallest or largest 
city, respectively.

First scenario.  We see that the situation is less favorable when sourcing from the smallest city, compared 
to the largest one. Furthermore, the mean HD shows that the dynamics is more predictable and “gravitates” 
towards the same outcome. Higher lacunarity numbers show the changing incidence rates indicating complexity 
and dynamics. There is a noticeable jump when infected advance from a small full reservoir to a new large one, 
similar to the “honeymoon effect” phenomenon45 when effective control is used against an endemic infection 
resulting in an initial drop in prevalence to well below the endemic level. Afterward, it is followed by outbreaks 
that periodically increase prevalence above the endemic level as a consequence of a build-up of susceptible 
individuals46.

Greater infection intensity depletes the susceptible population eradicating the disease quicker. “In smaller 
populations, the number or density of infected hosts frequently falls to low levels, random extinction (fadeout) 
becomes inevitable, and the pathogen cannot persist”38. Smaller sites are monitored and tested less often. The 
potential benefit of a disease spreading from a small location is that it is easier to control and put on lockdown 
blocking further propagation.

Table 2.   Parameters for the simulations.

c Number of cities 10

Largest city population 10.000

N Total Population 42,811

k Zipf exponent 1.07

Default nr. of connections 20
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Figure 2.   Spatial distributions of the three scenarios. Each scenario figure shows the sizes of the cities, by 
circles, and by the color bar on the right. Lines present the connections between cities that the agents may use 
for commuting.
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Second scenario.  We see that the smallest city as a source causes higher maximum infected, standard 
deviation, and the total number of infected. The reason for this comes from the gravitational pull Fc of a large 
city since FLargec > FSmall

C  when squared distances are adequately the same, according to (Eq. 7). It will attract 

Cumulative results
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Figure 3.   Shows Graphical results of simulations. Top to bottom for both cumulative and mean results are 
according to the sourcing (starting) positions of the pathogen, smallest and largest city, respectively.
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potential commuters from smaller cities around its vicinity and will keep the natives within it. Migrants from 
(other) smaller cities will return to their place of origin and locally spread the disease. The small reservoir is 
filled quicker so the infection spreads faster across smaller populations. This is combined with the higher prob-
ability of people moving from smaller to other cities, due to the small gravity, additionally increasing chances 
of spreading.

Third scenario.  This scenario shows a lower number of max infected along with a lower standard devia-
tion. Higher interconnectedness allows for disease to spread evenly across a country, so its moment of infection 
peaking is not concentrated. Although dispersed, it gives the same total number as in other scenarios. When the 
disease sources from a large city its population presents a large pool for potentially infected individuals. As its 
gravitational pull attracts individuals from other smaller locations they too participate in the social interactions 
of the large city and commute back to their place of origin which will help propagate the disease top-down. Due 
to the Zipfian distribution39 (Eq. 6.) more small cities are making it more likely for people to commute from 
small to a large city.

Cross country comparison.  Differences between scenarios are observed via the maximum number of 
infected at a single moment and the standard deviation values while lacunarity shows the influence of gravity. 
Unpredictable outcomes come from the second scenario because the lower network connectedness keeps the 
infection within a city. Higher connectedness helps spread the disease quicker37 as in the third scenario. This 
combined with less isolation of other cities gives more predictable outcomes when the infection is sourced from 
the largest city because there are fewer boundaries for disease spreading so the outcomes are difficult to change 
and therefore influence.

Figure 4 shows simulation dynamics and cross-country disease spreading. A country is divided into 10 cit-
ies, width presenting the population, agents are tracked by their daily interactions. The results depict a single 
simulation.

In Table 3 When observing differences between HD in the 1st scenario we see lower values when the smallest 
city is the place of origin, pointing to the self-similarity of results. It means that this scenario is the most often 
repeated, and therefore probable. Greater lacunarity points to spikes of infected at a certain moment, they can 
be seen via the maximum infected at a single moment. Both are present in every scenario with the small city as 
the origin. This points to greater incidence due to the infection advancing from a small reservoir to a new large 
one45, also observable through the standard deviation values. By performing the same simulations on more 
cities with different spatial orientations and population numbers we obtained the same results, note that initial 
scenario conditions are important.

Figure 4.   Shows the dynamics of simulations. Top to bottom results is according to the sourcing (starting) 
positions of the pathogen, smallest and largest city, respectively.
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Comparison with real datasets
To test our hypothesis, we implement real datasets from two countries, Sierra Leone and Liberia, and two dis-
eases, Ebola and Covid-19. Ebola started in the rural areas with a small populace while Covid-19 started in China 
was imported to their capital cities. This difference in starting location makes for a perfect ground for test our 
hypothesis. Our AB model observes cities while datasets observe districts. Characteristics of the two diseases 
will be examined in the discussion part.

The dataset used for Covid-19 in Liberia is based on the reports published by the National Public Health Insti-
tute of Liberia. For Sierra Leone, the data is according to the reports by The Ministry of Information and Com-
munication. The data for Ebola is based on the Ebola World Health Organization (WHO) situation reports for 
respected countries. Figure 5 shows new cases of Covid-19 and Ebola in Liberia and Sierra Leone cumulatively.

Figure 6 observes the distribution of infected across country districts. Districts are sorted according to their 
population, with the least populated on the left, country capital cities are in the most populated districts. The 
starting point for Ebola was in a rural of Guinea in Guéckédou district11, neighboring districts Lofa (Liberia) 
and Kailahun (Sierra Leone).

Covid-19 is much more present in the capital districts of Montserrado and Western Urban with high numbers 
appearing in their closest districts, Margibi and Western Rural respectfully. The Lofa district (Liberia) is fitting 
for disease transmission due to its proximity to the location of disease origin. Secondly, it has a well-developed 
road network further increasing dissemination27.

Figure 7 shows that even though there are sparingly new cases in other districts the majority is located in the 
initial, largest, ones keeping to their gravitational attraction. Regarding Ebola, the reservoir nature of districts 
can be seen in Kailahun and Lofa. We see that the reservoir contains newly infected individuals for some time 
before the disease spreads to other districts.

Table 4. shows numerical standpoints of diseases. Our focus is on fractal characteristics for discerning dynam-
ics enabling the prediction of future epidemiological curves36. Low HD values of Ebola in both countries point 
to self-similarity and combined with high lacunarity point to high disease dynamics at a certain point, as seen 
in Fig. 3. For Ebola in both countries, the initial spike peaked with the maximum number of infected and was 
not repeated. Covid-19 has lower lacunarity values showing no significant spikes of infected. Higher HD values 
show an existing turmoil and dynamics of susceptibility to infection.

Table 3.   Numerical results of simulations.

Scenario 1 Scenario 2 Scenario 3

Source City Small Large Small Large Small Large

Maximum Infected 287.78 242.22 300.84 293.52 213.68 216.92

Standard deviation of Infected 100.0444 90.3565 105.3512 102.5832 84.2937 86.1186

Total Infected 27,471 27,465 27,552 27,609 27,656 27,585

Hausdorff Dimension 1.2374 1.2727 1.2365 1.24 1.279 1.2782

Lacunarity 2.1112 1.775 2.1042 2.0317 1.6787 1.6569
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Figure 5.   Shows the greater incidence of Ebola compared to Covid-19. Note that the epidemic of Ebola 
datapoints cutoff while the Covid-19 continue, the reason being is that the outbreak of Ebola lasted from 25th of 
March 2014. until the 30th of November 2015. Covid-19 epidemic datapoints start from the 15th of March 2020 
until the 16th of March 2021, with an ongoing pandemic.
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Figure 6.   Observes the distribution of infected across country districts, the numbers are presented as a 
percentage of the total number of infected for easier comparison. The figure points to Ebola being more 
dispersed across districts, which is observable point by point and percentage-wise.

Figure 7.   Shows the frequency of newly reported cases in Liberia and Sierra Leone across their districts.
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Discussion
Demographic gravitation has been used for analyzing disease spreading the focus was not on their potential for 
containment. Although diseases used for testing our hypothesis are not the same, they present the most docu-
mented and concentrated disease (epidemic) observation dynamics in recent decades.

Covid-19 and Ebola are Zoonoses, infectious diseases that originate from wildlife, which represents 60% 
of known emerging infectious diseases with their numbers growing fast3. Both of them most likely originated 
from bats5,11. Differences between the observed diseases should have led to a different turn of events. Theoreti-
cally, these differences should enable Covid-19 to be more prevalent than Ebola because it is considerably more 
transmissible3. Being exposed to speaking or coughing is more common than to blood or secretions, which are 
necessary for the transmission of Ebola. Individuals might be asymptomatic and infectious while Ebola patients 
are not contagious until they develop symptoms47. Greater lethality of Ebola3 should have slowed down its pro-
gress. Ebola aftermath shows that it has hit more districts and has spread quicker. Even though Covid-19 has 
started from the largest reservoir it still has not reached its prevalence as Ebola did.

Disease sourcing from rural areas points to behaviors described by our model, those being higher values of 
lacunarity and maximum infected indicating spikes of infected at a certain period. Ebola also has low HD values 
in both countries pointing to self-similarity, which is also evident in our simulations. Covid-19 is sourced from 
capital cities and has lower lacunarity values and no significant spikes of infection. Higher HD values show an 
existing turmoil and dynamics of susceptibility to infection. The majority of infected are located in the initial 
cities which keeps to our notion of their gravitational attraction.

Research shows that connectivity matters more than density in the spread of the Covid-19 pandemic24,48. Large 
cities have a greater probability to become large spreaders compared to smaller locations, namely because of their 
international connectedness and tight commuting relationships24. On the other hand, porous land borders, as 
in the observed countries49, enable more population movement compared to airports.

In the case of this paper, both diseases have been introduced from abroad but to different sized locations. This 
puts high emphasis on connectivity and commuting, but the discussion regarding commuting must be linked 
with its direction. Demographic gravitation explains that large numbers of people act as an attractive force 
towards other people to migrate in that direction which is further strengthened by economic factors48. This is 
in line with our gravitational observation where small locations that have less attractional force are not able to 
stop people migrating towards larger locations. Large locations keep individuals within them due to the same 
force. When daily commute is introduced individuals from smaller locations more often go to large ones than 
otherwise. All locations have similar sizes of social groups16 because they depend not on the size of the location 
but individuals. When an infected is introduced to a small reservoir, the reservoir is filled quicker because of 
the greater infection probability per capita, as can be seen in several locations50,51. Now, this small reservoir has 
greater per capita infection probability, and individuals that are drawn by the greater attraction force of larger 
locations making them a more dangerous place for the infection to start from.

There are several limitations to our study. Disease spreading is influenced by other important factors that 
we did not describe. Two diseases under scrutiny are not the same and behave differently in different locations. 
Although the current situation points to our findings being correct, the Covid-19 pandemic is ongoing and the 
numbers will continue to change. Circumstances in Liberia and Sierra Leone do confirm our findings but they are 
relatively small-sized and disease dynamics might not fold the same way in other countries. Finally, our findings 
are based on numerous simulations which are averaged. Real events happen once and can come out of the most 
unpredictable sources. Nonetheless, our findings point in the same direction.

Conclusion
In this paper, we combine a spatial agent-based model with a compartmental (SIR) model to observe multi-city 
and cross-country epidemics. We observe that gravity maintains the infection inside the city when the sourcing 
position of the pathogen is the largest city. Sourcing from the smallest city quickly dissipates the infection across 
a country. To test our hypothesis, we implement datasets from two countries and two diseases. Disease sourcing 
from rural areas points to the same behaviors as described by our model.

Our future research will be based on implementing different scenarios regarding infection transmission rates 
and source population locations expanding them to cities of various sizes and levels of connectedness. We will 
continue to monitor the Covid-19 pandemic and will compare outcomes with our predictions.

Table 4.   Numerical results of diseases based on real datasets.

Disease Ebola Covid-19

Country Liberia Sierra Leone Liberia Sierra Leone

Maximum Infected 1870 1339 97 146

Standard deviation of Infected 137.24 127.91 10.725 14.794

Total Infected 10,678 14,124 2042 3947

Hausdorff Dimension 1.1403 1.1535 1.296 1.1309

Lacunarity 14.02 14.953 6.1716 3.6046
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