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Abstract: Background: Early metabolic reorganization was only recently recognized as an essentially
integrated part of immunology. In this context, unbalanced ROS/RNS levels connected to increased
aerobic fermentation, which is linked to alpha-tubulin-based cell restructuring and control of cell cycle
progression, were identified as a major complex trait for early de novo programming (‘CoV-MAC-
TED’) during SARS-CoV-2 infection. This trait was highlighted as a critical target for developing
early anti-viral/anti-SARS-CoV-2 strategies. To obtain this result, analyses had been performed
on transcriptome data from diverse experimental cell systems. A call was released for wide data
collection of the defined set of genes for transcriptome analyses, named ‘ReprogVirus’, which should
be based on strictly standardized protocols and data entry from diverse virus types and variants
into the ‘ReprogVirus Platform’. This platform is currently under development. However, so
far, an in vitro cell system from primary target cells for virus attacks that could ideally serve for
standardizing the data collection of early SARS-CoV-2 infection responses has not been defined.
Results: Here, we demonstrate transcriptome-level profiles of the most critical ‘ReprogVirus’ gene
sets for identifying ‘CoV-MAC-TED’ in cultured human nasal epithelial cells infected by two SARS-
CoV-2 variants differing in disease severity. Our results (a) validate ‘Cov-MAC-TED’ as a crucial trait
for early SARS-CoV-2 reprogramming for the tested virus variants and (b) demonstrate its relevance
in cultured human nasal epithelial cells. Conclusion: In vitro-cultured human nasal epithelial cells
proved to be appropriate for standardized transcriptome data collection in the ‘ReprogVirus Platform’.
Thus, this cell system is highly promising to advance integrative data analyses with the help of
artificial intelligence methodologies for designing anti-SARS-CoV-2 strategies.

Keywords: immunology paradigm shift; melatonin; ADH5; E2F1; cell cycle; SARS-CoV-2 ∆382; SARS-
CoV-2 helicase; SARS-CoV-2 RdRp; anti-viral diagnosis and strategies; microbiota; repurposing drugs

1. Background
1.1. Is There a Paradigm Shift in Understanding Immunology?

It is well understood that plants and animals have similar responses and cell memory
mechanisms to manage immunology [1,2]. Effective immunologic protection requires a va-
riety of innate and adaptive cell responses and cell memory tools [1–4]. However, immuno-
logic responses are energy-consuming and require efficient metabolic reprogramming, but
metabolic reorganization is not fully recognized as an integrated part of immunology [5–8].
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Viruses have comparatively low Gibbs energy due to their chemical compositions [9,10].
This makes their replication highly competitive and is the basis for their ‘structural violence’
against the host cell metabolism (see discussion on this term in Costa et al. 2021 [11]).
Virus-induced host cell reprogramming intended to support host defense is turned ad
absurdum for the host and favors virus replication as the driving force. As a consequence
of this conflict, any viral infection provokes a struggle for commanding the coordination of
the host cell program, which starts in the initially infected cells. Competing for bioenergy
and ‘territories’ is decisive for the success of virus reproduction and evolution.

These insights stimulated our group to take advantage of mixed plant and human
cell-based experimental systems for gaining general, relevant knowledge on early repro-
gramming during SARS-CoV-2 infection. Our complex approach was explained on the
basis of extensive literature reviews in a recent paper entitled ‘From plant survival under se-
vere stress to anti-viral human defense—a perspective that calls for common efforts’ [11,12].
Having applied our theoretical concept by comparing transcriptome data from a resilient
plant system with coronavirus-infected human cells of diverse origins, a major complex
trait for early de novo programming upon SARS-CoV-2, named ‘CoV-MAC-TED’, was
identified that should help in tracing critical virus footprints. This trait covers unbalanced
levels of ROS/RNS (i.e., reactive oxygen species in relation to reactive nitrogen species),
which connects to temporarily increased aerobic fermentation that links to α-tubulin-based
cell restructuring and cell cycle regulation [11].

1.2. Resilience Can Depend on the Capacity for Efficient Early Reprogramming—Learning
from Plants

Plants as settled organisms are especially challenged to rapidly confront highly diverse
and complex abiotic and biotic environmental constraints, including virus threats. Marker
development is essentially required to permanently advance breeding strategies that can
quickly cope with ever-changing environmental conditions, such as climate changes. Con-
sequently, the prediction of adaptive robustness that provides resilience is best explored in
plants [13]. In this context, early reprogramming in target cells and tissues that impacts
final agronomic or quality characteristics (such as yield stability or richness in secondary
metabolites) was raised by our group as a trait per se [14–20]. We developed unique
concepts and tool kits that predict plant robustness in the field from respiration traits as
early as several hours during seed germination [21–26]. This innovative approach was
tested and preliminarily validated using diverse plant species [13,25,26]. This observation
suggests common mechanisms for resilient life performance across plant species. As a
hypothesis, we expect similar performances across oxygen-dependent, respiring eukary-
otic organisms. Applying a higher degree of abstraction, we argued that these results
might also be promising to identify critical mechanisms in human cells under virus stress,
including SARS-CoV-2, which might help pave the way for designing early combating
strategies [11,12].

1.3. Early Reprogramming Can Link to ROS/RNS Equilibration and
Sugar-Dependent Fermentation

We found that adaptive early reprogramming in plants can be critically connected to
temporarily enhanced, sugar-dependent fermentation [11,26]. This process was essentially
regulated by an enzyme named alternative oxidase (AOX), which maintains equilibrated
ROS and RNS levels, regulates metabolic and energetic homeostasis and adjusts respiration
overload and fermentation, which at the same time is associated with the induction and reg-
ulation of cell division growth [11,26]. These characteristics make AOX a highly promising
functional marker resource for improving general plant resilience. Its role in early repro-
gramming was indicated in several applied systems cited in Arnholdt-Schmitt et al. [12].
However, humans do not possess this enzyme (see discussions in [11,12]). Nevertheless,
understanding the functional importance of AOX in plants can guide research strategies
to identify marker gene candidates for resilience in human target cells against virus at-
tacks appropriate to characterize resilient traits early in reprogramming. Costa et al. [11]
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suggested that melatonin could at least in part substitute the early role of AOX during
reprogramming. Melatonin is a natural hormone in humans, which has also been recog-
nized as a phytohormone [27]. It is produced in most organs and cells [27–31], including
human salivary gland cells [32]. Costa et al. [11] observed that ASMT transcript levels were
increasingly dependent on MOI level and infection time in MERS-CoV-infected MRC5 cells,
which encouraged studying markers for melatonin metabolism in nose cells. Melatonin
possesses anti-oxidant and pathogen defense-related properties and shows high fluctua-
tion in its cellular concentration [27,33–37]. Furthermore, melatonin has been proposed
as an anti-viral agent [38] and is promising as a repurposing drug to treat SARS-CoV-2
infections [39,40].

1.4. Driving a Standardized Collection of Data on Virus-Induced Early Reprogramming

Arnholdt-Schmitt et al. [12] initiated common efforts for a standardized collection of
transcriptome data during early reprogramming after virus infection from a defined set
of genes, named ‘ReprogVirus’. The principle intention of this approach was to identify
common early target traits that could help in designing therapeutic strategies, which could
be applied for a wide variety of virus types and variants. In the present communication,
we reduced the number of tested genes from ReprogVirus to promising core markers
for CoV-MAC-TED components [11]. Thus, genes were selected to identify a shift in
ROS/RNS (ASMTL, SOD1, SOD2, ADH5, NOS2) and represent glycolysis (PFK, GAPDH,
Eno) and lactic acid fermentation (LDH) as well as structural cell organization (α-Tub).
We assumed that ASMTL could indicate oxidative stress equilibration, while SOD1 and
SOD2 genes mark anti-oxidative activities and were selected to indicate oxidative stress.
ASMTL is a paralog of ASMT, which is involved in melatonin synthesis in human cells [28].
However, we could not find ASMT gene transcripts in collected human nasal epithelial
cells. ADH5 is known to be involved in ROS/RNS equilibration through NO homeostasis
regulation [40–42], and the inducible NOS gene, NOS2, relates to the induction of NO
production [11,43]. NOS1 and NOS3 had not been encountered in sufficient quantities in
the collected epithelial nose cell data. Further, we selected SNRK and mTOR to highlight
cell energy status signaling [44–47]. mTOR is activated when there is excess energy in
contrast to SNRK, where higher expression indicates energy depletion. Genes for E2F1
and mTOR were included to indicate changes in cell cycle regulation, namely cell cycle
progression (G1/S and G2/M transitions) [47]. E2F1 belongs to the transcription factor
family E2F and is known as a cell cycle activator. The interferon regulator factor IRF9
demonstrated early transcription in SARS-CoV-2-infected human lung adenocarcinoma
cells and was therefore proposed as a functional marker candidate that could identify
the initial signals of the classical immune system [11]. Here, we studied the validity of our
approach for SARS-CoV-2 in human nasal epithelial cells (NECs), which was originally
identified to cause Coronavirus Disease 2019 (COVID-19). Additionally, we tested whether
the same approach could be applied to a SARS-CoV-2 variant (SARS-CoV-2 ∆382). This
mutant was detected in Singapore and other countries and had been associated with less
severe infection [48,49].

2. Materials and Methods
2.1. Gene Expression Analyses of RNA-Seq Data from SARS-CoV-2-Infected Human Nasal
Epithelial Cells

In this work, we analyzed the expression of the main ReprogVirus genes (11, 12,
for gene abbreviations see Table S1) in transcriptomic data from human nasal epithelial
cells infected with two SARS-CoV-2 variants (wild type and mutant ∆382) at 0, 8, 24 and
72 hpi (hours post-infection). Transcriptomic data (RNA-seq data) are available in SRA
database at GenBank (NCBI) under the bioproject PRJNA680711 previously published by
Gamage et al. [48]. The ReprogVirus genes analyzed were involved in a shift in ROS/RNS
(ASMTL, SOD1, SOD2, ADH5, NOS2), glycolysis (total PFK (PFKM, PFKL and PFKP),
GAPDH, total Eno (Eno1, Eno2 and Eno3)), lactic acid fermentation (total LDH (LDH-
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A, LDH-B, LDH-C, LDH-AL6A, LDH-AL6B)), structural cell organization (total α-Tub
(TUB-A1B, TUB-A1C, TUB-A4A)), cell cycle activator (E2F1), cell energy status (SNRK,
mTOR) and immune response (IRF9). Accession numbers of these genes are available in
Costa et al. [11]. SARS-CoV-2 proliferation was monitored, evaluating transcript levels
of virus helicase (YP_009725308.1) and virus RNA-dependent RNA-polymerase (RdRp)
(YP_009725307.1) genes.

Gene expression was evaluated by mapping, quantifying and normalizing the reads
of each ReprogVirus gene in the RNA-seq data with three biological replicates (three dif-
ferent donors). For this, ReprogVirus cDNAs were aligned against RNA-seq data using
the Magic-Blast software [50]. Specific parameters in Magic-Blast as word size of 64 were
included to ensure specific read detection for each gene. The number of mapped reads
was obtained using the HTSeq [51] program exploring an alignment file (in SAM format)
derived from Magic-Blast. Normalization of reads was performed using the RPKM (Reads
Per Kilobase of transcript per Million of mapped reads) method [52] according to the fol-
lowing equation: RPKM = (number of mapped reads × 109)/(number of sequences in each
database × number of nucleotides of each gene).

2.2. Statistical Analyses

Normality and homogeneity of variances from the analyzed variables (in RPKM) were
tested with Shapiro–Wilk test and Levene tests, respectively, using InfoStat 2018I. Then,
ANOVA tests for single measures were performed using Excel datasheet for each donor
and virus variant along different time points. Significance levels were set at α = 0.05.

We highlight that we interpret our data as ‘real’ observations under the employed
conditions involving only small samples, which certainly provide insights that cannot
obtain relevance or not relevance by using significance calculation. Nevertheless, we
applied significance calculations at usual p-values for biological research to focus our
insights. Readers are encouraged to familiarize themselves with the current paradigm
change related to the usage of statistical significance [53–57].

3. Results

Figure 1 shows relative transcript level changes of selected ReprogVirus genes in nasal
epithelial cells infected with SARS-CoV-2 or SARS-CoV-2 mutant ∆382 at 8 hpi, 24 hpi and
72 hpi. Transcript level changes are expressed as % of 0 hpi. Standard errors (SE) are listed
for all genes in Table S1.

Transcript profile level changes for SARS-CoV-2 (original virus) infection are given in
Figure 1A and demonstrate similar increases for ASMTL and ADH5 (207% and 197%) at
8 hpi and indicate unbalanced ROS/RNS at 24 hpi (94% ASMTL and 159% ADH5), which
is supported by near-basal SOD1 and SOD2 transcript levels (112% and 108%) in relation to
an increased transcript level of NOS2 (163%). At 72 hpi, transcript levels of all ROS/RNS-
related genes were simultaneously reduced to below basal values observed at 0 hpi (57%
ASMTL, 76% SOD1, 68% SOD2, 73% ADH5 and 61% NOS2). The transcription of glycolysis-
related enzymes was rapidly increased at 8 hpi, with the highest transcript accumulation
for enolase (267%). This high increase at 8 hpi was associated with a similar increase
in LDH transcription (251%) linked to highly enhanced transcript levels for α-tubulin
(238%). SARS-CoV-2 ∆382 (Figure 1B) shows a very similar profile for ROS/RNS signaling
and metabolism and structural cell organization-related traits. They also display almost
identical signaling for a change in cell cycle regulation and the lack of strong stimulation of
the classical immune system represented by missing IRF9 transcript accumulation level
changes. Both genotypes demonstrate a high increase in E2F1 transcript stimulation at 8 hpi,
which signals rapid cell cycle activation. E2F1 transcript levels decreased slightly at 24 hpi,
but reduced rapidly below the basal values observed at 0 hpi with 62% and 72% (at 72 hpi),
respectively. These observations together with increased transcript levels of SNRK and
mTOR at 8 hpi (126% and 162%) and 24 hpi (131% and 182%) for the original SARS-CoV-2,
and for SARS-CoV-2 ∆382 at 8 hpi (111% and 150%) and at 24 hpi (149% and 205%), point
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both virus variants towards early energy depletion and rapidly driven cell cycle progression
plus cell cycle arrest at 72 hpi. At 72 hpi, no energy depletion is signaled anymore for both
virus variants (SNRK: 76%, 83%). However, SARS-CoV-2 ∆382 shows at 72 hpi a slower
decrease in mTOR transcript accumulation (109% vs. 86% for original virus), and this,
together with the slower decrease also for E2F1 transcription (72% vs. 62% for original
virus), might indicate slightly delayed cell cycle progression and arrest for the mutant.
These last observations link to the postponed increase in transcript levels of LDH (at 8 hpi
247% mutant vs. 251% original virus and at 24 hpi 205% mutant vs. 179% original virus)
and α-Tub (at 8 hpi 220% mutant vs. 238% original virus and at 24 hpi 189% mutant
vs. 157% original virus). Further, delayed cell cycle progression for SARS-CoV-2 ∆382 is
supported by two-way ANOVA analysis. This analysis identified significant transcript
level increases in SOD2, ADH5 and PFK early at 8 hpi and highlighted a significant
increase for NOS2 from 8 hpi to 24 hpi only for the original virus. On the other hand, it
demonstrated a significant increase for mTOR from 8 hpi to 24 hpi only for the mutant.
However, the effect of such differences between the original virus and the mutant did
not substantially influence the initiation kinetics of IRF9 transcription. A transcript level
increase for IRF9 was marginally seen at 72 hpi for both virus variants (>110%, both non-
significant) and only a slightly different extent is indicated between the original virus and
mutant (120% vs. 111%). The infection trials had been performed in unsynchronized nasal
cell cultures [48,58]. Thus, it cannot be excluded that the observed differences in transcript
levels between both virus variants may be due to experiment-dependent, differentially
non-synchronized cell cycle phases.
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Figure 1. Transcript accumulation of selected ReprogVirus marker genes in human nasal epithelial
cells infected with two SARS-CoV-2 variants at 8 h post-infection (hpi), 24 hpi and 72 hpi. Transcript
levels are averages from three cell origins (donators/cell cultures) given in % of 0 hpi. (A)—SARS-
CoV-2 (virus originally discovered); (B)—SARS-CoV-2 ∆382. Two-way ANOVA analysis identified
differential transcript level changes along early times between the original virus and the mutant
(marked by enlarged, fat letters). Different letters indicate significant differences between net RPKM
for α = 0.05. Letters on the 100% horizontal line correspond to 0 hpi. The result of two-way ANOVA
analysis for all genes can be consulted in Figure S1.
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Figure 2 shows transcript accumulation in RPKM for both virus variants from nasal
epithelial cells separated for the three cell origins that resulted in the averages shown
in Figure 1. Additionally, this figure integrates transcript accumulation of virus helicase
and virus RNA-dependent RNA-polymerase (RdRp) as markers for virus proliferation.
In Figure 2A, it can be seen that cells from origin 1 demonstrate lower transcript levels
for enolase and LDH at 24 hpi. This was observed after infection by both SARS-CoV-2
variants. Additionally, for both virus variants, virus helicase and RdRp indicate the start
of virus replication at around 24 hpi though to a slightly lower degree for SARS-CoV-2
∆382. In Figure 2B, transcript accumulation of virus helicase and virus RdRp points to a
burst of virus replication at 72 hpi. The level of virus transcripts is lower for the mutant
than for the original SARS-CoV-2 virus. However, cells that originated from donator 1
that showed lower transcript accumulation for enolase and LDH at 24 hpi in comparison
to cells from donators 2 and 3 in response to both virus variants did not indicate a burst
of virus replication at 72 hpi, but only a slow increase from 24 hpi. Nevertheless, cells of
donator 1 also demonstrated lower virus RdRp transcript levels at 72 hpi (Figure 3). This
differential performance of cells from donator 1 connects to higher transcription levels of
SNRK at 72 hpi in cells from donator 1 after infection with both the original SARS-CoV-2
and SARS-CoV-2 ∆382 (Figures 2 and 3). It signals higher energy depletion for donator
1 cells at 72 hpi and confirms the critical energy dependency of SARS-CoV-2 replication
for both variants. However, the higher values for enolase and LDH observed at 24 hpi for
cells infected by the mutant, the differential development of SNRK over time and higher
values at 72 hpi observed for mTOR from donator 1 in the mutant (Figure 3) argue for
prolonged cell cycle progression and a delay in cell cycle arrest related to both the origin of
cells from donator 1 and infection by the mutant, respectively. Nevertheless, since longer
observation times and technical repetitions in synchronized cultures are missing, it cannot
be concluded whether individual origin or differentially unsynchronized cell cultures
caused these differences in the emergence of a burst in virus replication.Vaccines 2021, 9, x FOR PEER REVIEW 7 of 14 
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Figure 2. Burst of SARS-CoV-2 virus proliferation at 72 hpi in nasal epithelial cells from three origins
infected by two SARS-CoV-2 variants indicates an energy-dependent link to aerobic glycolysis and
fermentation at 24 hpi. (A) RPKM values of enolase, LDH, helicase and RdRp polymerase transcripts
at 24 hpi. (B) comparative analysis of RPKM values of enolase and LDH at 24 hpi, helicase and RdRp
polymerase transcripts between 24 and 72 hpi as well as SNRK and IRF9 at 72 hpi.
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4. Discussion

This is the first time that the relevance of the marker system ‘CoV-MAC-TED’, which
is based on a relatively small set of key genes, was validated in primary human target
nose cells for respiratory SARS-CoV-2 infections. It is also the first time that this ap-
proach was tested for two SARS-CoV-2 variants, which are associated with differences in
clinical effects [48,49].

Our analyses have been performed in public RNA sequencing data provided from
experiments with human NECs described in Tan et al. [58] and Gamage et al. [48]. Thus,
these authors’ results and conclusions helped us to validate the relevance of our key marker
candidate approach. Transcriptome accumulation of the selected set of ‘ReprogVirus’
genes showed a similar performance of ‘CoV-MAC-TED’ in human NECs infected by
the originally discovered SARS-CoV-2 virus compared to infection by SARS-CoV-2 ∆382. In
this aspect, our results agree with the conclusions drawn by Gamage et al. [48]. In addition,
our observation that both virus variants induced cell cycle activator E2F1 to the highest
transcript levels at 8 hpi among all tested genes and times is in good agreement with the
results of Gamage et al. [48]. These authors highlighted enhanced numbers of transcription
factor E2F targets during early virus infections and a decrease over time combined with
high activity related to cell cycle checkpoint G2M.

However, applying CoV-MAC-TED also indicated differences between both SARS-
CoV-2 variants. The complex marker components revealed virus-induced ROS/RNS
de-balancing, differential glycolysis, fermentation and cell cycle regulation that pointed
to delayed cell response and cell cycle arrest for the mutant, which connected to delayed
virus propagation. Interestingly, a delay in cell cycle arrest was also indicated for one of
three cell origins (cells from donator 1), which pointed to the relevance of lower levels of
glycolysis and aerobic fermentation for postponing virus replication (Figure 2).

In the same RNAseq data that we used for the presented research, the providing
authors Gamage et al. [48] had intensively studied the complex immune response of SARS-
CoV-2-infected NECs compared to cells infected by influenza H3N2. Influenza infection
showed an earlier burst of virus replication at 48 hpi related to a pronounced early initiated
immune response. This gave us the opportunity to further validate, advance and standard-
ize our approach in a parallel study with a focus on influenza H3N2-infected NECs ([59],
preprint). In this way, we could validate our choice of IRF9 [12] as an appropriate general
marker for the classical immune system. The usefulness of CoV-MAC-TED to identify simi-
lar and differential early cell responses was strengthened. Both virus types showed early
unbalanced ROS/RNS and temporarily increased aerobic fermentation linked to α-tubulin-
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marked cell restructuring. However, CoV-MAC-TED indicated the absence of initial cell
cycle progression for influenza A H3N2 infections connected to rapid energy-dependent
IRF9-marked immunization. This contrasted our present findings during infections with
both SARS-CoV-2 variants.

In Figure 4, we present a simplified scheme from the results obtained here in hu-
man NECs infected by SARS-CoV-2 for the five main components of CoV-MAC-TED [1]:
ROS/RNS balance shift, represented by ASMTL, SOD1, SOD2, ADH5 and NOS2, [2] gly-
colysis and fermentation, represented by enolase and LDH, [3] structural reorganization
and cell cycle progression and arrest, represented by E2F1, mTOR and α-tubulin, [4] energy
status signaling, represented by SNRK and mTOR, and [5] initiation of the classical immune
system, represented by IRF9. For our conclusions and hypothetical inferences, we consider
the dynamic interplay between virus infection, ROS/RNS signaling, carbohydrate stress
metabolism, aerobic fermentation and cytochrome respiration based on knowledge related
to our recently published insights [11,26] and state-of-the-art knowledge on SARS-CoV-2
infection and general stress biology. Thus, we expect that the indicated increase in oxidative
stress signaled at 8 hpi by ASMTL and ADH5 upon SARS-CoV-2 infection is associated
with rapidly increased sucrose/glucose cell levels that stimulate the Cyt pathway via
enhanced glycolysis, pyruvate production and increased TCA cycling in a way that the res-
piration chain is overloaded by electrons. Consequently, ROS and RNS concentrations
might increase. On the other hand, the Cyt pathway will temporarily be restricted due to
rapidly consumed oxygen. In turn, lactic acid fermentation will be activated. Depending
on the stress level and the amount of sugar and duration of the situation of high-sugar
level, anaerobic glycolysis can reach high turnover during cell reprogramming and a level
of ATP production corresponding to the Warburg effect. Warburg effects are increasingly
recognized as being part of normal physiology [60,61] that enables host cells to rapidly
mobilize energy for host maintenance and stress escape. Bharadwaj et al. [26] suggest that
microbiota can help stress alleviation by forming a sink for sucrose that supports their own
growth. Depending on their nature, this could support symbiotic or parasitic performance.
Viruses are parasitic structures. These structures are supposed to profit from the mobilized
high energy favored by the thermodynamic conditions of their replication. However, in
the case of SARS-CoV-2, our results indicate that during the first hours post-infection (8 hpi
to 24 hpi), rapidly available energy is consumed first for cell cycle progression (E2F1, mTOR
and α-tubulin signaling) and only from around 24 hpi energy is increasingly used for virus
replication (Figure 2). This might signal during the early hours after infection stress (ob-
served at 8 hpi by highly increased ASMTL and ADH5 transcription) relieve to the host cell
(low oxidative stress indicated by ASMTL, SOD1 and SOD2), lower sugar concentration
(less glycolysis combined with lower degree of fermentation observed from 24 hpi) and,
thus, enable the normalization of TCA cycling and a decrease in energy depletion as it is
SNRK-signaled after 24 hpi at 72 hpi before the expected burst of the classical immune
system. However, the change for ROS/RNS in favor of NO production at 24 hpi, when
virus replication starts, points to a ‘non-normal’ unbalanced situation.
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5. Conclusions

The high relevance of metabolism-driven, early cell re-organization that we observed
by studying CoV-MAC-TED in infected primary target cells for two respiratory viruses,
SARS-CoV-2 and influenza A H3N2, stimulates re-thinking of our current understanding
of the immunological system and its determinants. Future anti-viral effective therapeutic
strategies should, in our view, combine more sensitive diagnostic tools for rapid virus
identification with the early targeting CoV-MAC-TED components to reach an effective
individual treatment. Lower transcript levels for enolase and LDH observed at 24 hpi for
cells/cell cultures from one origin linked to delayed virus replication might point to a
strategic target for combating the early initiation of SARS-CoV-2 replication by blocking
the Warburg effect and its link to cell cycle progression. In vitro-cultured human nasal
epithelial cells proved to be appropriate for standardized transcriptome data collection
in the ‘ReprogVirus Platform’. Thus, this cell system is highly promising to advance
integrative data analyses with the help of artificial intelligence methodologies for designing
anti-SARS-CoV-2/anti-viral strategies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/vaccines9121399/s1, Figure S1: Transcript accumulation of selected ReprogVirus marker
genes in human nasal epithelial cells infected with two SARS-CoV-2 variants at 8 h post infection
(hpi), 24 hpi and 72 hpi, Table S1: RPKM mean values ± SE corresponding to virus infection in nasal
cell on the Figure 1A.
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