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OrtSuite: from genomes to prediction of microbial
interactions within targeted ecosystem processes
João Pedro Saraiva1 , Alexandre Bartholomäus2 , René Kallies1 , Marta Gomes3, Marcos Bicalho1,
Jonas Coelho Kasmanas1,4,7, Carsten Vogt1 , Antonis Chatzinotas1,5,6, Peter Stadler7,8,9,10,11 , Oscar Dias3,
Ulisses Nunes da Rocha1

The high complexity found in microbial communities makes the
identification of microbial interactions challenging. To address
this challenge, we present OrtSuite, a flexible workflow to predict
putative microbial interactions based on genomic content of
microbial communities and targeted to specific ecosystem pro-
cesses. The pipeline is composed of three user-friendly bash
commands. OrtSuite combines ortholog clustering with genome
annotation strategies limited to user-defined sets of functions
allowing for hypothesis-driven data analysis such as assessing
microbial interactions in specific ecosystems. OrtSuite matched,
on average, 96% of experimentally verified KEGG orthologs in-
volved in benzoate degradation in a known group of benzoate
degraders. We evaluated the identification of putative synergistic
species interactions using the sequenced genomes of an inde-
pendent study that had previously proposed potential species
interactions in benzoate degradation. OrtSuite is an easy-to-use
workflow that allows for rapid functional annotation based on a
user-curated database and can easily be extended to ecosystem
processes where connections between genes and reactions are
known. OrtSuite is an open-source software available at https://
github.com/mdsufz/OrtSuite.
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Introduction

In environments where microorganisms play a crucial role, the mi-
crobial community functional potential encompasses the building
blocks for all possible interspecies interactions (Mulder et al, 2001;
Maestre et al, 2012). For example, in environments rich in methane,
microbial communities are dominated by species with genes encoding

proteins involved in methanogenesis (Lyu et al, 2018). Soil microbes,
especially those in the rhizosphere, are genetically adapted to support
plants in the resistance against pathogens and tolerance to stress
(Mendes et al, 2018). In this context, natural ecosystems are pop-
ulated by an enormous number of microbes (Locey & Lennon, 2016).
For example, soil environments can contain more than 1010 or-
ganisms per gram of soil heterogeneously distributed making a
global search for interspecies interactions unfeasible (Raynaud &
Nunan, 2014). The exponential increase in high-throughput se-
quencing data and the development of computational sciences and
bioinformatics pipelines have advanced our understanding of
microbial community composition and distribution in complex
ecosystems (Roh et al, 2010). This knowledge increased our ability
to reconstruct and functionally characterize genomes in complex
communities, for example, by recovering metagenome-assembled
genomes (MAGs) (Parks et al, 2017; Tully et al, 2018; Pasolli et al,
2019). Although several tools have been developed to improve the
reconstruction of MAGs, the same cannot be said for predicting
interspecies interactions (Morin et al, 2018). Studies by Parks et al
(2017) and Tully et al (2018), although advancing the reconstruction
of MAGs, did not perform any functional characterization or pre-
diction of interspecies interactions. Pasolli and collaborators
(Pasolli et al, 2019) performed functional annotation of represen-
tative species in their study by using several tools such as EggNOG
(Huerta-Cepas et al, 2017), Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) (Kanehisa et al, 2004), and DIAMOND (Buchfink et al,
2015). However, the sheer number of representative genomes
(4,930) and the lack of focus on specific ecosystem processes make
predicting interspecies interactions challenging.

Furthermore, the challenge of predicting interspecies interac-
tions increases because of the multitude of potential interactions
between species in microbial communities and between microbes
and their hosts (e.g., plants, animals, and microeukaryotes) (Slade
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et al, 2017). An integrated pipeline for annotation and visualization
of metagenomes (MetaErg) (Dong & Strous, 2019) attempted to
address some of the challenges inmetagenome annotation such as
the inference of biological functions and integration of expression
data. MetaErg performs comprehensive annotation and visualiza-
tion of MAGs by integrating data from multiple sources such as
Pfam (Mistry et al, 2021), KEGG (Kanehisa et al, 2004), and FOAM
(Prestat et al, 2014). However, MetaErg’s full genome annotation
requires elevated processing times and computational resources
due to its untargeted approach. In addition, there is a lack of a user-
friendly tool to explore the results tables and graphs to extract
pathway-specific information tied to each MAG and thus infer
potential species interactions based on their functional profiles.

Genome-basedmodeling approaches have routinely been used to
study single organisms as well as microbial communities (Gottstein
et al, 2016). For example, constraint-based models are highly used in
studying and predicting metabolic networks (Heirendt et al, 2019).
These models are generated upon the premise that any given
function is feasible as long as the protein-encoding gene is present.
Although species may lack the genetic potential to perform all
functions necessary to survive in a given ecosystem, outside labo-
ratory conditions, microbes do not exist in isolation and may benefit
from their interaction with other species. By assessing the genomic
content of individual species, we are able to identify groups of
microbes whose combined content may account for complete
ecosystem functioning. However, generating full genome metabolic
networks for each microbial community species is time-consuming
as they require information not easily obtained for each community
member, such as biomass composition and nutritional requirements.

To decrease complexity and facilitate analysis, it is possible to limit
the search of interactions to groups of organisms (e.g., microbe–
microbe or host–microbe) or specific ecosystem processes (e.g.,
nitrification or deadwood decomposition). A network-based tool for
predicting metabolic capacities of microbial communities and in-
terspecies interactions (NetMet) was recently developed (Tal et al,
2020). This tool only requires a list of species-specific enzyme
identifiers and a list of compounds required for a given environment.
However, besides the necessity of previous annotation of genomes,
NetMet does not consider the rules that govern each reaction (e.g.,
protein complexes). Accurate annotation of gene function from
sequencing data is essential to predict ecosystem processes
potentially performed by microbial communities, particularly in
cases where an ecosystem process is performed by the synergy of two
or more species. Simple methods for the annotation of genomes rely,
for instance, on the search for homologous sequences. Computational
tools such as BLAST (Altschul et al, 1990) and DIAMOND (Buchfink et al,
2015) compare nucleotide or protein sequences to those present in
databases. These approaches allow inferring the function of unchar-
acterized sequences from their homologous pairs whose function is
already known. The degree of confidence in the assignment of bio-
logical function is increased if this has been validated by, for example,
experimental data. Approaches based on orthology are increasingly
used for genome-wide functional annotation (Huerta-Cepas et al, 2017).
Orthologs are homologous sequences that descend from the same
ancestor separated after a speciation event retaining the same function
(Koonin, 2005). OrthoMCL (Li et al, 2003), CD-HIT (Li & Godzik, 2006), and
OrthoFinder (Emms & Kelly, 2015, 2019) are just a few tools that identify

homologous relationships between sequences using orthology.
OrthoFinder is more accurate than several other orthogroup infer-
encemethods because it considers gene length in detecting ortholog
groups by introducing a score transformation step (Emms & Kelly,
2015). However, OrthoFinder, because of its all-versus-all sequence
alignment approach, requires intensive computational resources
resulting in long-running times when using large datasets for clus-
tering. Because of the enormous number of potential combinations,
limiting the scope of research to specific ecosystem processes may
reduce the computational and resource costs associated with in-
tegrating ortholog clustering tools and functional annotation
strategies. Still, having a pipeline that performs targeted annotation
of genomes and genomic-based prediction of putative synergistic
species interactions can assist researchers in the discovery of key
players in any metabolic process. Furthermore, the identification of
potential species interactions can lead to the design of synthetic
microbial communities with a wide range of applications such as in
bioremediation (Sharma & Shukla, 2020), energy production (Jiang
et al, 2020) and human health (Clark et al, 2021).

In this study, we developed OrtSuite, a workflow that can (i)
perform accurate ortholog-based functional annotation, (ii) reveal
putative microbial synergistic interactions, and (iii) digest and
present results for pathway and community driven biological
questions. These different features can be achieved with the use of
three bash commands in a reasonable computational time. This
research question/hypothesis-targeted approach integrates a
user-defined, Ortholog Reaction Association database (ORAdb)
with up-to-date ortholog clustering tools. OrtSuite allows the
search for putative microbial interactions by calculating the
combined genomic potential of individual species in specific user-
defined ecosystem processes. OrtSuite also provides a visual repre-
sentation of the species’ genetic potential mapped to each of the
reactions definedby the user.We evaluate thisworkflowusing a clearly
defined set of reactions involved in the well-described benzoate-to-
acetyl-CoA (BTA) conversion. Furthermore, we used this workflow to
functionally characterize a set of knownbenzoate degraders. OrtSuite’s
ability to identify putative interspecies interactions was evaluated on
species whose potential interactions have been previously predicted
under controlled conditions (Fetzer et al, 2015).

Results

One of the motivations to develop OrtSuite was to facilitate the
targeted analysis of microbial communities’ genomic potential,
including the prediction of putative synergistic interspecies in-
teractions. To simplify combining targeted functional annotation
with the prediction of species interactions, we developed OrtSuite
to integrate ortholog clustering tools (Emms & Kelly, 2019) with
sequence alignment programs (Buchfink et al, 2015).

OrtSuite is a flexible and user-friendly pipeline

Three simple-to-use scripts were created to collectively perform all
tasks associated with OrtSuite and provide a user-friendly exe-
cution. Users would only be required to provide a list of identifiers
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related to the ecosystem process of interest and the FASTA files (in
protein format) of the species for which they intend to predict
interactions. Next, the users only need to execute three simple bash
commands that cover database generation, functional annotation,
and species interactions.

Briefly, OrtSuite performs the following processing steps (Fig 1)
(for further details see the Materials and Methods section). Step 1:
In this step, the script DB_construction.sh takes the list of identifiers
provided by the user and automatically downloads the protein
sequences that will populate ORAdb. Step 2: In this step, the script
DB_construction.sh takes the list of KO identifiers obtained during
Step 1 and downloads the gene-protein-reaction (GPR) rules from
KEGG modules. Step 3: In this step, the function orthofinder per-
forms the clustering of orthologs. Step 4: In this step, the script
annotate_and_predict.sh takes as input the FASTA files containing
the ORFs of the genomes of interest and performs functional
annotation (aligning them against the sequences in ORAdb). Step 5:
In this step, the script annotate_and_predict.sh performs the
prediction of putative synergistic interspecies interactions (Fig 1)
using the output file “Reactions_mapped_to_species.csv” gener-
ated during Step 4. Although not necessary, additional control is

given to the user with the option to establish thresholds in the
minimum e-values (during sequence alignment of sequences in
ortholog clusters to ORAdb). Other constraints include restricting
the number of putative microbial interactions based on the
presence of transporters and subsets of reactions to be performed
by individual species (Table S1). Data in public repositories continue
to be added or updated. Thus, manual inspection of the files in the
ORAdb and GPR rules, although not mandatory, is strongly advised.

Users can choose from two alternatives to install OrtSuite. They
may use a docker image for personal computers or conda packages
(recommended for installation for High-Performance Computers).
We created a user-friendly git repository (https://github.com/mdsufz/
OrtSuite) that provides users with a user-friendly guide covering the
installation and the three scripts used to run our pipeline and the
generated outputs.

Computing time of OrtSuite stages

We evaluated the runtime of each OrtSuite step on a set of genomes
whose genomic potential in converting benzoate to acetyl-CoA was
known (Table 1). OrtSuite was executed on a laptop with four cores

Figure 1. OrtSuite workflow.
OrtSuite takes a text file containing a list of identifiers
for each reaction in the pathway of interest supplied by
the user to retrieve all protein sequences from KEGG
Orthology and are stored in ORAdb. Subsequently,
the same list of identifiers is used to obtain the gene-
protein-reaction (GPR) rules from KEGG modules (Task
1). Protein sequences from samples supplied by the
user are clustered using OrthoFinder (Task 2). In Task 3,
the functional annotation, identification of putative
synergistic species interactions and graphical
visualization of the network are performed. The
functional annotation consists of a two-stage process
(relaxed and restrictive search). Relaxed search
performs sequence alignments between 50% of
randomly selected sequences from each generated
cluster. Clusters whose representative sequences
share a minimum E-value of 0.001 to sequences in the
reaction set(s) in ORAdb continue to the restrictive
search. Here, all sequences from the cluster are
aligned to all sequences in the corresponding reaction
set(s) to which they had a hit (default E-value = 1 × 10−9).
Next, the annotated sequences are further filtered to
those with a bit score greater than 50 and are used to
identify putative microbial interactions based on their
functional potential. Constraints can also be added
to reduce the search space of microbial interactions
(e.g., subsets of reactions required to be performed by
single species, transport-related reactions). In
addition, an interactive network visualization of the
results is produced and accessed via a HTML file.
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and 16 Gigabytes of RAM. We ran all OrtSuite steps on default
settings and recorded the total runtime of each step (Table 2). The
entire workflow was completed in 3 h 50 min, and the longest step
was the construction of the ORAdb, which consisted of 2 h and 47
min which involved. The user can modify the number of cores used
during functional annotation, further decreasing run times.

Higher recall rates during clustering of orthologs with DIAMOND

Point mutations can have a drastic effect on the functional profile
of microbes by altering the expected amino acid composition. Thus,
we evaluated the impact of point mutations during the clustering of
orthologs using OrthoFinder (Emms & Kelly, 2019). OrthoFinder
allows users to choose between DIAMOND (Buchfink et al, 2015),
BLAST (Altschul et al, 1990), and MMSeqs2 (Steinegger & Söding,
2017) as sequence aligners. DIAMOND and BLAST are the most
commonly used sequence aligners. Therefore, we evaluated the
clustering of orthologs these two tools. Nevertheless, the user may
opt for MMSeqs2 as the sequence aligner when using OrtSuite. To
test which of the two sequence aligners (DIAMOND or BLAST)
yielded the best results, we performed ortholog clustering of a
dataset consisting of the original target genomes and a set of
artificiallymutated genomes (Supplementary data - Test_genome_set)
using both aligners. The results showed a 0.01 difference between
BLAST and DIAMOND precision (Table 2). However, DIAMOND
showed a 9.5% higher recall than that observed for BLAST what
suggests DIAMOND may have higher sensitivity in the clustering of
sequences with the same function. All artificially mutated sequences

(even those with mutation rates of 25%) were clustered together
with their non-mutated ortholog. In parallel, we also performed
sequence alignment using National Center for Biotechnology In-
formation’s (NCBI) BLASTp (Madden, 2002) between the protein
sequences of the DNA-mutated and unmutated genes. e-values of
sequence alignments in all species ranged from 0 to 5e−180 and
percentage of identity from 61.32 to 98.84% (Table S2). For validation
of the OrtSuite workflow, clustering of protein orthologs was re-
peated using only the original unmutated 18 genomes and the
default aligner (DIAMOND). We also generated a complete overview
of the results generated during the clustering of orthologs (e.g.,
number of genes in ortholog clusters, number of unassigned genes,
and number of ortholog clusters) (Table S3).

High rate of KEGG annotations predicted by OrtSuite

The third step of OrtSuite consists of performing cluster annotation
in a two-stage process. In the first, only 50% of sequences are used
to align the sequences from ORAdb. Those with a minimum e-value
proceed to the second stage, where all sequences contained in this
cluster will be aligned. At the end, annotation of clusters will take
into consideration additional parameters such as bit scores. To
evaluate the thresholds used in the annotation of ortholog clusters,
we used one relaxed (0.001) and four restrictive (1 × 10−4, 1 × 10−6, 1 ×
10−9 and 1 × 10−16) e-value cutoffs. An overview of the results (e.g.,
number of clusters containing orthologs from ORAdb and number
of ortholog clusters with annotated sequences) is shown in Table
S4. The performance of OrtSuite in the functional annotation of the

Table 1. Species names, strain and abbreviation codes of the genomes used to validate OrtSuite (Supplementary data - Test_genome_set).

Name and strain Abbreviation code KEGG id BTA pathway Accession number Reference

Acinetobacter defluvii WCHA30 adv T05474 P3 CP029389-CP029397 Hu et al (2017)

Arabidopsis thaliana ath T00041 — GCF_000001735 *

Azoarcus sp. KH32C aza T02502 P2 AP012304, AP012305 Junghare et al (2015)

Azoarcus sp. DN11 azd T05691 P2 CP021731 Devanadera et al (2019)

Azoarcus sp. CIB azi T04019 P2 CP011072 Valderrama et al (2012)

Burkholderia cepacia DDS 7H-2 bced T03302 P3 CP007785-CP007787 Jenul et al (2018)

Burkholderia vietnamiensis G4 bvi T00493 P3 CP000614-CP000621 O’Sullivan et al (2007)

Cycloclasticus sp. P1 cyq T02265 P3 CP003230 Wang et al (2008)

Cycloclasticus zancles 78-ME cza T02780 P3 CP005996 Messina et al (2016)

Desulfosporosinus orientis DSM 765 dor T01675 — CP003108 Robertson et al (2000)

Aromatoleum aromaticum EbN1 eba T00222 P2 CR555306-CR5553068 Rabus et al (2016)

Latimeria chalumnae (coelacanth) lcm T02913 — GCF_000225785 *

Magnetospirillum sp. XM-1 magx T04231 P2 LN997848-LN997849 Meyer-Cifuentes et al (2017)

Paraburkholderia aromaticivorans BN5 parb T05169 P3 CP022989-CP022996 Lee et al (2019)

Rhodococcus ruber P14 rrz T05142 P3 CP024315 Peng et al (2018)

Sulfuritalea hydrogenivorans sk43H shd T03591 P2 AP012547 Sperfeld et al (2019)

Staphylococcus sciuri FDAARGOS 285 sscu T05176 — CP022046-CP022047 Mrozik and Labuzek (2002)

Thauera sp. MZ1T tmz T00804 P2, P3 CP001281-CP001282 Suvorova and Gelfand (2019)

The genomic potential, based on the KEGG database, to completely encode all proteins involved in a BTA pathway is identified in the column “BTA pathway” (P1:
anaerobic conversion of benzoate to acetyl-CoA 1; P2: anaerobic conversion of benzoate to acetyl-CoA 2; P3: aerobic conversion of benzoate to acetyl-CoA).
* indicates no literature was found connecting benzoate degradation and the respective species.
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genomes in the Test_genome_set is shown in Table S5. On average,
96% of the annotations assigned by KEGG were also identified by
OrtSuite. The complete list of functional annotation results using
the different e-value cutoffs is available in the Tables S6–S9.
Similarly, we used different e-value cutoffs for testing the mapping
of species with the genetic potential for each reaction (considering
the GPR rules) (Tables S10–S13). The four different e-value cutoffs
used during the restrictive search stage yielded similar results in
terms of annotation. However, the largest decrease in the number
of ortholog clusters that transits from the relaxed search to the
restrictive occurs when using an e-value cutoff of 1 × 10−16 (Table
S4). The difference in computing time between lower and higher
e-value thresholds was negligible (<2 min). Other annotation tools,
such as NCBI’s BLAST tool (Altschul et al, 1990), BlastKOALA
(Kanehisa et al, 2016), and Prokka (Seemann, 2014), can annotate
full genomes, the latter at a relatively fast pace. On average, full
genome annotation of our genomes in the Test_genome_set dataset
using Prokka required 12min on a standard laptopwith 16 Gigabytes
of RAM and four central processing units to complete. BlastKOALA
required approximately 3 h to annotate a single genome. However,
the use of these tools resulted in longer run times or in additional
manual processing of files generated from full genome annotations
for filtering pathways of interest.

Identifying genetic potential to perform a pathway

To test OrtSuite’s ability to identify species with the genetic po-
tential to perform a pathway individually, we defined sets of re-
actions used in three alternative pathways for converting benzoate
to acetyl-CoA (Table S14). Next, we compared the results to the
species’ known genomic content in each alternative pathway (Table
S15). OrtSuite matched KEGG’s predictions in species’ ability to
perform each alternative benzoate degradation pathway in all but
two species, Azoarcus sp. DN11 and Thauera sp. MZ1T. Furthermore,
OrtSuite identified five species capable of performing conversion

pathways not contemplated in KEGG. Azoarcus sp. KH32C, Aroma-
toleum aromaticum EbN1, Magnetospirillum sp. XM-1, and Sulfur-
italea hydrogenivorans sk43H have the genetic potential to perform
both pathways involving the anaerobic conversion of benzoate to
acetyl-CoA, whereas Azoarcus sp. CIB has the genetic potential to
achieve all alternative pathways (except when using an e-value
cutoff of 1 × 10−16). No genes in Thauera sp. MZ1T involved in the
conversion of crotonyl-CoA to 3-hydroxybutanoyl-CoA (R03026) were
identified by OrtSuite; this enzyme is essential for the anaerobic
conversion of benzoate to acetyl-CoA. OrtSuite’s performance
yielded similar results between all tested e-value cutoffs. How-
ever, we observed a higher drop in the number of ortholog clusters
whose sequences are all annotated with the same function when
using an e-value cutoff of 1 × 10−16. Thus, we set the default e-value for
the restrictive search to 1 × 10−9.

Using OrtSuite to predict interspecies interactions

In this study, we tested the ability of OrtSuite in identifying in-
terspecies interactions involved in the conversion of benzoate to
acetyl-CoA where experimental data were available. We assessed
the prediction of synergistic interspecies interactions on a set of
sequenced isolates (Supplementary data - Fetzer_genome_set.zip).
In a previous study (Fetzer et al, 2015), the potential of these isolates
to grow in benzoate were analyzed individually and in combination
under three different environmental conditions. These conditions
were: low substrate concentration (1 g/l benzoate); high substrate
concentration (6 g/l benzoate); and, high substrate concentration
with additional osmotic stress (6 g/l benzoate supplemented with
15 g/l of NaCl). In that study, Fetzer et al (2015) investigated if the
presence or absence of a particular species positively or negatively
affected biomass production. Because under specific conditions,
the presence of a degrader alone was not sufficient for biomass
production, they further analyzed if potential species interactions
could be of relevance. Briefly, Fetzer and collaborators defined
minimal communities for all environmental conditions. Next, they
tested whether the inclusion of other species in a community stim-
ulated biomass production. When co-cultures produced biomass,
the authors suggested the species in those communities had the
potential to synergistically metabolize benzoate (Fetzer et al, 2015).
Using OrtSuite, we aimed to identify which potential species in-
teractions predicted by Fetzer and collaborators (Fetzer et al, 2015)
could result from their combined genetic potential.

Our dataset contained 69,193 protein sequences distributed
across the 12 species, resulting in 59 megabytes of data. More than
84% of all genes were placed in 9,533 ortholog clusters. In addition,
541 clusters were composed of sequences obtained from all 12
species (Table S16). OrtSuite’s annotation stage resulted in 326
ortholog clusters with annotated sequences from ORAdb (Table
S17). The mapping of KOs to each species in the Fetzer_genome_set
is available as supplementary data (Table S18). The genomic po-
tential of each species for aerobic and anaerobic benzoate me-
tabolizing pathways is shown in Fig 2. The complete mapping of
reactions to each species is available in the supplementary data
(Table S19). Based on the 326 ortholog clusters and the GPR rules
(Table S20), five species (Cupriavidus necator JMP 134, Pseudomonas
putida ATCC 17514, Rhodococcus sp. Isolate UFZ (Umweltforschung

Table 2. OrtSuite workflow runtime and clustering performance.

OrtSuite step Runtime

ORAdb construction and Generation of GPR_rules 2 h 47 min

Generation of protein ortholog clusters 54 min

Functional annotation of sequences in ortholog clusters 6 min

Defining putative microbial interactions 3 min

Total 3 h 50 min

Precision (BLAST) 0.63

Recall (BLAST) 0.77

Precision (DIAMOND) 0.64

Recall (DIAMOND) 0.85

The total runtime of each OrtSuite step when analyzing the genomic
potential of species in Test_genome_set dataset in three pathways (P1, P2,
and P3) for the conversion of benzoate to acetyl-CoA (BTA). Steps were
performed with default parameters on a laptop with four cores and 16 GB of
RAM. Pair-wise precision and recall results of OrthoFinder using BLAST and
DIAMOND as an alignment search tool. Clustering was performed on the
Test_genome_set dataset plus the mutated genomes.
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Figure 2. Mapping of the Fetzer genome set to benzoate pathways.
Mapping of the genomic potential of each species from the Fetzer_genome_set dataset to each reaction in aerobic (yellow) and anaerobic (blue) benzoate-to-acetyl-
CoA conversion pathways. Circles highlighted in green represent species that showed biomass growth in medium containing benzoate in the Fetzer study.
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Zentrum), Rhodococcus ruber BU3, and Sphingobium yanoikuyae
DSM6900) contained all protein-encoding genes required to perform
aerobic conversion of benzoate to acetyl-CoA. In the Fetzer study,
Rhodococcus sp. Isolate UFZ and S. yanoikuyae did not show growth
in amedium containing benzoate. The incomplete functional potential
of Comamonas testosteroni ATCC 17713 and P. putida ATCC 17514 to
perform aerobic conversion of benzoate to acetyl-CoA is at odds with
their reported growth as monocultures in the presence of benzoate as
shown in the Fetzer study. The number of species with the genetic
potential for each reaction involved in the aerobic benzoate degra-
dation pathway (P3) is shown in (Table S21). All species with the
complete genomic potential to perform a complete pathway were
excluded when calculating interspecies interactions because they do
not require the presence of others. However, species identified by
OrtSuite with the complete functional potential to perform each de-
fined pathway were also included to compare to the results in the
Fetzer study presented above. A total of 2,382 combinations of species
interactionswere obtainedwhose combined genetic potential covered
all reactions. The complete list of potentially interacting species is
available in the supplementary data (Table S22).

In the anaerobic degradation pathways (P1 and P2), no species
presented the genomic content to encode proteins involved in the
conversion of benzoyl-CoA to Cyclohexa-1,5-diene-1-carboxyl-CoA
(R02451) (Table S23). This reaction requires the presence of a protein
complex either composed of four subunits (K04112, K04113, K04114,
and K04115) or composed of two subunits (K19515 and K19516). The
genomes of the 12 species studied contained all subunits in either
protein complex. Therefore, no species interactions were identified
that would allow the complete anaerobic conversion of benzoate to
acetyl-CoA. In the low substrate environment, OrtSuite identified
826 of 830 (99.5%) species combinations showing growth. In the high
substrate environment, OrtSuite predicted 644 of 646 (99.7%). In the
high substrate + salt stress environment, OrtSuite predicted all 271
(100%) combinations of species exhibiting growth (Table S24).

Discussion

We designed OrtSuite to allow hypothesis-driven and user-friendly
exploration of microbial interactions. Our team achieved this by in-
tegrating up-to-date clustering tools with faster sequence alignment
methods and limiting the scope to user-defined ecosystem processes
or metabolic functions. Using only three bash commands required to
run the complete workflow, OrtSuite is a user-friendly tool capable of
running in a customary computer (four cores and 16 GB of RAM) with
even faster run times when using high-performance computing.

The clustering of orthologs by OrthoFinder using DIAMOND
(Buchfink et al, 2015) showed higher sensitivity and lower runtime
than BLAST (Altschul et al, 1990), which has also been shown by
Hernández-Salmerón and Moreno-Hagelsieb (2020). Furthermore,
low e-values and medium to high identity percentages in the se-
quence alignments between mutated and original genes indicated
that the mutated genes still share enough sequence similarity to
the original protein sequence. These results suggest that mutation
rates of up to 25% of single DNA base pairs will not have an ob-
servable effect on the clustering of orthologs. OrthoFinder’s al-
gorithm removes the gene length bias from the sequence alignment

process, which may also explain why mutated genes were clustered
with the original. Although it has been suggested that most genetic
variations are neutral, changes in single base pairs can have a drastic
effect on protein function (e.g., depending on the location of the
mutation) (Ng & Henikoff, 2006). To this purpose, experimental
functional studies can be used to validate previously unannotated
orthologs. Furthermore, this study case does not consider the dis-
tribution of mutations across species and gene families, which can
also have different effects on the clustering of orthologs (Khanal et al,
2015). Therefore, future studies increasing the rates of DNA base pair
substitutions and other types of mutations and experiments tar-
geting protein function in ortholog clusters are needed.

Next, we aimed to improve and facilitate functional annotation and
predictionof synergisticmicrobial interactions. Exploring thegreatamount
of data generated from full genome annotation of individual species from
complex microbial communities is daunting. This is evident in a study by
Singleton and collaborators (Singleton et al, 2021) where the connection
between structure and function required the analysis of metagenomics
data, 16S, and molecular techniques such as fluorescent in situ hybrid-
ization and Raman spectroscopy. When we looked at functional anno-
tation alone, two challenges arose. First, performing all-versus-all
sequence alignments in complex communities is resource-consuming
(time and computational power). Second, manual inspection of each
annotated genome for target genes or pathways is required. Identifying
interspecies interactions based on the microbe’s complete genomic
potential is also challenging. For example, ecologists increasingly use
network approaches, but selecting the most appropriate approach is not
always straightforward and easy to implement (Delmas et al, 2019). Ort-
Suiteovercomes thesechallengesbyfirstperformingclusterannotation in
a two-stage process and limited to a user-defined set of functions, de-
creasing thenumberof sequencealignmentsnecessary. Theuser-defined
database coupled with the scripts for automated identification of inter-
species interactions contained in OrtSuite decreases the time required to
generate the data and facilitates its interpretation by the user. In
addition, OrtSuite generates a graphical representation of the network
enabling the use of the whole microbial community (Fig 3A–C) (https://
github.com/mdsufz/OrtSuite/blob/master/network_example.png).

OrtSuite not only confirmed all but two of KEGG’s predictions in
species’ ability to perform each alternative benzoate degradation
pathway used in this study but also identified five species capable
of performing conversion pathways not contemplated in KEGG. On
average, an additional 18.3 KO identifiers weremapped to genes not
previously annotated in the species used in this study. Using
e-value and bit score as the filtering criteria rather than sequence
identity, used by KEGG, may explain the increase in functionally
annotated genes. For example, the alignment of a sequence of
Acinetobacter defluvii (adv: AWL30228.1) to the sequences in ORAdb
annotated as K04105 (conversion of benzoate to benzoyl-CoA)
showed high bit scores (200.7) and low e-values (2 × 10−54) but
the identity percentage did not exceed 28.6%. The use of e-values
and bit scores to infer function has been reviewed by Pearson
(2013). Pearson suggests that e-values and bit scores are more
sensitive and reliable than identity percentages in finding ho-
mology because they consider the evolutionary distance of aligned
sequences, the sequence lengths and the scoring matrix.

To test the prediction of putativeFigure synergistic microbial
interactions, we used data from an independent study performed
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by Fetzer and collaborators (Fetzer et al, 2015); hereafter, Fetzer
study. In the Fetzer study, five species showed biomass growth
(estimated by OD at 590 nm wavelength) in a medium containing
benzoate. We evaluated whether these species possessed the
complete genomic content to encode all proteins required for each
benzoate to acetyl-CoA conversion pathway. The remaining seven
species could not grow as monocultures in media with benzoate as
the sole carbon source. Therefore, we evaluated whether the lack of
growth was explained by the absence of essential protein-encoding
genes involved in converting benzoate to acetyl-CoA. The Fetzer
study also showed that, under specific nutrient and stress con-
ditions, total biomass production was influenced by the presence of
non-degrading species. Thus, we evaluated whether putative species
interactions identified by OrtSuite fit the results obtained by in the
Fetzer study. OrtSuite confirmed the functional potential for aer-
obic conversion of benzoate to acetyl-CoA in three of the five
species whose growth in monocultures was observed during
their research. In the Fetzer’s study, S. yanoikuyae (accession
number GCA_903797735.1) and Rhodococcus sp. (accession number

GCA_903819475.1) were not able to grow as monoculture in the
presence of benzoate. However, OrtSuite predicted that both
possessed the functional potential to aerobically convert benzoate
to acetyl-CoA. In their study, growth was considered when OD were
above 0.094. The OD measured for S. yanoikuyae was 0.0916 in a
medium containing 1 g/l of benzoate. The annotation of genes with
the ability to perform the complete aerobic conversion of benzoate
to acetyl-CoA combined with a small difference in OD to the
minimum threshold suggests that S. yanoikuyae can grow, albeit
slowly, on low benzoate containing medium. In the case of Rho-
dococcus sp. Isolate UFZ, the OD was never measured above 0.022
what might indicate another slow-growing species. Another pos-
sible explanation is that although these two species possess the
genes necessary for aerobic benzoate degradation, they are not
active. In Fetzer’s study, the observed growth of C. testosteroni ATCC
11996 and Pseudomonas fluorescens DSM 6290 in the low benzoate
environment was not explained by OrtSuite. To note, benzoate
conversion intermediates were not determined in the Fetzer ex-
periment. Hence, these two species may use reactions or pathways

Figure 3. Example of the interactive network visualization included on OrtSuite results.
(A) The complete network with species is colored by reaction. (B) Species can be highlighted for simple identification. (C) Tooltips on reaction link out the KEGG if the
reaction identifier is given.
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that were not included in the benzoate degradation pathways used
in our study. Despite the presence of benzoate degraders, another
possible explanation as to the unobserved growth in Fetzer’s study
for certain experimental conditions is the lack of tolerance of these
species to high benzoate concentrations. For example, C. necator
growth was stimulated at low benzoic acid concentrations but
inhibited at high concentrations (Wang et al, 2014). In addition, the set
of genes used in our study did not consider the presence of stress-
related factors. To assess these effects, stress-resistance associated
genes and reactions such as those involved in medium acidification
(Kitko et al, 2009) could be added as constraints. Similar results were
obtained when using a high substrate and salt stress medium. Under
these conditions, the presence of benzoate degraders alonemay not
be sufficient to achieve growth. Benzoate degradation has been
shown to decrease in hyperosmotic environments (Bazire et al, 2007).
Therefore, additional constraints such as genes that confer resis-
tance to environmental stressors or adverse conditions sodium
chloride (NaCl) could be included in identifying interspecies inter-
actions under different or changing environmental conditions.

No single species or combination of species possessed the complete
genomicpotential toanaerobically convertbenzoate toacetyl-CoAvia the
two proposed pathways (P1 and P2). Because all growth experiments were
conducted in aerobic conditions, the species in question may only use
benzoate as a carbon source in aerobic environments. To fully explore
all the species potential to convert benzoate, additional degradation
pathways could be checked in the future using a multi-omics approach.
For example, OrtSuite users could potentially integrate the use of (meta)
transcriptomic data during the prediction of interspecies interactions by
excluding species showing no gene expression of the selected pathways.
However, the analysis and integration of (meta)transcriptomic data is not
trivial and would add more levels of complexity to consider (e.g., ex-
pression of a gene can be high but protein be inactive) and is out of
OrtSuite’s scope. Furthermore, the only constraints addedwere related to
the reactions that composedeachpathway. Additional constraints canbe
included in future studies, such as potential mandatory transport-
associated reactions, to increase confidence in the proposed interspe-
cies interactions. Also, species interactions can be manually excluded if,
for instance, antibiotic-producing species are known to inhibit the growth
of others. OrtSuite confirmed that most interspecies interactions (>99%)
identified by Fetzer and collaborators were possible because of their
combinedmetabolic potential to aerobically degrade benzoate to acetyl-
CoA but not under anoxic conditions.

In this study, we ran OrtSuite on a dataset composed of 18 genomes
(Table 1). To determine if this range would be within the number of
genomes in regular microbiome studies, we calculated the average
number ofMAGs fromdifferent studies focusing on their recovery. A study
performed by Parks and collaborators (Parks et al, 2017) analyzed se-
quencing data from 149 projects. Most projects (91%) consisted of less
than 20 samples. On average, they recovered 5.3 MAGs per metagenome.
Work performed by Pasolli and collaborators (Pasolli et al, 2019) on
microbial diversity in the human microbiome recovered, on average, 16
MAGs permetagenomic library. From the 46 studies used in their work, 30
consisted of less than 200 samples. Another study by Tully and collab-
orators focusingonmarineenvironments (Tully et al, 2018) recovered2,631
MAGs from 234 samples (average of 11 MAGs per sample). Our analysis
demonstrates that the average number of MAGs recovered from a
metagenomic library ranges from 5 to 16. Therefore, by using a regular

laptop, users canperform targeted functional annotationand interspecies
interactions predictions using OrtSuite in average-sized metagenomes.

In summary, OrtSuite allows hypothesis-driven exploration of po-
tential interactions between microbial genomes by limiting the search
universe to a user-defined set of ecosystem processes. This is achieved
by rapidly assessing the genetic potential of a microbial community for
a given set of reactions considering the relationships between genes
and proteins. The two-step annotation of clusters of orthologs with a
personalized ORAdb decreases the overall number of sequence
alignments that need to be computed. User-specified constraints, such
as the presence of transporter genes, further reduce the search space
for putative microbial interactions. Users have substantial control over
several steps of OrtSuite: from manual curation of ORAdb, custom
sequence similarity cutoffs to the addition of constraints for inference
of putative microbial interactions. The reduction of the search space of
synergistic interactions by OrtSuite will also allowmore comprehensive
and computationally demanding tasks to be performed. Such as
(Community) Flux Balance Analysis, which depend heavily on genome-
scale metabolic models (Thommes et al, 2019; Ravikrishnan & Raman,
2021 Preprint). As long as links between genes, proteins and reactions
exist, the flexibility and easy usage of OrtSuite allow its application to
the study of any given ecosystem process. Nevertheless, assessing the
functional potential of microbes is just the first step in deciphering
synergistic microbial interactions. Linking the functional potential of
microbial communities to transcriptomic or proteomic data will im-
prove predictions and provide further insights into other types of
microbial interactions.

Materials and Methods

OrtSuite workflow

The OrtSuite workflow consists of three main tasks performed using
three bash commands (Fig 1). The first task consists of generating a
user-defined Ortholog Reaction Association database (ORAdb) and
collecting the GPR rules. This task takes as input a list of KEGG
identifiers which will be used to download all protein sequences
associated with a set of reactions/pathway of interest. Next, all GPR
rules associated with each reaction will be downloaded from KEGG
Modules. In the second task, OrtSuite uses OrthoFinder (Emms &
Kelly, 2015) to generate ortholog clusters. This task takes as input a
folder with the location of the genomic sequences. The third task
consists of the functional annotation of species, identification of
putative synergistic interspecies interactions, and generation of vi-
sual representations of the results.

OrtSuite task 1 (green box, Fig 1): user-defined ortholog-reaction
association database (ORAdb) and GPR rules file

The ORAdb used for functional annotation consists of sets of
protein sequences involved in the enzymatic reactions that com-
pose a pathway/function of interest defined by the user. This
database is generated during the execution of the DB_con-
struction.sh script in OrtSuite, requiring the user to provide:

C A location of the project folder where all results will be stored
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C A text file with a list of KEGG identifiers (one identifier per line)
C The full path to the OrtSuite installation folder

The list of identifiers can be KEGG reactions (RID) (e.g., R11353, R02451),
enzyme commission numbers (e.g., 1.3.7.8, 4.1.1.103) or KEGG ortholog
identifiers (e.g., K07539 and K20941). This file is used by OrtSuite to
automatically retrieve the KEGG Ortholog identifiers (KO) (in case the
identifiers provided are not KO identifiers) and to download all their
associated protein sequences (Kanehisa et al, 2004). OrtSuitemakes use
of the python library grequests, which allows multiple queries in KEGG
and subsequently decreases the time required for retrieving the
ortholog associated sequences. The user-defined ORAdb will be com-
posed of KO-specific sequence files in FASTA format associated with all
reactions/enzymes of interest. Users also can manually add or edit the
sets of reactions and the associated protein sequences in the ORAdb.
This feature is particularly important because many reactions related to
ecosystem processes are constantly being discovered and updated and
might not be included in the latest version of KEGG. In addition, during
the execution of the DB_construction.sh OrtSuite performs the auto-
mated download of the GPR rules from KEGG Modules. This feature is
vital becauseenzymes can catalyzemany reactionswith a single (i.e., one
protein) ormultiple subunits (i.e., protein complexes). We advise users to
manually curate thefinal table to guarantee accurate results despite the
automated process. An example of the final GPR table is shown in the
Supplementary data (Table S20).

OrtSuite task 2 (purple box, Fig 1): generation of protein
ortholog clusters

The second task of OrtSuite, takes a set of protein sequences and
generates clusters of orthologs. This set of protein sequences can
originate from single isolates or from the complete set of protein
sequences recovered from metagenomes or MAGs. Indeed, using
protein sequences from isolates, MAGs, and co-culture experiments
will benefit significantly from OrtSuite’s reduction of the universe of
potential microbial interactions based on the user-defined ORAdb.
Orthology considers that phylogenetically distinct species can share
functional similarities based on a common ancestor (Gabaldón &
Koonin, 2013). Potentially, genes with similar functions will be
grouped together. To perform this task, the OrtSuite pipeline uses
OrthoFinder (Emms & Kelly, 2015). Three sequence aligners are
available in OrthoFinder–DIAMOND (Buchfink et al, 2015), BLAST
(Altschul et al, 1990), and MMSeqs2 (Steinegger & Söding, 2017).
DIAMOND (v0.9.22) is used by default because of its improved trade-
off between execution time and sensitivity (Emms & Kelly, 2019).
This task is performed by running the command orthofinder located
in the installation folder of OrthoFinder. This command takes as
input the full path to the folder containing the protein sequences to
be clustered and the full path to the folder where results are to be
stored.

OrtSuite task 3 (yellow box, Fig 1): functional annotation of
ortholog clusters

The third task of OrtSuite consists of the assignment of functions to
protein sequences contained in the ortholog clusters. Functional
annotation of these clusters consists of a two-step process termed

relaxed and restrictive search, respectively. The goal of the relaxed
search is to decrease the number of alignments required to assign
functions to sequences in the ortholog clusters. Here, 50% of the
sequences from each cluster are randomly selected and aligned to
all sequences associated with each reaction present in the ORAdb.
Only the e-value is considered during this stage. Ortholog clusters
where e-values meet a user-defined threshold to sequences in the
ORAdb proceed to the restrictive search. The default e-value was
set to 0.001, as themain objective of the relaxed search is to capture
as many sequences for annotation as possible while avoiding an
excessive number of sequence alignments. In the restrictive search,
all sequences in the transitioned ortholog clusters are aligned to all
the sequences in the reaction set(s) present in the ORAdb to which
they had a hit during the relaxed search. Again, the query sequence
is only assigned to the function of a reference sequence if the
e-value is below a determined threshold (default 1 × 10−9). Next, an
additional filter is applied based on annotation bit score values
(default 50). Although we established default values for the relaxed
and restrictive search and bit score, the user can define the thresholds
for all individual parameters.

The identification of putative interactions between species is
based on all combinations of bacterial isolates with the genomic
content to perform the user-defined pathway defined in the ORAdb.
The input for this task consists of: (1) a binary table generated at the
end of the functional annotation, which indicates the presence or
absence of sequences annotated to each reaction in the ORAdb in
each species (e.g., Table S10); (2) a set of GPR rules for all reactions
considered (e.g., Table S20); and (3) a user-defined tab-delimited file
where the sets of reactions for complete pathways, subsets of re-
actions required to be performed by single species and transporter-
associated genes (e.g., Table S1) are described. Manual filtering can
beperformed to further reduce the vast amount of putativemicrobial
interactions and increase confidence in the results. For example,
results can be queried for known cross-feeding relationships be-
tween species or interactions that remove toxic compounds. Also,
putative interactions can be removed if they are not biologically
feasible. The user also may have an interest in assessing subsets of
microbial interactions using specific criteria. Therefore, additional
constraints can be applied to the putative microbial interactions,
further reducing the search space. These include the degree of
completeness of a pathway, the number of reactions expected to be
performed by a single species or the presence or absence of trans-
porter genes. In addition, graphical network visualization is also
produced during this step (Fig 3A–C). The graphical network visu-
alization is implemented in R using the packages visNetwork (v2.0.9),
reshape2 (v1.4.3), and RColorBrewers (v1.1-2) but also requires the
pandoc linux library. Graphical visualization was implemented with R
v3.6 but also tested with v4.0. The visualization creates a HTML file
that allows interactive network exploration and provides hyperlinks
to KEGG if available.

All tasks—functional annotation, prediction of putative microbial in-
teractions, and generation of graphical visualizations—are performed by
running thescriptannotate_and_predict.sh included inOrtSuite (https://
github.com/mdsufz/OrtSuite/blob/master/annotate_and_predict.sh).
OrtSuite’s predictions of individual species and combinations of species
with the genetic potential to perform each definedpathway are stored in
text files located in a folder termed “interactions.”
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Conversion of benzoate to acetyl-CoA as a model pathway

We selected three alternative pathways involved in the conversion
of benzoate to acetyl-CoA (BTA) to test the functional annotation
and prediction of putative synergistic microbial interactions using
OrtSuite (Table S14). Two pathways consisted of benzoate’s an-
aerobic degradation to acetyl-CoA via benzoyl-CoA differing only in
the reactions required for transformation of glutaryl-CoA to
crotonyl-CoA (hereafter, respectively, P1 and P2). P1 first converts
glutaryl-CoA to glutaconyl-CoA and then to crotonoyl-CoA, whereas
P2 directly converts glutaryl-CoA to crotonoyl-CoA. One pathway
consisted in the aerobic degradation of benzoate via catechol
(hereafter P3). The complete number of reactions, enzymes, KO iden-
tifiers and KO-associated sequences in each alternative pathway is
shown in the supplementary data (Table S25).

Species selection for testing functional annotation

To assess the performance of OrtSuite, we selected the transformation
of benzoate to acetyl-CoA as a model pathway and a set of previously
characterized species known to be involved in this pathway (Table 1).
This set of species was divided in two groups. The first group contained
sequenced genomes of species whose ability to convert benzoate
to acetyl-CoA has been demonstrated by KEGG (Kanehisa et al, 2004)
and were selected as positive controls. These species were classified
according to their genomic potential: complete, if all protein-encoding
genes required for a BTA pathway were present in their genome or
partial, if not all protein-encoding genes were present. The second
group consisted of species that lacked all required protein-encoding
genes and were selected as negative controls. In total, we selected 18
species as positive controls. Sevenof themhave the genetic potential to
perform the alternative P2 pathway, eight have the genetic potential to
perform alternative path P3 (positive controls), and none can com-
pletely perform the alternative path P1. To note that species Thauera sp.
MZ1T has the genetic potential to perform P2 and P3 pathways. Four
organisms were selected as negative controls. Using their genomes, we
evaluated the performance of OrtSuite based on precision and recall
rates for clustering of orthologs and the correct functional annotation
of sequences. Also, a set of genomes from the species containing the
genetic potential to degrade benzoate (Burkholderia vietnamiensis G4,
Azoarcus sp. CIB and Aromatoleum aromaticum EbN1) were artificially
mutated at the nucleotide level at different rates to determine how
levels of pointmutations in ORFs affected clustering of ortholog groups.

Species selection for validation of putative interspecies
interactions

In a study performed by Fetzer and collaborators (Fetzer et al, 2015),
community biomass production of mono- and mixed-cultures was
assessed in amedium containing benzoate. The authors used these
data to infer potential species interactions. We processed this set
of genomes with OrtSuite to determine the species’ genetic po-
tential to degrade benzoate, either individually or because of their
interaction. Our results were compared with those obtained by
Fetzer and collaborators and used to assess whether potential
microbial interactions could be derived from their combined
genetic potential.

Evaluation of ortholog clustering

We evaluated the clustering of orthologs by measuring the pair-wise
precision and recall. Clustering precision measures howmany pairs of
sequences associated with the same molecular function are grouped
and is calculated by dividing the number of correctly clustered se-
quences by the total number of clustered sequences (Equation (1)).

Clustering precision = correctly clustered sequences=
total number of clustered sequences;

(1)

where correctly clustered sequences refer to the pairs of sequences
that share the same function and are clustered together and total
number of clustered sequences refers to all pairs of sequences that
are clustered together irrespective of sharing the same function.

Clustering recall measures how many pairs of sequences with
the same molecular function are not clustered together. Recall is
calculated by dividing the number of correctly clustered sequences
by the total true sequence clusters (Equation (2)).

Clustering recall = correctly clustered sequences=
total true sequence clusters;

(2)

where correctly clustered sequences refer to the pairs of sequences
that share the same function and are clustered together and total
true sequence clusters refers to all pairs of sequences that have the
same function.

Evaluation of sequence aligner used for clustering of orthologs

Changes of a single DNA base can produce a different amino acid,
which might result in a different protein. To determine the impact of
mutations on the clustering of orthologs a single gene from three
species was artificially mutated at different rates. These mutations
were introduced in the nucleotide sequences of each gene. Only
substitutions were considered because these are the most com-
monly studied (Lynch, 2010), and none of themutations were allowed
to occur on the first and last codon. When, during the mutation, new
stop or/and start codons were introduced, the translation was made
for all the possible proteins and the largest was selected.

Burkholderia vietnamiensis G4 was mutated on the gene K05783,
Azoarcus sp. CIB on the gene K07537 and Aromatoleum aromaticum
EbN1 on the gene K07538. Each gene was mutated at rates of 0.01,
0.03, 0.05, 0.1, 0.15, and 0.25. Each mutation rate resulted in an in
silico strain of the original genome (e.g., Burkholderia vietnamiensis
G4 strain K05783_25, where “K05783” is the KEGG ortholog identifier
and “25” is the rate of mutation). A total of 18 strains were generated
(six in silico mutated strains per genome). The complete set of
original and artificially mutated genomes is available in a com-
pressed file (Supplementary data - Test_genomes_set.zip).

Evaluation of functional annotation

Functional annotation was evaluated based on the data collected
from KEGG (Altschul et al, 1990). Annotation performance is calculated
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by dividing the number of matching annotated sequences by the
total number of annotations (Equation (3)).

Annotation performance = matching annotated sequences=
total number of annotations;

(3)

where matching annotated sequences refers to the number of
sequences annotated by KEGG annotations predicted by OrtSuite
and total number of annotations refers to the all sequences that
were assigned a function by KEGG.

Evaluation of microbial interaction predictions

We evaluated the prediction of putative microbial interactions using a
genome set from an independent study (Fetzer et al, 2015) containing
species with exhibited growth in medium containing benzoate (de-
fined as Fetzer_genome_set). The authors do not identify specific
potential interactions in the transformation of benzoate but infer
interspecific interactions in an environment containing benzoate as
themajor carbon source. For the complete set of species combinations
and benzoate degradation capabilities and effects identified by Fetzer
and collaborators, see Fetzer et al (2015) (Table S24).

Bacterial cultures and sequencing
Bacterial cryo-cultures of the different isolates were revived on LB agar
plates. Single colonies were picked and grown overnight in 2 ml LB
medium at 37°C. The cells were pelleted by centrifugation. Cells were
lysed and genomic DNA was extracted using a Nucleospin Tissue Kit
(Machery and Nagel). Approximately 150–1,000 ng of DNA were used for
fragmentation (insert size: 300–700 bp) and sequencing libraries were
prepared following theNEBUltra II FSKit protocol (NewEnglandBiolabs).
Librarieswerequantifiedusinga JetSeqLibraryQuantificationLo-ROXKit
(Bioline) and quality-checked by Bioanalyzer (Agilent). These libraries
were sequenced on an Illumina MiSeq instrument with a final con-
centration of 8 PM using the v3 600 cycles chemistry and 5% PhiX.

Genome assembly and open reading frame prediction
The sequenced readswere quality-checked using TrimGalore v0.4.4_dev.
Next, genomes were assembled using the Spades Assembler v3.15.2 and
their quality assessed using CheckM. Taxonomic classification was
performed using Genome TaxonomyDatabase (GTDBTk) release 95. ORFs
were predicted using Prodigal v2.6.3. Translation of sequences to amino
acid format was performed using faTrans from kentUtils (https://
github.com/ENCODE-DCC/kentUtils/tree/master/src/utils/faTrans).

Data Availability

The datasets and computer code produced in this study are
available in the following databases:

C The genomes used to test the workflow are available at National Centre
for Biotechnology Information (https://www.ncbi.nlm.nih.gov/) under the
accession identifiers CP029389-CP029397, GCF_000001735, AP012304,
AP012305, CP021731, CP011072, CP007785-CP007787, CP000614-
CP000621, CP003230, CP005996, CP003108, CR555306-CR5553068,

GCF_000225785, LN997848-LN997849, CP022989-CP022996,
CP024315, AP012547, CP022046-CP022047, and CP001281-
CP001282.

C The genome assemblies used to predict interspecies interactions are
available at National Centre for Biotechnology Information (https://
www.ncbi.nlm.nih.gov/) with the study accession PRJEB38476:
(https://www.ncbi.nlm.nih.gov/bioproject/648592).

C OrtSuite scripts: GitHub (https://github.com/mdsufz/OrtSuite).

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202101167.
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