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Abstract: The role of intestinal permeability (IP) markers among children and adults with food
allergies is not fully understood, and the identification of biological indicators/markers that predict
growth retardation in children with allergic diseases and atopy has not been well explained. Studies
have shown that patients with atopic diseases respond abnormally to food allergens. Accordingly,
differences in the types of immune complexes formed in response to antigen challenges are significant,
which seems to underlie the systemic signs of the food allergy. Increased intestinal permeability
over the course of a food allergy allows allergens to penetrate through the intestinal barrier and
stimulate the submucosal immune system. Additionally, the release of cytokines and inflammatory
mediators enhances the degradation of the epithelial barrier and leads to an improper cycle, resulting
in increased intestinal permeability. Several studies have also demonstrated increased permeability
of the epithelial cells in those afflicted with atopic eczema and bronchial asthma. Ongoing research is
aimed at finding various indicators to assess IP in patients with atopic diseases.
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1. Introduction

A considerable increase in the incidence of allergic diseases has been observed in
recent years. They constitute one of the most serious health issues in developed countries
and affect both the pediatric and adult populations. Data show that the proportion of
patients with atopic diseases is as high as 40%, and this is a growing trend [1]. The cause
of increasing allergy cases are mostly environmental factors, which have a significant
impact on the composition of gastrointestinal microorganisms. Currently, the intestinal
microbiota is considered to be the largest and most active component of the intestinal
barrier and is necessary for the optimal development of immune tolerance and the function
of the immune system. The intestinal microbiome develops for approximately the first
1000 days of life, including the prenatal period and about 2 years after birth. Therefore,
factors that influence the development of the microbiome and reduce the risk of allergy
are strongly emphasized: natural birth, breastfeeding, contact with nature, having pets,
appropriate diets (e.g., high-fiber food, fermented products, home-made food), as well
as the consumption of probiotics and prebiotics [2,3]. They have a strong effect on the
development of the gastrointestinal microbiome, e.g., on the condition of intestinal mucosa
and the programming of the child’s immature immune system [3].

Normal functioning of the intestinal mucosa is very important for health because
it is a physiological functional unit that separates the intestinal lumen from the inner
environment of the body and performs protective, nutritional and immune functions [4].
The intestinal mucosa is mainly responsible for maintaining the balance between the
absorption of nutrients and ions, fluid secretion, protection from microorganisms, as well
as food toxins and antigens in the intestinal lumen. Due to its complexity, the intestinal
mucosa is highly sensitive to environmental and alimentary factors. It becomes damaged
in the case of overexposure, leading to increased intestinal permeability. Compromised
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functioning of the intercellular junctions in the intestinal wall results in a complete or
partial loss of control over the agents that penetrate the bloodstream [3,4].

2. Intestinal Barrier
2.1. Characteristics of the Intestinal Barrier Structure

The intestinal barrier is a physiological functional unit that separates the intestinal
lumen from the inner environment of the body. It is composed of a mucus layer that
contains microorganisms present in the intestinal lumen, intestinal epithelium and the cells
of the blood, lymphoid, immune and nervous systems [4].

2.2. Mucus Layer

The mucus layer is the first line of defense for the intestinal barrier. It prevents various
microorganisms from adhering to and penetrating through the intestinal wall. It consists of
an inner and outer layer [4].

2.3. Outer Mucus Layer

The outer mucus layer of the intestinal barrier is rich in antibacterial peptides (syn-
thesized by the Paneth cells) and immunoglobulin A (produced by the plasma cells). It is
also the natural habitat of many microorganisms. These are the largest and the most active
components of the intestinal barrier. The microbiota is a group of microorganisms that
colonize the human body. The intestinal microbiota consists of all the microorganisms that
colonize the intestines. Accordingly, the more general term of gastrointestinal microbiota is
applied. In addition, there are skin and respiratory microbiotas. Among all of them, the
intestinal microbiota is the most abundant and diverse [4–6].

2.4. The Intestinal Microbiome

The outer mucus layer of the intestinal barrier is a specific microbiological niche
that creates one of the most dynamic ecosystems containing the most diverse species.
It changes throughout human life and constantly aims to reach a state of equilibrium.
The microbiota of a healthy human body basically consists of anaerobic bacteria and
(additionally, but in smaller amounts) aerobic bacteria, viruses and fungi [4]. Particular
parts of the intestine are colonized by specific populations of microorganisms that compete
for the best environmental conditions and nutrients (which sometimes contain pathogens).
Thus, they are important protective agents as they competitively inhibit the overgrowth of
other microorganisms that are harmful to humans [5,7].

There are over 1500 species of microorganisms in the intestine and their total weight
may reach 1.5 to even 2 kg [6]. We cannot precisely determine the optimal types and
amounts of bacteria which should be present in the human intestine as no standards have
been established. The composition of the intestinal microbiota is strictly individual and is
characterized by large population differences. Interestingly, it has been suggested that the
presence of certain bacterial species may predispose patients to develop certain diseases
such as allergies, obesity, inflammatory bowel disease or cancer [8–10].

In addition to natural birth, breastfeeding, contact with nature, having pets, following
appropriate diets (e.g., high-fiber food, fermented products, home-made food) and the
consumption of probiotics and prebiotics, the optimal microbiome is influenced by the
environment of the developing young person. It is known that the intestinal microbiome is
less diverse in single children compared to children who have siblings [11,12]. Furthermore,
contact with animals is an important factor that has a beneficial effect on the development of
required microbiota [13]. Certain studies show that children who live in rural environments,
where daily contact with animals is typical, the living conditions are not as sterile as in
urban areas and hygiene regimes are not so strict, present more diverse microbiomes which
are more beneficial for their health [4,11–14]. Antibiotic treatments have negative effects on
the development of the microbiome [15]. Increasingly, there are more reports suggesting
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that non-steroid anti-inflammatory drugs and proton-pump inhibitors may also affect the
microbiome [16,17].

The composition of the intestinal microbiota also depends on the methods of feeding
during infancy and early childhood. Human milk contains three groups of agents that mod-
ulate the composition of the intestinal microbiome: prebiotic oligosaccharides, probiotic
living bacteria [18,19] and postbiotics [20]. Postbiotics are products of bacterial metabolism
or components of bacterial cell degradation. They demonstrate health-promoting effects on
the human body [20].

There are many studies concerning probiotic oligosaccharides and their impact on
the development of the intestinal microbiome. A special emphasis is placed on mixed
short-chain galactooligosaccharides (GOS) and long-chain fructooligosaccharides (FOS)
in a 9:1 proportion. Many papers reveal that the use of the above agents in appropriate
proportions in artificial milk products induce and change the profile of infants’ intestinal
microbiomes. These agents aim to achieve the profile characteristics of those observed
in breastfed children (increased amounts of the required Lactobacillus and Bifidobacterium
species have been reported). Moreover, the added product has been observed to benefit
the restoration of microbiological balance following antibiotic treatment [21,22]. Therefore,
supplementation of GOS/FOS in a 9:1 proportion supports immune system function and
reduces the number of infections and allergic diseases (AD, urticaria or wheezing) [23–25].

The intestinal microbiota performs many important functions in the human body,
including protective, metabolic, trophic and immune functions [4]. Immune function is
particularly important when considering antigen elimination. The intestinal bacteria stimu-
late the production of mucins, i.e., glycoproteins which protect the intestinal epithelium
from the invasion of microorganisms and toxins, so they protect the intestinal epithelium
from harmful colonization and the growth of pathogenic bacteria [26]. Therefore, microor-
ganisms in the gastrointestinal system create the first line of defense in the body. They
seal the intestinal barrier, and improve immune tolerance and processes that control the
response to potentially harmful allergens that invade the body. The colonies of bacteria in
the gastrointestinal system are the first to have contact with a child’s immature immune
system and they stimulate the lymphocytes that regulate cytokine balance, i.e., the Treg cells.
Moreover, the intestinal bacteria are responsible for the activation of B cells to synthesize
antibodies, mainly the secretory antibodies (such as immunoglobulin A). The intestinal
bacteria also express proteins (zonulin, occludin) that co-create and modulate the work of
interepithelial junctions [26,27].

The efficient and rapid elimination of antigens is a molecular process that involves the
connection of toll-like receptors (TLRs) located on the intestinal epithelium, on dendritic
cell projections and nucleotide oligomerization domains (NODs) with the structures present
on bacterial cells that trigger the secretion of inflammatory mediators [4,28]. The contact
with antigens results in the stimulation of the signaling pathway that activates the effector
cells of the immune system, including macrophages, NK cells, B cells, helper T cells (Th1
and Th2), cytotoxic T cells and Treg lymphocytes. The Treg lymphocytes regulate the
immune system response and are responsible for the production of interleukin 10 (IL-10),
as well as the synthesis of the transforming growth factor β1 (TGF-β1). In addition, they
maintain the Th1/Th2 cytokine homeostasis and control the development of immune
tolerance in the body [29]. This is particularly important during early childhood, when the
ability of Th1 lymphocytes to produce cytokines (IL-12, IFN-gamma) is compromised and
the cytokine profile of the T cells is initially directed at the production of proallergic Th2
lymphocytes [30].

Current reports suggest that the intestinal microbiome is less diverse in children with
food allergies. In these patients, fewer Bacteroidetes, Bifidobacterium and Lactobacillus colonies
have been observed [31,32]. Importantly, differences in the composition of microbiota
between healthy children and patients with atopic diseases are observed during early
infancy, before the clinical manifestations of the allergy appear. This has been confirmed by
Kalliomaki et al. In their research, they discovered that children with allergies have smaller
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amounts of the Bifidobacterium species and larger amounts of Clostridium bacteria compared
to healthy children without the signs and symptoms of allergic disease [33]. Moreover, it
has been observed that a less diverse intestinal microbiome during the first year of life is
associated with the development of asthma at seven years of age [30,32]. The studies by
Sjögren et al. also show that smaller amounts of Bifidobacterium and Lactobacillus species
may lead to the development of allergies in five-year-old children. Furthermore, children
with allergies are poorly colonized by lactic acid bacteria during early infancy (Lactobacillus
rhamnosus, Lactobacillus casei, Lactobacillus paracasei and Bifidobacterium adolescentis species,
in particular) during early infancy. In their reports, the researchers emphasize the fact that
colonization of the digestive tract by Bifidobacterium and Lactobacillus species brings about
protection from allergies, and they suggest that colonization by Clostridium difficile bacteria
may be associated with the risk of allergy development [30].

In summary, having a more diverse intestinal microflora during the early stages of life
may prevent the development of allergies.

2.5. Inner Mucus Layer

The inner mucus layer is thicker than the outer layer and directly adheres to the
neighboring epithelial cells. This layer is responsible for the hydration of epithelial cells,
the control of regeneration processes and protection from digestive enzymes. The inner
layer mainly consists of glycocalyx, i.e., the carbohydrate layer produced by the goblet cells.
It limits the penetration of antigens into the lamina propria of the intestinal mucosa [4,34].

2.6. Cells of the Blood, Lymphoid, Immune and Nervous Systems

The lamina propria of the mucosa is located under the single layer of epithelial cells. It
forms the intestinal villous stroma and separates the intestinal crypts. The lamina propria
of the mucosa contains a very abundant network of blood and lymph vessels, as well
as nerve fibres. The gastrointestinal system contains mucosa-associated lymphoid tissue
(MALT), a part of which is formed by gut-associated lymphoid tissue (GALT). The GALT
cells are the sites where the immune response is induced and they may be dispersed
within the intestinal epithelium (intraepithelial CD8+ T cells, in addition to plasma cells,
eosinophils, macrophages, mast cells and dendritic cells). Furthermore, they occur as
organized lymphoid tissue and form lymphoid follicles, Peyer’s patches and mesenteric
lymph nodes [35].

3. Intestinal Epithelium and the Structure of Tight Junctions

The most important component of the intestinal barrier is a single layer of epithelial
cells formed by enterocytes. These constitute 80% of the layer [34]. The epithelial layer is
mainly responsible for the process of nutrient absorption. Thus, it influences the develop-
ment of immune system activity, and controls the release of cytokines and the expression
of receptors involved in the immune system response. The following cells are placed
between the epithelial cells: goblet cells, enterochromatophilic cells, Paneth cells and M
cells. The goblet cells secrete mucus, the enterochromatophilic cells release hormones and
neuropeptides, the Paneth cells synthesize defensins and the M cells capture antigens from
the intestinal lumen [36].

The epithelial cells are held together by tight junctions (TJs), adherens junctions and
gap junctions. The key component controlling intestinal barrier permeability are TJs,
which were first described in the 1970s by Farquhar and Paladeand. They are located
on the upper lateral surface of the cell membrane [37]. The TJs are the most important
structures responsible for the integrity and selectivity of the permeable epithelial layer,
e.g., they control the passive transport of water-soluble particles. The TJs are multiprotein
complexes formed by four types of transmembrane proteins: claudins, occludins, junctional
adhesion molecules (JAMs) and tricellulin [38]. Their intracellular domains interact with
one another and with the proteins of the zonula occludens (ZO) (i.e., the cytosolic proteins,
including ZO-1, ZO-2 and ZO-3), that connect with actin filaments (components of the



Nutrients 2022, 14, 1893 5 of 12

enterocyte cytoskeleton). The interaction of occludins, claudins, JAMs and tricellulin with
the cells and ZOs maintains TJ integrity and controls the transport of the particles through
the paracellular space [39]. Molecular structure of the intracellular junction of intestinal
epithelial cells is shown in Figure 1.
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Intestinal barrier damage, i.e., compromised functioning of the intercellular junctions
in the intestinal wall, results in a complete or partial loss of control over the agents that
penetrate the bloodstream [40].

The TJs are structures that are responsible for the integrity and selectivity of the
intestinal epithelium. They are also necessary to maintain balance between particular parts
of the body, as well as between the body and the outer environment. For many years,
research has investigated the factors that may be involved in controlling the functions
of the intercellular junctions of the intestinal wall. Consequently, the effects of tumor
necrosis factor α (TNF-α) and interferon gamma (IFN-γ) on TJ functioning have been
confirmed. Moreover, researchers have demonstrated that myosin light chain kinase
(MLCK) is involved in intestinal barrier regulation with TNF-α. In addition, research has
indicated that MLCK activation itself reduces TJ permeability [41], while IFN-γ increases
intestinal permeability through changes in the expression, distribution and location of the
TJ proteins. IFN-γ is also responsible for cytoskeleton regrouping [42].

The pattern recognition receptors (PRRs), or pathogen recognition receptors, are key
factors in the early innate immune response of the intestine. Toll-like receptors (TLRs)
belong to the class of transmembrane PRRs that are important for the recognition of
pathogens and the coordination of the immune response (TLR2, which identifies the
patterns of both Gram-negative and Gram-positive bacteria, is particularly important
here). In vitro TLR2 stimulation results in the activation of protein kinase C (PKC) and
the movement/translocation of ZO-1 to the TJ complex. This ZO-1 location change is
controlled by the PI3/Akt (phosphatidylinositide 3-kinase and the Akt protein kinase)
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signaling pathway, depending on the MYD88 (myeloid differentiation primary response
88) gene [43].

The proteinase-activated receptors (PARs) belong to the subfamily of the G-protein-
coupled receptors that are activated by N-terminal proteolytic cleavage. The PAR2s are
located on the apical and basolateral sides of the enterocytes. Activation of the basolat-
eral PAR2s leads to increased intestinal permeability, resulting from separation of the
transmembrane proteins, including ZO-1, occludin and actin [44].

Based on the literature data, it is known that claudins are essential components of the
tight junctions that are responsible for intestinal barrier integrity [37]. Alterations in the
structure of these tight junctions (i.e., decreased expression of certain proteins including
claudin-3, claudin-4, claudin-5 and claudin-8) weakens the intercellular junctions and
promotes the development of certain diseases (such as inflammatory bowel disease) [45].
Similar observations concerning the decreased expression of claudin-3 and claudin-4 have
been made among children with celiac disease [46].

Moreover, Al-Sadi R et al. have demonstrated in their animal studies that occludins
are necessary for the inhibition of the intercellular permeability of macroparticles [47].
In a properly functioning epithelial cell layer, occludin is strongly phosphorylated on its
serine and threonine residues, while tyrosine phosphorylation is reduced to a minimum.
In contrast, during the disruption of tight junctions, occludin undergoes dephosphoryla-
tion on its serine and threonine residues, and increased phosphorylation on its tyrosine
residues [48]. Poor expression of this protein has been observed in patients with coeliac
disease or irritable bowel syndrome [46,49].

There is a hypothesis that links increased intestinal permeability to the development
of anti-Saccharomyces cerevisiae antibodies (ASCAs), which are present in both Crohn’s
disease and celiac disease [50,51]. In Crohn’s disease, ASCAs appear to be a stable marker,
whereas in patients with celiac disease, it has been reported that the incidence of ASCA IgA
decreases after the introduction of a gluten-free diet (GFD). Studies also demonstrate that
ASCA can be detected in a significant proportion of untreated celiac patients, regardless of
the degree of mucosal damage [50].

4. Laboratory Diagnosis of the Intestinal Barrier Permeability Disorders

As the intestinal barrier is a very complex structure containing many components,
it is difficult to assess its integrity. Various markers are sought to evaluate the intestinal
permeability among patients with atopic diseases. The current tool is the lactulose:mannitol
(L/M) test which is considered a non-invasive marker for the integrity and permeability
of intestinal mucosa [52–56]. Other tests are also performed to assess the intestinal bar-
rier, including tests with intestinal permeability markers such as zonulin and bacterial
lipopolysaccharides (LPS), and tests that may indicate inflammation, therefore indirectly
indicating increased intestinal permeability, such as the assessment of alpha-1-anti-trypsin
levels [57–59].

5. Allergic Diseases

Over the last 20–30 years, a significant increase in the incidence of atopic diseases,
i.e., asthma, allergic rhinitis and food allergies, has been observed worldwide. Studies
available in the literature confirm that in the general population, the percentage of patients
with atopic diseases is as high as 40%, and it still increasing [1,60]. Atopy is a hereditary
predisposition to an abnormal immunological response to environmental factors that
are neutral for the general population and is manifested by the excessive production of
substance-specific IgE antibodies. On the other hand, an allergy is a specific, unfavorable
reaction for the system that depends on the secondary immunological response to contact
with an antigen [1,60,61].

Studies show that the most common clinical manifestations of allergies observed in
children under three years of age are food allergies, with gastrointestinal and/or skin
complaints. As a result, allergic diseases are an increasingly frequent reason for parents of
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infants and young children to contact their family physician, pediatrician or specialists in
pediatric gastroenterology and allergology [1,2]. Environmental factors, such as excessive
hygiene, air pollution, widespread use of antibiotics, changes in dietary habits, small
families, an increase in caesarean-section births and urbanization are considered to be
causes of the increased incidence of allergies [1,2,60].

According to current literature data, food allergy symptoms are present in over 5% of
the entire adult population, and in nearly 8% of all children. The most common allergens
include foods from the “big eight” group, i.e., cow’s milk, hen’s eggs, soybean, wheat,
peanuts, other nuts (hazelnuts, walnuts), fish and crustaceans [61–63]. Importantly, litera-
ture data confirm that the main allergens causing clinical manifestations in the pediatric
population are cow’s milk protein (2–3% of the entire study population) and egg white
(2–2.5% of the entire study population) [61,64]. These products, especially milk, consti-
tute an important part of the diet during early childhood and are essential for proper
development.

Unfortunately, the only effective method for treating a food allergy is to eliminate
the ingredient responsible for the development of disease symptoms from the child’s diet
and to introduce ingredients with equivalent nutritional properties [65]. The aim of the
elimination diet is primarily to calm the allergic reaction. This leads to the regeneration of
gastrointestinal mucosa and, as a result, the improvement of digestive–absorptive function
in the intestines, the reduction of excessive absorption through the mucosal barrier of
protein antigens from the gastrointestinal lumen and the achievement of food tolerance.
Effective treatment alleviates the disease symptoms until they completely disappear, which
consequently improves the patient’s general condition and enables proper physical develop-
ment [65,66]. In everyday practice, dietary treatment can be extremely difficult, especially
when two or more products are eliminated from the child’s diet, or when elimination diets
are used for a longer period of time. The resulting quantitative and qualitative restrictions
in the composition of macronutrients and micronutrients may then be significant, and may
result in impaired growth and maturation processes [65–68].

6. Pathomechanisms of Atopic Diseases and the Intestinal Barrier

The pathomechanism of atopic disease is significantly associated with an immature
intestinal barrier, which is a subject of current research. The human intestinal barrier
develops gradually during fetal development. Research conducted at the beginning of
the twenty-first century has demonstrated an increase in the intestinal permeability in
premature neonates and infants [69,70]. Such research reveals that the process of intestinal
barrier maturation begins at approximately 38 weeks of gestation and continues after birth
during the neonatal and infant periods. A premature infant is particularly vulnerable to
protein antigens that penetrate the intestinal barrier, which may promote the development
of allergies, especially in genetically predisposed infants [71].

Several studies have linked increased intestinal barrier permeability to food aller-
gies [72,73]. Research has shown that patients with atopic diseases respond abnormally to
food allergens [74]. Accordingly, differences in the types of immune complexes formed in
response to antigen challenges are significant, which seems to underlie the systemic signs
of food allergies [75]. Increased intestinal permeability over the course of a food allergy
allows allergens to penetrate through the intestinal barrier and stimulate the submucosal
immune system (Figure 2). The release of cytokines and inflammatory mediators further
enhances degradation of the epithelial barrier and leads to an improper cycle, resulting in
increased intestinal permeability [76,77].
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Several studies have also demonstrated increased permeability of the epithelial cells
in those afflicted with atopic eczema and bronchial asthma [78,79].

Certain Italian studies demonstrate that the prevalence of celiac disease in atopic
disease is significantly higher than in the general population, and patients with celiac
disease present a significant overexpression of mucosal immunoreactivity [80]. Other
Italian researchers have shown that in a group of more than 1000 patients with celiac
disease (silent or latent form), atopy is the second most common concomitant disease, after
insulin-dependent diabetes [81]. Therefore, atopy should be considered a risk factor, and
patients with atopic disease should be routinely screened for celiac disease using specific
antibodies (IgA EmA or IgA anti-tTG) [80]. The role of intestinal permeability markers
among children with food allergies has not been fully understood, and the identification
of biological indicators/markers that predict growth retardation in children with allergic
diseases and atopy has not been well explained.

There are reports concerning the compromised functions of the tight junctions that
lead to excessive intestinal permeability. These reports underline the role of tight junctions
in the pathogeneses of several acute or chronic diseases in the pediatric population. This is
probably initiated during infancy. Liu at al. provide evidence of tight junction degradation
in such diseases as systemic inflammatory response syndrome (SIRS), inflammatory bowel
disease, type 1 diabetes, bronchial asthma and autism [82].

In the population of patients with food allergies, the most common assessment of
intestinal permeability is based on the lactulose:mannitol test. There are no available
Polish or foreign tests that evaluate the usefulness of other markers, e.g., the bacterial
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lipopolysaccharide (LPS) assay in children with atopic diseases. However, one zonulin
assay in this group of children has been found. The analyses performed by Sheen et al., who
evaluated the role of circulating zonulin in AD development and severity, demonstrated
that serum zonulin concentration was considerably higher among children with atopic
diseases compared to the control group [83].

Studies conducted between 1994 and 2015 that assessed IP levels based on the L/M
test in children and adults with AD have shown increased IP values in this patient
group [52–54]. In addition, research by Järvinen et al. demonstrated increased perme-
ability in approximately 40% of the study subjects with food allergies who were aged over
six years [52]. Similarly, Laudat et al. also assessed intestinal barrier function, but among
infants and young children with food allergies aged 2.3 ± 1.6 years, and they revealed
increased intestinal barrier permeability in this group [53].

The available literature data concerning the evaluation of intestinal permeability in
children with food allergies using the sugar-absorption test confirm the increased intestinal
permeability in patients with these conditions. However, this research methodology may
reduce interest in the L/M test and intensify the search for new methods to assess the
intestinal barrier. The sugar-absorption test is time-consuming, is not standardized and
does not have reference values [55]. Although these tests seem to be sensitive and useful
for intestinal barrier assessment and for diagnosis, markers that do not burden patients and
markers that are safe for their health are required. Perhaps zonulin and LPS will appear to
be good IP markers.

Considering the existing relation between an abnormally functioning intestinal barrier
and the pathogeneses of allergic, autoimmune, neurological or other diseases, access to
intestinal permeability assessment methods, particularly in the pediatric population, seems
to be key for the determination of the risk of disease in the future and even the severity
of the pathological process. The identification of at-risk patients would enable preventive
and diagnostic action, while finding the location of intestinal barrier damage might be
the starting point for appropriate and personalized therapy or probiotic supplementation.
While research on the modulation of intestinal permeability is still in the initial phase, the
results are promising. Thus, it can be said that an increase in intestinal permeability is asso-
ciated with abnormal intestinal mucosa, resulting in compromised nutrient absorption and
digestion, which may lead to an increase in the risk of growth retardation and malnutrition.
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