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We report a novel biochemical method based on the
sacrificial hydrogen strategy to synthesize bimetallic
gold (Au)—palladium (Pd) nanoparticles (NPs) with a
core/shell configuration. The ability of Escherichia
coli cells supplied with Hy as electron donor to rapidly
precipitate Pd(II) ions from solution is used to promote
the reduction of soluble Au(IIl). Pre-coating cells with
Pd(0) (bioPd) dramatically accelerated ~Au(III)
reduction, with the Au(IIT) reduction rate being depen-
dent upon the initial Pd loading by mass on the cells.
Following Au(I1I) addition, the bioPd—Au(III) mixture
rapidly turned purple, indicating the formation of col-
loidal gold. Mapping of bio-NPs by energy dispersive
X-ray microanalysis suggested Au-dense core regions
and peripheral Pd but only Au was detected by X-ray
diffraction (XRD) analysis. However, surface analysis
of cleaned NPs by cyclic voltammetry revealed large
Pd surface sites, suggesting, since XRD shows no
crystalline Pd component, that layers of Pd atoms
surround Au NPs. Characterization of the bimetallic
particles using X-ray absorption spectroscopy con-
firmed the existence of Au-rich core and Pd-rich
shell type bimetallic biogenic NPs. These showed
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comparable catalytic activity to chemical counterparts
with respect to the oxidation of benzyl alcohol, in air,
and at a low temperature (90°C).
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gold; palladium

1. INTRODUCTION

Until recently, only chemical and physical synthesis
methods were available to produce metallic nanoparticles
(NPs) but increasing pressure to develop ‘clean’ nanoma-
terial synthesis methods has led to a growing interest in
biotransformations as a route to controlled growth of
nanoscale structures. As a result, the design, synthesis
and characterization of biologically synthesized and
stabilized NPs have recently become areas of significant
interest. Advantages of using micro-organisms as nano-
factories are multiple, being environmentally benign
and often cheaper than chemical methods. Biological
synthesis of NPs is scalable, offers particle size and
shape control, and can even be coupled to the remedia-
tion of precious metal-containing wastes [1]. Various
biological alternative approaches to the manufacture of
supported metal clusters have been developed. Biotem-
plating, a ‘bottom-up’ approach, uses highly ordered
biomolecules such as DNA and proteins (e.g. micro-
tubules, bacterial S-layer proteins, flagellin) to grow
metal clusters [2—4]. Bioreductive routes use the ability
of some bacterial cells to reduce metal precursors enzy-
matically to the zero-valent state via an electron donor
[5,6], usually leading to the formation of metallic NPs
at the cell surface that exhibit a catalytic behaviour simi-
lar or superior to metallic NPs prepared using chemical
methods in a wide range of reactions [7—11].

Bimetallic NPs that exhibit a core/shell structure
[12] were recently shown to possess increased catalytic
activity in several reactions [13—15]. For example,
the tuned coverage of gold (Au) NPs by small platinum
entities was found to maximize Pt efficacy in a fuel
cell electrocatalyst [13], while the enhanced utility
of palladium (Pd)-Au bimetallic was shown for
selective oxidation reactions [14,15]. Although many
physico-chemical techniques have been devised to
prepare Pd—Au nanomaterials, the synthesis of
non-random Pd—Au alloys with highly ordered con-
trolled atomic distribution remains elusive. The
structure of bimetallic combinations, which is dictated
by the preparation conditions, is crucial in order to
obtain the necessary synergistic interactions that lead
to increases in catalytic activity. This work presents a
simple, facile, two-step biochemical and chemical
hybrid route to produce ordered Au—Pd core/shell
nanostructures with strong catalytic activity in the
oxidation of benzyl alcohol.

2. MATERIAL AND METHODS
2.1. Organisms and culture conditions

Escherichia coli MC4100 (provided by Prof. J. A. Cole,
University of Birmingham, UK) was maintained

This journal is © 2012 The Royal Society
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aerobically at 30°C on nutrient agar plates (Oxoid Ltd,
Basingstoke, UK). Precultures (10% inoculum (v/v))
from a mid-exponential phase culture grown anaero-
bically in nutrient broth no. 2 (NB no. 2 (Oxoid, UK)
containing 50 mM sodium formate) were grown overnight
at 37°C in NB no. 2 under anaerobic respiratory conditions
(NB no. 2 supplemented with 0.4% sodium fumarate (w/v)
and 0.5% glycerol (v/v), final concentrations) to maximize
hydrogenase expression [11].

For Pd(II) and Au(IIl) bioreduction experiments, cul-
tures of E. coli MC4100 were grown as above in 21
Durham bottles almost filled to the brim with medium
(NB no. 2) and sealed with rubber stoppers. Mid-logarith-
mic phase cultures (ODggg= 0.5—0.7) were harvested by
centrifugation (12000g, 15 min), washed three times in
100 ml of degassed 3-(N-morpholino)propanesulphonic
acid—NaOH buffer (20 mM, pH 7.2), resuspended in
50 ml of the same buffer and stored at 4°C as concentrated
cell suspensions until use, usually the next day. Cell concen-
tration (mgml~') was determined by correlation to a
pre-determined ODg to dry weight conversion.

2.2. Pd(IT) and Au(III) solutions

For the preparation of Pd(0)-coated cells (bioPd), an
aqueous Pd(II) solution (2mM, to pH 2.3 with
0.01 M HNO3) was made by dissolving an appropriate
amount of sodium tetrachloropalladate (NayPdCly,
Sigma-Aldrich, Poole, UK). Similarly, aqueous Au(III)
solutions (1 mM, to pH 2.3 with 0.01 M HNOj) were
made by dissolving hydrogen tetrachloroaurate
(HAuCly-nH,0,  Sigma-Aldrich) in  pre-acidified
distilled water.

2.3. Manufacture of biomass-supported
palladium/ gold nanoparticles

First, E. coli cells were palladized for examination as
follows. A known volume of concentrated resting cell
suspension (see §2.1) was transferred anaerobically
into 200 ml serum bottles and an appropriate volume
of degassed 2 mM Pd(II) solution was added so that
the final ratio (weight of Pd:dry weight of cells) was
1:19, giving the loading of 5% (w/w) Pd on biomass.
Cells/Pd mixtures were left to stand (30 min, 30°C)
before H, was sparged through the suspension
(200 ml min~'; 20 min). During H, sparging, the
colour of the cell/Pd mixtures went from yellow to
grey, indicating the reduction of cell surface-bound
Pd(II) into Pd(0). Complete removal of Pd(II) from
supernatants was confirmed by the SnCly assay (see
§2.4). Next, bioPd was recovered by centrifugation
(12000g, 15 min), washed three times in distilled
water and resuspended in distilled water so that the
final ratio of Au(III) solution to bioPd suspension was
4:3 (v/v). The bioPd suspension was degassed
(20 min) and transferred anaerobically into an appro-
priate volume of Hs-saturated Au(IIl) solution (by
sparging H, in the solution for 30 min at 200 ml min ")
so that the final ratio of Pd:Au was 1:1 by mass. The
bioPd—Au(IIl) mixture was allowed to react overnight
in a rotary shaker (150 r.p.m., 30°C) and supernatants
were assayed for residual Pd(IT) and Au(III) (see §2.4)
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to ensure complete removal of both metal species. The
final material was recovered as above, washed three
times in distilled water, once in acetone and left to dry
in air.

2.4. Assay of soluble Au(IIT) and Pd(II)

During bioPd manufacture, complete removal of Pd(II)
from solution was confirmed by assaying cell/Pd
mixture supernatants for residual Pd(II) spectro-
photometrically (SnCly, method [16]). Removal of
Au(IIl) from test solutions was monitored by the
thiamine—phloxine assay [17].

2.5. Electron microscopy and energy dispersive
X-ray analysis of Pd— Au-loaded biomass

Following metal deposition, pellets of metal-loaded bac-
teria were prepared for transmission electron
microscopy (TEM). Preparations were rinsed twice
with distilled water, fixed in 2.5% (w/v) glutaral-
dehyde, centrifuged, resuspended in 1.5 ml of 0.1 M
cacodylate buffer (pH 7) and stained in 1% osmium
tetroxide in 0.1 M phosphate buffer, pH 7 (60 min).
Cells were dehydrated using an ethanol series (70%,
90%, 100%, 100%, 100% dried ethanol, 15 min each)
and washed twice in propylene oxide (15 min, 9500g¢).
Cells were embedded in epoxy resin and the mixture
was left to polymerize (24 h; 60°C). Sections (100—
150 nm thick) were cut from the resin block, placed
onto a copper grid and viewed with a JEOL 1200CX2
TEM,; accelerating voltage 80 keV.

For energy dispersive X-ray (EDX) microanalysis,
metallized cells were dispersed in water and then depos-
ited on a carbon thin film coating copper TEM grids
(Agar Scientific, grid thickness: 20-30 nm). A field
emission gun Tecnai F20 microscope operating at
200 kV was used for high-resolution (HR) STEM ima-
ging. In the STEM mode, the smallest condenser
aperture C2 =3 wm (which lowers the electron dose
as well as reducing the beam damage) was used; the
C1 lens was set to spot size 8; the electron probe size
was less than 1nm; and the camera length was
150 mm, chosen to minimize noise and artefacts
caused by diffraction contrast and bright-field elec-
trons. An X-Max Silicon Drift Detector (SDD) was
attached to the microscope to perform EDX element
mapping in STEM mode. This SDD has an active
area of 80 mm?, which is advantageously large to pro-
duce high X-ray count-rates, reduce the acquisition
time needed and thus ease the drift problems of nano-
scale objects. The specimen was tilted to 18° to
maximize the X-ray collection of the detector. Detector
controlling, analysing and processing were performed
using the INCA software, which also provides the
SiteLock function to automatically correct the drift of
the particles.

2.6. Surface characterization of biomass-
supported palladium/gold nanoparticles
by cyclic voltammetry

The NP surface initially presented an organic layer that
was removed by suspending the powder samples in 6 M
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NaOH (p.a. grade) solution for six weeks, changing the
solution every 2 days and rinsing with ultrapure water.
Subsequently, the cleaned NPs were kept in a suspension
with ultrapure water. All electrochemical experiments
were performed in an electrochemical cell as described
previously [18]. All electrolytes were prepared using
182 MQ em Milli-QQ water and Suprapur (Aristar)
grade H,SO,. Electrolyte solutions were degassed
(30 min) before each experiment using oxygen-free nitro-
gen. A Pd—hydrogen reference electrode was used in all
experiments; all data were given in reference to this elec-
trode unless otherwise stated. Data acquisition was
carried out as described previously [18]. For the electro-
chemical measurements, 10l of a cleaned NP
suspension was deposited on a glassy carbon support
electrode. The NPs were allowed to deposit under gravity
on top of the electrode and allowed to dry in air to form a
homogeneous layer. After the NPs were dried, the elec-
trode was gently rinsed with ultrapure water. The
electrolyte solution for electrochemical characterization
consisted of 0.1 M HySO,. All surface characterization
measurements were performed at 100mVs ' and
the potential range was from 0.1 to 1.5 V (versus Pd—hy-
drogen) unless otherwise stated.

2.7. X-ray absorption spectroscopic
characterization of palladium/gold
nanoparticles

Palladium K-edge and gold Li-edge X-ray absorption
spectra were collected at the Rossendorf Beamline
(ROBL) located at the European Synchrotron Radi-
ation Facility (ESRF), Grenoble, France, using a
Si(111) double-crystal monochromator and Si-coated
mirrors for focusing and rejection of higher harmonics.
Data were collected at room temperature in trans-
mission or in fluorescence mode using an argon (Ar)-
flushed ionization chamber or a 13-element Ge detector,
respectively. The energies were calibrated by measuring
the Pd K-edge and Au Lyj-edge transmission spectra of
Pd and Au foil and defining the first inflection point as
24 350 and 11 919 eV, respectively. The Pd—Au-loaded
sample was measured as dry sample (powder). The
extended X-ray absorption fine structure (EXAFS)
oscillations were isolated from the raw, averaged data
by removal of the pre-edge background, approximated
by a first-order polynomial, followed by pg-removal
via spline-fitting techniques and normalization using a
Victoreen function. Dead-time correction was applied
to fluorescence data. The amplitude reduction factors
were obtained to be 0.88 for Pd and 0.92 for Au by
fits of the referenced foils, and fixed in the analysis of
the EXAFS spectra. The shift in threshold energy,
AF,, was varied as a global parameter in the fits. The
theoretical scattering phase and amplitude functions
used in data analysis were calculated using the
FEFF8 [19]. For the Pd edge EXAFS spectra, data
for phase-shifts and backscattering amplitudes were
obtained from the PdO (Pd—O scattering) and Pd foil
(Pd—Pd scatterings) reference compounds. The Au-
Pd reference file used for fitting the Au edge EXAFS
spectrum of the experimental sample was determined
by a theoretical calculation.

J. R. Soc. Interface (2012)

Figure 1. Electron microscopy of metallized cells of E. coli
MC4100. (a) TEM of cells of E. coli MC4100 following the sequen-
tial reduction of PA(II) and Au(III) (5%/5% Pd—Au on biomass
w/w); untreated cells are shown in inset (b). Scale bars are 500
nm. (¢) EDX mapping of two Pd—Au particles showing superim-
posed Au and Pd distributions: yellow, X-ray signal intensity from
the characteristic L, transitions of Au; blue, the characteristic L,
transitions of Pd. The particle on the right-hand side has segre-
gation between Pd and Au with a clearly observed Pd-rich
region. The particle on the left-hand side shows homogeneous
mixing between Pd and Au. Regions of Pd are apparent at the sur-
face of the nanoparticles (arrowed) and some areas between the
NPs also indicated the presence of Pd (circled). Individual distri-
butions of Au and Pd, together with complementary high-angle
annular dark field microscopy, which provides atomic number
contrast, were described previously [21].

During the fits of EXAFS spectra and in order to
reduce the number of fitted variables, the following
constraints were applied:

— The bond distance and Debye—Waller factors for
Pd—Au bonds were constrained to be equivalent
for both Pd and Au edges.

— The ratio of coordination numbers of Pd—Au and
Au—Pd pairs must be related to the overall compo-
sition of Au and Pd in the sample: Nag = z5/z5 X
Npa, where A and B are the absorbing atoms and
za and zp are the molar concentrations of Pd and
Au in the sample [20].
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Figure 2. Surface analysis of bioPd—Au using cyclic voltammetry (CV). (a) Voltammetric profile of bioPd—Au in 0.1 M H,SO,
for the first cycle (solid line), the tenth cycle (dashed line), the last cycle (dotted line) and the glassy carbon support (dash-dotted
line). Scan rate 100 mV s~ '. (b) Voltammetric profile of bioPd—Au in 0.1 M HySO, from scan 10 onwards. The arrows show the

increase/decrease of oxide peaks. Scan rate 100 mV s~ .

2.8. Testing of catalytic activity of the palladium/
gold nanoparticles on dried bacteria

Samples prepared as above (here to 2.5% Pd/2.5% Au
(w/w) on the bacteria) were tested for catalytic activity
in a 50 ml Parr 4592 batch reactor loaded with 50 ml
benzyl alcohol and 180 mg catalyst. The reactor was
sealed and allowed to reach 90°C before pressurizing
with air (6 bar), maintained at a constant value by con-
tinually feeding air. Samples were periodically removed
using a sample valve, filtered (0.2 wm) and then ana-
lysed using a Fisons GC8000/MD800 GC/MS versus
commercial standards.

3. RESULTS AND DISCUSSION

We present a facile, size-controlled and cost-efficient
method to synthesize Pd—Au core/shell nanostructures

J. R. Soc. Interface (2012)

using E. coli which, in contrast to Desulfovibrio desul-
furicans [21], can grow to high density at scale, and
does not produce H,S, a catalyst poison. NP synthesis
relies on the ability of E. coli cells to reduce Pd(II)
ions enzymatically from a precursor (PdCIl;~ salt)
using Hy, as an electron donor [11]. We postulated
that pre-palladizing cells with a fine layer of Pd(0)
would lead to an increase in the rate of Au(IIl)
reduction under H, (see electronic supplementary
material, figure S4) and result in the incorporation of
Au atoms into the Pd seeds. The combined use of
imaging and bulk/surface probing techniques permits
detailed molecular- and atomic-scale structural analy-
sis of the biomass-supported Pd—Au nanostructures.
Following the sequential reduction of Pd(II) and
Au(Ill), E. coli cells exhibited complete coverage of
both the cell surface and the periplasmic space, with
some cells showing a small number of intracellular
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NPs (figure 1a). Some large clusters were observed
(figure la); a bimodal size distribution was reported
previously for chemically synthesized Pd—Au NPs [22]
and for bioNPs on D. desulfuricans [21]. Bimetallic
Pd—Au particles of approximately 16 nm were exam-
ined with respect to their Au and Pd distributions as
shown by the characteristic X-ray signals from L, tran-
sitions for Au and Pd atoms. In accordance with other
work using high-angle annular dark field analysis [21],
which produces image contrast dependent on atomic
number, figure 1lc¢ shows that Pd agglomerates
(arrowed) decorate an Au-rich NP core region, with
some Pd detected also between the NPs (encircled).
Analysis by X-ray powder diffraction (electronic sup-
plementary material, figure S5) [23] showed clearly
crystalline Au(0), but not Pd(0), components.

Characterization of the obtained Pd—Au structures
using X-ray absorption spectroscopy analysis shows an
important degree of metal-metal coordination. Com-
bined analysis of cyclic voltammetry (CV; figure 2) and
EXAFS data obtained at the Pd K- and Au Ly-edges
(figure 3) is consistent with the development of a core/
shell structure where surface-exposed Pd atoms decorate
a core of Au atoms. Figure 2a shows the voltammetric
profile for the bioPd—Au preparation. The first cycle
shows the presence of Pd oxide and the absence of any
Au oxide, i.e. most surface sites are occupied by Pd.
Since XRD analysis (electronic supplementary material,
figure S5) showed that Au occupied the bulk sites, the
bioPd—Au NPs appear to exhibit an Au—Pd core/shell
structure. Pd oxide desorption potentials correspond to
those expected from bulk Pd although the full width at
half maximum of the peak is somewhat larger than for
bulk Pd [24], indicating that there is a significant pertur-
bation brought about by the gold component of the NPs.
Further potential cycling engenders changes to the sur-
face associated with both oxidative cleaning of all Pd
sites and Pd dissolution [24]. Au oxide stripping peaks
are now visible and continue to increase in size as a func-
tion of potential cycling. This is completely consistent
with continual electrochemical dissolution of Pd covering
Au sites (after dissolution of a Pd capping layer). Inter-
estingly, this is the reverse configuration of that
predicted according to the sequence of reduction of the
precursors, i.e. as Pd(0) seeds were used, surface Au-
rich Pd NPs immobilized on cells (Pd core/Au shell
NPs) were expected. Simple thermodynamic arguments,
based on the lower surface energy of Au and stronger Pd—
Pd bonding, would also favour the Pd qe—Aug,en con-
figuration [25]. This is clearly not the case here, as
confirmed by CV (figure 2). Similar results have been
reported in studies where the sacrificial hydrogen strat-
egy was used to generate the Pd—Au NPs [22], where
the mechanism was attributed to pre-formed Pd particles
reducing Au(IIT) (the respective redox potentials are
Au*t/Au, 1.002 V; Pd*"/Pd, 0.83V) to generate Pd*"
ions which then relocate around Au NPs and are reduced
to Pd(0) via Hy on the Au—NP surface. The two NPs in
figure 1c¢ show different stages of this progression.

X-ray absorption near-edge structure analysis of the
bioPd—Au sample at both Au and Pd edges shows that,
while Au is mainly present as Au(0), Pd is present as a
mixture of Pd(0) and Pd(II), with a significant
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dominance of the ionic part (electronic supplementary
material, figure S6). The decrease of whiteline intensity
observed at the Au Ly-edge of the experimental sample
in comparison with the Au foil sample is indicative of
the decrease in the density of unoccupied sites of the
Au 5d orbital in the bioPd—Au sample relative to the
Au bulk, which is typical of Pd—Au alloy formation
[26,27]. To confirm Pd—Au alloy formation and to dis-
cern different alloying motifs (random or core/shell-like
non-random), EXAFS spectroscopy was used. Figure 3
shows the EXAFS spectra of bioPd—Au NPs and refer-
ence compounds (Au, Pd foils) at both the Pd K- and
Au Ly-edges (figure 3a(i), b(i)) along with their cor-
responding Fourier transforms (FTs; figure 3a(ii),
b(ii)). Pd K and Au Ly structural parameters includ-
ing the coordination number of the different paths
(Au—-Au, Au-Pd, Pd-Pd, Pd—Au and Au-M; Pd—
M (where M is Au or Pd)) of Au, Pd foils and
bioPd—Au NPs are summarized in table 1. The first
shell Pd-metal coordination number (Npg_y=
Npg—au+ Npg—pa) was calculated to be 3.1 +0.4
(table 1) and is much smaller (by a factor of 3) than
that of Au—metal (Nay—m = Nau—au + Nau—pa) calcu-
lated to be 10.7 £+ 0.6. According to Teng et al. [28], the
fact that Npg—m < Nau—m indicates that a larger
number of Pd atoms segregate to the surface of the
NPs and Au atoms are present in the core, since
atoms on the surface have fewer neighbours than
those in the core. In addition, the environment of Au
atoms is highly ordered in the bioPd—Au sample, pre-
sumably owing to their preferential bonding in the
core since no lattice expansion was observed in this
sample as the Ra,—ay in Au foil and bioPd—Au were
similar within the experimental errors. We conclude
that the EXAFS fitting results are completely in
accordance with a Pd shell and Au core structure as
N(Au-M) > N(Pd-M) (table 1). Additional evidence
for the formation of a non-random alloy with a core/
shell structure is the fact that the Au—Pd bond length
(2.75 £ 0.02 A) is smaller than those observed for
Pd-Pd (2.76 £ 0.02 A) and Au—Au (2.84 +0.02 A).
As suggested previously [28], Au—Pd bonds possibly
formed very stable bridges between two sub-lattices at
the interface of the ordered Au core and disordered
Pd shell structure. The disorder in the Pd shell is due
to the bonding of Pd atoms with O, as was demon-
strated by EXAFS spectroscopy, which indicates that
the Pd surface atoms are exposed/coordinated to
oxygen and/or nitrogen donor atoms as significant con-
tribution to the EXAFS signals arose from those of Pd—
O or Pd—N bonds. EXAFS spectroscopy cannot dis-
tinguish between the Pd—O and Pd—N contribution;
therefore, they are both modelled as Pd—O for simpli-
city. Thus, at the Pd edge, the first three peaks of the
FT correspond to Pd—0O;, Pd—0, and Pd—Pd bonds,
respectively. The distances were identified using the
Pd—-0O and Pd—Pd backscattering phase and amplitude
functions obtained from atomic coordinates of PdO
using the FEFF 8 program. From the Pd—O coordi-
nation numbers, the fraction of oxidized atoms was
estimated to be about 65% (1.2/1.9).

The size of the bimetallic NPs, estimated by means
of the determination of the average metal coordination
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Figure 3. EXAFS analysis of bioPd—Au and reference compounds. K>-weighted EXAFS spectra (left panel) and corresponding F'T
(right panel) of bioPd—Au sample and reference compound at the (a) Pd K-edge and (b) Au Ly-edge. Blue lines, data; red lines, fit.

Table 1. Best-fit results obtained by EXAFS analysis of Pd
foil, Au foil and bioPd—Al bimetallic sample.

sample Pd foil Au foil bioPd—Au
Npa—pa 12* 1.9b(4)
NPd—Au 1.2
Nau-pd 0.8 (2)
NAu*Au 12* 9.9 (6)
Npg—m 3.1 (4)
NAu—l\I 10.7 (6)
“Nu-mt ) 7.8 (6)
Rpa-pa ((1%)) 2.74 (14) 2.76 2163
RPd*Au 2 2.75 (17
Rau-au (A) 2.84 (19) 2.84 (18)
oha—ra (A?) 0.0058 (58) 0.0060 (6)
0“pa—au (A?) 0.0077 (72)  0.0039 (4)
ORu-au (A%) 0.0088 (9)

Value fixed for calculation.

PCoordination numbers were constrained in the fits to be varied
in accordance with equation: NPd*Au/NAu*Pd = XAu/XPd-
CNRI_l\,I = XAuNAu—l\I + XPdNPd—I\l (Where XAu and Xpd are
the molar composition of Au and Pd, respectively).

J. R. Soc. Interface (2012)

number, Ny, where Ny is 7.8 + 0.6, corresponds to
a particle size of 1.5—2.5 nm using a previously reported
correlation between the coordination number and the
particle size [29]. This is not consistent with the particle
size estimation obtained from the XRD spectrum (esti-
mated particle size of about 4.5 nm; see electronic
supplementary material, figure S5), owing probably to
the enhanced surface disorder (significant relaxation
under the influence of ligands, e.g. oxygen donor
atoms), which may result, according to Yevick & Frenkel
[30], in the underestimation of particle size of metal NPs
in the size range under 5 nm.

Finally, we showed the catalytic activity of the
bioPd—Au NP material. A mass metal loading of 5%
is commonly used for chemical catalysts; the NPs
(2.5% Pd/2.5% Au) were reacted against benzyl alco-
hol. The biogenic catalyst in air compares well with
the chemically prepared catalyst in O, [14] (table 2;
entry 3) at a similar catalyst loading. Much higher turn-
over frequencies (TOFs) can be achieved with TiOo-
supported catalysts than thus far observed for the
bioPd—Au catalyst, but these high activities appear
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Table 2. Comparison of the catalytic activity of the biocatalyst for benzyl alcohol oxidation with data from the literature.

(metal)

catalyst 2.5% (10"® mol 17

Au/2.5% Pd reaction conditions alcohol) TOF

on support as (h™hH)®
no. shown catalyst (g) alcohol (1) T (K) P (10°Pa) gas S(r.p.m.) Au Pd at 0.5 h  reference
1 E. coli 0.180 0.05 363 6 air 1200 44.6 82.5 1083 this

study

2 E. coli 0.090 0.025 363 1 O, 1200 44.6 82.5 887 [31]
3 TiOo 0.200 0.04 373 2 0Oy, 1500 63.5 118 607 [14]
4 TiOo 0.007 0.04 373 1 O, 1500 2.1 3.9 6190 [14]
5 TiO, 0.007 0.04 373 5 O, 1500 2.1 3.9 6190 [14]
6 TiO, 0.007 0.04 383 1 O, 1500 2.1 3.9 14270 [14]
7 TiOo 0.007 0.04 433 1 Oy, 1500 2.1 3.9 86500 [14]
8 TiO, 0.007 0.04 433 10 O, 1500 2.1 3.9 65400 [32]
9 TiO, 0.025 0.04 393 10 O, 1500 7.9 14.7 1300 [33]
10 TiO, 0.025 0.04 433 10 O, 1500 7.9 14.7 28400 [33]

“Calculation of turnover frequency (TOF, h™') after 0.5 h of reaction. TOF is defined as molecules reacting per active site in
unit time. Here, TOF numbers were calculated on the basis of the total loading of metals. P, pressure; S, stirrer speed.

to be favoured by much lower catalyst loadings (approx.
6 x 10" mol 1" in entries 4-8, cf. approx. 130180 x
10" mol 1 ; entries 2 and 3). Also, entries 9 and 10
show a 20-fold enhancement in TOF over a 40°C
increase in temperature, which suggests a high potential
of the biomaterial as this has an activity comparable to
that of entry 9 at a 30°C lower temperature.

4. CONCLUSION

In conclusion, we present a two-step biochemical and
chemical hybrid route to produce ordered Au—Pd
core/shell nanostructures. First, cells direct the for-
mation of Pd NPs in the periplasm (via enzymatic
reduction of PA(II) precursors [11]), which are in turn
used to seed the formation of Au NPs from solution.
Pd(0) seeds reduce Au(IIl) and Pd relocates as a shell
of Pd(0) via a Pd*" intermediate under Hy. The result-
ing biomass-supported Au—Pd core/shell NPs, and
other bimetallics produced using this easy and scalable
approach, could potentially find novel applications in
diverse fields such as remediation of environmental pol-
lutants [9], green chemistry/catalysis (e.g. selective
oxidations) and be incorporated in proton exchange
membrane fuel cells in lieu of the traditional Pt—Ru
catalysts to enhance performances in a cost-efficient
manner [10]. The catalytic activity of bioAu—Pd NPs
in selective oxidations has recently been shown in our
laboratory [31] and is reported here for benzyl alcohol
oxidation in air at low temperature.
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