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Experience with visual stimuli can improve their perceptual performance, a phenomenon
termed visual perceptual learning (VPL). VPL has been found to improve metacognitive
measures, suggesting increased conscious accessibility to the knowledge supporting
perceptual decision-making. However, such studies have largely failed to control
objective task accuracy, which typically correlates with metacognition. Here, using a
staircase method to control this confound, we investigated whether VPL improves
the metacognitive accuracy of perceptual decision-making. Across 3 days, subjects
were trained to discriminate faces based on their high-level identity or low-level
contrast. Holding objective accuracy constant across training days, perceptual
thresholds decreased in both tasks, demonstrating VPL in our protocol. However,
whilemetacognitive accuracy was not affected by face contrast VPL, it was decreased
by face identity VPL. Our findings couldbe parsimoniously explained by a dual-stage
signal detection theory-based model involving an initial perceptual decision-making
stage and a second confidence judgment stage. Within this model, internal noise
reductions for both stages accounts for our face contrast VPL result, while only first
stage noise reductions accounts for our face identity VPL result. In summary, we found
evidence suggesting that conscious knowledge accessibility was improved by the VPL
of face contrast but not face identity.

Keywords: conscious and unconscious memory, face perception and cognition, metacognition, perceptual
learning, memory and learning

INTRODUCTION

The relationship between conscious perception and learning remains a central topic in cognitive
neuroscience (Bayne et al., 2009). This topic has been investigated across various conscious
perception and learning paradigms. For instance, within the visual perceptual learning (VPL)
paradigm, the degree to which subjects improve perceptual performance in a visual task is
dependent on their experience with the stimuli used in the task (Fahle and Poggio, 2002). In relation
to conscious perception, one line of VPL research has investigated whether conscious experience of
visual stimuli is necessary for their VPL, by employing consciously invisible stimuli as the target of
VPL (Watanabe et al., 2001; Seitz et al., 2009). In contrast, another line of research has investigated
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whether VPL improves conscious accessibility to the learned
information supporting its perceptual decision-making.
Addressing the latter, recent studies have found that the VPL
of simple object properties (e.g., shape) improved subjects’
confidence in their perceptual decisions (Schwiedrzik et al.,
2011; Bertels et al., 2012; Schlagbauer et al., 2012). However,
because VPL increased objective task accuracy in these studies,
it remains possible that the improvements in confidence
judgements were a consequence of increased objective accuracy
(Galvin et al., 2003; Maniscalco and Lau, 2012; Barrett et al.,
2013), rather than improved conscious accessibility to the
knowledge supporting perceptual decision-making (see however,
Schwiedrzik et al., 2011).

Here, to address this potential confound, we use an adaptive
staircase procedure to hold objective task accuracy constant
(e.g., 75% correct). Using such procedures, VPL is quantified
as a decrease in the stimulus intensity needed to maintain a
fixed level of task accuracy (Gold et al., 2010). Within this
framework, the critical question now becomes whether or not
VPL improves subjects’ ability to consciously access learned
perceptual information. Assuming that a high confidence rating
that accompanies with a correct decision reflects high degree
of conscious accessibility of information for the decision, we
quantify conscious accessibility as metacognitive accuracy in
a Type-II signal detection task. In a Type-II task, subjects
discriminate their correct from incorrect responses using
confidence ratings (Galvin et al., 2003).

In this paper, we first present a simple model which
simulates a single stage for both perceptual decision-making
and confidence judgements. In this model, we relate stimulus
difference, objective task accuracy (or Type-I performance), and
metacognitive accuracy (or Type-II performance; Figure 1). To
test the prediction of this model, we performed two experiments
where we trained subjects in the VPL of face identity (Experiment
1) or face contrast (Experiment 2). We found that the prediction
of the single-stage model was consistent with the results in
Exp. 2., but not those in Exp. 1. To resolve this inconsistency,
we propose an alternative model, which simulates two separate
stages, one for perceptual decision-making and the other for
confidence judgements, which can account for the results in
both Exp. 1 and 2.

MODEL I: SINGLE-STAGE NOISE
REDUCTION MODEL

Using a framework based on signal detection theory (SDT;
Macmillan and Creelman, 2005), we propose a generative model
that relates stimulus difference and Type-I and II performance
(Figure 1). Firstly, we construct two Gaussian probability density
functions. The functions depend on the strength of stimulus
difference (M), which generates a distribution of hypothesized
internal responses (e.g., neural responses in the brain) for two
response alternatives. In our experimental task, these correspond
to face A and B alternatives (see Exp. 1 and 2 Method). We define
the difference in the means of both distributions as M, with the
mean of the face A and B distributions located at+M/2 and –M/2

from 0, respectively. We assume that as the physical difference
between the two stimulus alternatives increases, the greater
the difference of the internal responses becomes. Furthermore,
we assume that the two distributions have the same standard
deviation (σI), and that subjects adopt an unbiased and optimal
perceptual decision criterion (i.e., a decision criterion value of
zero; Figure 1A).

Based on the value of M and σI (the 2 free parameters
of this model), we generate around 5000 random values for
each response alternative (Figure 1A, Gaussian distributions).
For each random value, we assign a perceptual response (i.e.,
a response of A if a random value is more than the decision
criterion, and a response of B otherwise). We then assign a
confidence rating from 1 to 4 to each perceptual response
according to the distance between a random value to the
decision criterion. Specifically, we took the absolute value of
random values from both A and B response distributions and
calculated the 25th, 50th, and 75th percentiles of the cumulated
distributions from the decision criterion. We then accordingly
assigned confidence ratings (1–4) in equal proportion (25% each)
to random values based on these quantiles (Figure 1B). Thus,
in this model, we assume that perceptual decision-making and
confidence judgements are based on the same signal (Galvin
et al., 2003; Kepecs et al., 2008; Maniscalco and Lau, 2012;
Barrett et al., 2013; Sanders et al., 2016). We term this model the
‘single-stage model’.

Based on perceptual responses and confidence ratings over
10,000 random values, we next compute objective accuracy as the
Area Under the Type-I receiver operating characteristic (ROC)
Curve, and metacognitive accuracy as Type-II Area Under the
ROC Curve (AUC; see Exp. 1 Method). Figure 1C demonstrates
the relationship between Type-I AUC (y-axis) and stimulus
difference, M (x-axis), at 3 different levels of noise (blue, green,
and red for σI = 2, 1.5, and 1, respectively). Figure 1D encodes
Type-I AUC in color-scale (black for 0.5 and white for 1) as a
function of M (x-axis) and σI (y-axis). Psychometric functions
in Figure 1C correspond to the height of the surface plot
in Figure 1D at respective levels of σI , indicated by dashed
horizontal lines (blue, green, and red for σI = 2, 1.5, and
1, respectively).

Figure 1E demonstrates the relationship between Type-II
AUC and M at the same 3 noise levels as Figures 1C,F encodes
Type-II AUC in color-scale as a function of M and σI .

This model clarifies the relationship between stimulus
difference (M) and Type-I and II AUC, and demonstrates
how they are modulated by the internal noise associated with
perceptual decision-making (σI). Firstly, both Type-I and II AUC
monotonically increase as a function of M or σI , when the other
variable is held constant (Figures 1D,F). Indeed, the correlation
between Type-I and II AUC over the 4225 data points (65
levels of M × 65 levels of σI) shown in Figures 1D,F was near
perfect, with a correlation coefficient of 0.99. From this strong
correlation, we can derive a simple prediction about how VPL
would affect both Type-I and II AUC. Consider the hypothesis
that VPL decreases the internal noise (i.e., σI) associated with
perceptual decision-making (Dosher and Lu, 1998). Under this
hypothesis, if we maintain Type-I AUC at 0.8 using a staircase
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FIGURE 1 | Single-stage signal detection model. (A) Internal response probability densities for face A (solid and dashed dark gray) and B (solid and dashed light
gray) alternatives. We assume both distributions are Gaussian with equal variance (σI ). When A and B differ physically in some magnitude in terms of morph distance
in Exp. 1 and contrast difference in Exp. 2, we assume that the distance between the mean of each distribution is M. We further assume an unbiased perceptual
response criterion with a value of zero (black vertical line). From this criterion, we classify perceptual responses as hits (solid dark gray), misses (dashed dark gray),
correct rejections (solid light gray), or false alarms (dashed light gray). (B) To obtain confidence rating for each trial, we first took the absolute value of internal
responses. Then, we assigned confidence ratings (1–4) according to set percentiles (dashed vertical lines; from left to right: 25th, 50th, and 75th percentiles) from
the perceptual response criterion across 10,000 trials. (C) Hypothetical psychometric functions corresponding to Type-I Area Under the Curve (AUC) with different
levels of noise (Blue: σI = 2, green: σI = 1.5, and red: σI = 1). Vertical dashed lines indicate the thresholds at each level of noise to attain Type-I AUC of 0.8 (horizontal
dashed line). (D) Surface plot for Type-I AUC as a function of M and σI, with dashed blue, green, and red lines corresponding to the σI parameters in (C). The white
line in (D) represents the M and σI parameters corresponding to Type-I AUC around 0.8 (0.79–0.81). (E,F) correspond to Type-II AUC with the same format as (C,D),
respectively.

method (as we do in the main experiments), then we should
observe that stimulus difference (M) thresholds should decrease
with VPL (dashed vertical lines in Figure 1C). Furthermore, we
should also observe that Type-II AUC will stay constant (i.e.,

around 0.68) with VPL at the corresponding M values (dashed
vertical lines in Figure 1E), due to the strong correlation between
Type-I and II AUC. In the following two experiments, we will
test this prediction: whether Type-II AUC remains constant
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as subjects are trained to discriminate face identity or face
contrast in a VPL task.

Experiment 1: Face Identity VPL
Method
Subjects
Twenty subjects (13 female and 7 male, Mage = 24.5,
SD = 5.47) were recruited from Monash University and
monetarily reimbursed for their participation. Subjects reported
no history of major medical or psychiatric conditions, and
normal or corrected-to-normal vision. All procedures were
approved by the Monash University Human Research Ethics
Committee, and performed in accordance with the committee’s
guidelines. Signed informed consent was obtained from all
subjects prior to testing.

Stimuli
Four pairs of emotionally neutral, front-facing Caucasian faces
(two female and two male) were generated using Facegen
software (v. 3.0; Singular Inversions). All faces were converted
to grayscale with a black oval mask applied to remove external
features (e.g., ears), before normalizing each face pair on their
luminance and contrast (Willenbockel et al., 2010). Within
the oval mask, faces subtended 9.76 degrees of visual angle
(dva) vertically, and 5.9 dva horizontally (Figure 2B). Morpheus
software (Morpheus Development) was then used to morph
both faces within a pair together by anchoring key features
(e.g., eyes, nose), generating a morph continuum from 100%
of one face (100%:0%), to 100% of the other face (0%:100%),
in 2% increments.

Procedure
Subjects performed an unspeeded ABX task across 3 consecutive
days. In each trial, we presented a given face pair, and required
subjects to judge whether the third face (X) matched the first (A)
or second (B) face’s identity (Figure 2A). Face A and face B were
always derived from a morph between a given face pair. Subjects
simultaneously provided both their perceptual response (X = A
or X = B), and their confidence in this decision from ‘not sure
(1)’ to ‘sure (4)’, via a single mouse click. X was always identical to
either A or B, with equal probability. Subjects were encouraged to
respond as accurately as possible, and to use the entire confidence
scale. No feedback was provided.

All 3 faces (A, B, and X) were presented sequentially for
200 ms each. To avoid biasing fixations toward a particular facial
region (e.g., eyes), each face had a random horizontal leftward
or rightward displacement between 0.78 and 1.56 dva, relative
to the screen’s center. The displacement of the first face (A) was
randomly determined, with the displacement of the remaining 2
faces (B and X) being opposite to the preceding face, such that
only 2 sequences were possible (left (A), right (B), left (X); right
(A), left (B), right (X)). Before the presentation of each face, a
central leftward- or rightward-pointing arrow (200 ms) reliably
cued subjects to each faces’ subsequent displacement. After the
presentation of each face, a Gaussian noise mask (200 ms)
appeared which covered the spatial extent of the preceding face.

The task was programmed and run using the Psychophysics
toolbox extension (Psychtoolbox-3) for Matlab (Brainard, 1997;
Pelli, 1997). Stimuli were presented against a gray background on
a 23-inch screen (1920x1080 pixels, 60 HZ refresh rate), which
subjects viewed from a chinrest placed 75 cm away. Subjects were
given the chance to take a short break after every 160 trials.

We estimated morph distance thresholds (%) corresponding
to 75% accuracy (psychometric slope (β) = 0.1, lapse rate
(δ) = 0.05, probability of a correct guessing response (γ) = 0.5),
using quick estimation of threshold (QUEST; Watson and Pelli,
1983). QUEST implements an adaptive staircase procedure using
Bayesian principles and provides the most probable estimation
of stimulus threshold via a posterior distribution function (PDF).
In each trial, morph threshold estimates (rounded to the nearest
multiple of 2%, with a maximum of 100%) were halved and
subtracted from, and added to, the morph midpoint (50%:50%)
of a particular face pair to select A and B faces along the morph
continuum. The morph distance of A (and B) had an equal
probability of being the midpoint± (threshold/2).

The experiment consisted of three primary phases: Pre-
training, training, and post-training (Figure 3A). There was no
explicit break between each phase within each experimental
session. During pre- and post-training phases, subjects
performed 2 separate blocks involving all 4 face pairs. Each
block consisted of 4 randomly interleaved QUEST staircases,
which followed the standard QUEST procedure (i.e., stimulus
intensity updated from trial-to-trial). For each face pair, a single
staircase (40 trials) was used to independently estimate the
morph threshold that likely resulted in a discrimination accuracy
of 75%. During these pre- and post-training blocks, we did not
estimate Type-I or II AUC as these measures require multiple
trials at a fixed stimulus intensity (see below).

Across 3 consecutive days, we trained half our subjects on face
set 1, and the remaining half on face set 2. Each face set consisted
of a pair of male and female faces (Figure 2B). During daily
training, subjects performed 12 blocks. Each block consisted of 20
trials for one face pair and 20 trials for the other pair (i.e., a total
of 40 trials/block), presented in a randomized order (Figure 3A).

In these training blocks, we held the morph distance between
face A and B constant, so that we could reliably calculate Type-I
and II AUC at a given morph distance for a particular face pair
(Macmillan and Creelman, 2005). After each block, we adjusted
the stimulus intensity for each face pair so that the percentage
correct was kept at around 75% across blocks. To achieve this,
we updated the QUEST estimate of threshold at the end of each
block by supplying the history of each face pair’s morph distance
and response accuracy over the last 80 trials. We defined the most
informative PDF quantile obtained by QUEST as the threshold
estimate for each face pair, and used it for their corresponding
trials in the next training block.

For Day 1, we used the last 80 trials during the pre-training
blocks for a given face pair to estimate its threshold for training
block 1. Then, we used the last 60 pre-training trials and the
20 trials of training block 1 to update the threshold estimate
for training block 2, and so on. For Day 2 and 3, we ran 2
baseline blocks of 80 trials (40 trials per trained face pair), in
which we updated threshold from trial-to-trial using QUEST,
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FIGURE 2 | Task and stimuli of Experiment 1: Face identity matching. (A) In each trial, subjects viewed a sequence of three faces (A, B, and X). Each face was
preceded by a cue corresponding to their on-screen displacement, and followed by a mask. Subjects judged whether the third face matched the identity of the first
or second face, corresponding to 1 or 2 in the response screen (last panel), respectively. Subjects also simultaneously reported the confidence of their perceptual
decision from 1 (not sure) to 4 (sure). (B) Subjects were trained on one face set, and untrained on the other, in a fully counterbalanced manner. Faces were
generated using FaceGen software (v. 3.0; https://facegen.com/).

before subjects completed the 12 training blocks (Figure 3A).
Note that this use of a block-to-block QUEST updating procedure
is quite unlike the standard use of QUEST, in which the threshold
is updated from trial-to-trial, as we did for our baseline, pre-
and post-training blocks. To make this point clear, we show an
exemplar time course of morph distance and response accuracy
for one face pair over the 2 baseline blocks and the first 3 training
blocks, for one subject (Figure 3B).

Data analysis
Pre- and post-training. Pre- and post-training consisted of 2
blocks. Each block involved 4 randomly interleaved QUEST
staircases, with a single staircase (40 trials) for each face pair
(i.e., 2 pre-training and 2 post-training staircases per face pair).
For each QUEST staircase, we updated the threshold estimate
from trial-to-trial. To measure training effects, we assessed the
morph thresholds for all 4 face pairs before and after 3 days
of training, with subjects being trained on only 2 of these face
pairs. For the 40 trials of each staircase, we defined the mode
of its PDF as the threshold (Watson and Pelli, 1983). We then
averaged staircase thresholds from the two corresponding face
pairs to obtain thresholds for the trained and untrained face set
for each subject.

Training. Daily training consisted of 12 blocks. Each block
involved 20 trials for each trained face pair, which were presented
in a randomized order. Within a given block, stimulus intensity
for each face pair was held constant (Figure 3B). For each of
the 12 training blocks, we separately calculated the following
measures for each face pair: threshold, objective accuracy (Type-I
AUC), metacognitive accuracy (Type-II AUC), mean confidence
ratings for correct and incorrect trials, and the variance of
confidence ratings for correct and incorrect trials.

To estimate the threshold for a face pair in a given training
block of 20 trials, we used QUEST to construct a PDF from these
trials, and defined its mode as the threshold (Watson and Pelli,
1983). Note that we only used 20 trials in our offline data analysis
(i.e., threshold, Type-I and II AUC, and confidence ratings), but
we used the previous 80 trials to update stimulus intensity in our
online experiment (Figure 3B).

We calculated objective and metacognitive accuracy using a
receiver operating characteristics (ROC) curve based on SDT.
For objective accuracy, we constructed a Type-I ROC curve,
which reflects the perceptual discriminability between face A
and B independent of response criteria. Given we held stimulus
intensity constant within training blocks, Type-I ROC curves
were independently calculated on a block-by-block basis. To

Frontiers in Psychology | www.frontiersin.org 5 July 2019 | Volume 10 | Article 1712

https://facegen.com/
https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-10-01712 July 22, 2019 Time: 17:18 # 6

Chen et al. Metacognition and Face Perceptual Learning

FIGURE 3 | Task design for Experiment 1. (A) The paradigm consisted of pre-training, training, baseline, and post-training. We used QUEST to update stimulus
difference (intensity) after each trial in pre-training, baseline, and post-training blocks. We trained subjects on a single face set (1 male and 1 female face pair) over 3
consecutive days in training and baseline blocks. In pre- and post-training blocks, which took place immediately before (Day 1) and after (Day 3) training,
respectively, we tested subjects on the trained and untrained face set. (B) Exemplary time course of one of the two trained face pair’s morph distance and response
accuracy for the 2 baseline blocks and the first 3 training blocks for one subject. Green and red circles correspond to correct and incorrect trials, respectively. Note
that we do not show the time course for the other trained face pair. This time course clarifies our trial-to-trial and block-to-block QUEST protocol: We hold morph
distance constant during each training block, and update it based on the previous 80 trials of a given training block. While we used 80 trials for our online QUEST
updating procedure, we used the 20 trials within each training block (with a fixed morph distance) to compute: threshold, Type-I and II AUC, and the mean and
variance of confidence ratings separately for correct and incorrect trials (offline data analysis). We used the same design for Experiment 2.

achieve this, we considered X = A trials as signal present trials,
and X = B trials as signal absent trials. Hits and false alarms were
then estimated by systematically varying the response criterion
in 7 steps. Firstly, we regarded a response as a ‘hit’ when the
signal was present, and subjects reported X = A with the highest
confidence (4). Similarly, we regarded a response as a ‘false alarm’
when the signal was absent, and subjects reported X = A with the
highest confidence (4). We then shifted the criterion to include

X = A responses endorsed with a confidence of 3 and 4, and
likewise classified responses as hits or false alarms depending on
whether the signal was present or absent, respectively. We shifted
the response criterion in this manner until we obtained hits and
false alarms from the highest (4) to lowest (1) confidence ratings
for X = A responses, and the lowest (1) to second highest (3)
confidence ratings for X = B responses to obtain a ROC curve
with 7 inflection points. We use the Area Under the ROC Curve,
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or Type-I AUC, as a non-parametric estimate of objective task
accuracy (Macmillan and Creelman, 2005; Wilimzig et al., 2008;
Kaunitz et al., 2016).

For metacognitive accuracy, we constructed a Type-II ROC
curve, which quantifies the discriminability of correct and
incorrect decisions independent of response criterion. We
decided to implement Type-II ROC curves over meta-d’
(Maniscalco and Lau, 2012) as we found that the parametric
assumptions of meta-d’ were not met when we examined the
Type-I distributions of our participants (see Supplementary
Material). As with Type-I ROC curves, Type-II ROC curves
were also independently calculated on a block-by-block basis,
given stimulus intensity was held constant within training blocks.
To achieve this, we considered trials where perceptual decisions
were correct (i.e., subjects reported X = A in X = A trials,
and X = B in X = B trials) as signal present trials, and trials
where perceptual decisions were incorrect as signal absent trials.
Hits and false alarms were then estimated by systematically
varying the response criterion in 3 steps. Firstly, we regarded
a response as a ‘hit’ when a signal present trial was endorsed
with the highest confidence (4), and a ‘false alarm’ when a
signal absent trial was endorsed with the highest confidence
(4). We then shifted the criterion to include responses endorsed
with a confidence of 3 and 4, and likewise classified responses
as hits or false alarms depending on whether the signal was
present or absent, respectively. We shifted the criterion in this
manner until we obtained hits and false alarms from the highest
(4) to second lowest (2) confidence ratings to obtain a ROC
curve with 3 inflection points. We use the Area Under the
ROC Curve, or Type-II AUC, as a non-parametric estimate of
metacognitive accuracy (Galvin et al., 2003; Wilimzig et al., 2008;
Kaunitz et al., 2016).

For confidence, we separately calculated the mean and the
variance of confidence ratings for correct and incorrect trials.

Statistical analysis
Pre- and post-training. To test whether post-training thresholds
were significantly lower than pre-training thresholds for the
trained and the untrained face set, we used one-tailed Wilcoxon
signed-rank tests.

To estimate the degree of VPL transfer from the trained to
untrained set for each subject, we defined a transfer index (TI)
as [threshold improvement for the untrained set / threshold
improvement for the trained set], with TI = 1 corresponding to
complete VPL transfer, and TI = 0 to no transfer (Bi et al., 2010).
We defined threshold improvement as [(Thresholdpre−training –
Thresholdpost−training)/Thresholdpre−training] × 100%. To test
whether TI was significantly greater than or less than T1 = 0 and
TI = 1, respectively, we used one-tailed one-sample t-tests.

Training. To investigate the effects of daily training on threshold,
Type-I and II AUC, and the mean and variance of confidence
ratings (separately for correct and incorrect trials), we performed
separate linear mixed-effects analyses using lme4 package (Bates
et al., 2015) within R software (R Foundation for Statistical
Computing). We constructed a 2x3 nested mixed design, with
trained face set (i.e., face set 1 or face set 2) as a between-subject
variable, and daily training session (i.e., Day 1 to Day 3) as a

within-subject variable. We modeled daily training session as a
fixed effect. As random effects, we modeled an intercept for each
face set to account for variances in learning effects between the
sets, as well as a by-subject intercept and slope for daily training
session to account for subject variability in learning effects, and
the rate of these effects across training sessions. We performed
likelihood ratio tests between the full model, as described
above, and a reduced model, without daily training sessions
modeled as a fixed effect, to obtain chi-squared statistics and
associated p-values.

Results
The psychophysical results of Experiment 1 are displayed
in Figure 4. From pre- to post-training, morph threshold
significantly decreased for both the trained (Z =−3.51, p< 0.001)
and the untrained (Z = −3.32, p < 0.001) face set (Figure 4A).
Transfer index (see Method) was 0.67 (SD = 1.20), which was
significantly greater than 0 (p = 0.011), but not less than 1
(p = 0.11). This suggests that with training, subjects successfully
demonstrated identity-invariant VPL of face identity.

With daily training, morph threshold steadily decreased,
confirmed by a significant main effect of training on threshold
[χ2(1) = 27.06, p < 0.001; Figure 4B]. As intended by our
QUEST procedure however, no main effect of training on
objective accuracy (Type-I AUC) was observed [χ2(1) = 0.10,
p = 0.75; Figure 4C]. Interestingly, metacognitive accuracy
(Type-II AUC) decreased with training [χ2(1) = 4.52, p = 0.034;
Figure 4D], arguing against improved metacognition as
predicted by our single-stage model (Figures 1E,F). This
decrease in metacognitive accuracy could not be simply
attributed to biases in the use of confidence ratings, as
we found no main effect of training on mean confidence
ratings for correct [χ2(1) = 0.03, p = 0.87] and incorrect
[χ2(1) = 1.29, p = 0.26] trials (Figure 4E), and no main effect
of training on the variance of confidence ratings for correct
[χ2(1) = 0.054, p = 0.46] and incorrect [χ2(1) = 0.24, p = 0.63]
trials (Figure 4F).

In addition to the block-by-block analysis of Type-I and Type-
II AUC reported above, we also tested the robustness of this
finding by performing a secondary analysis where participants’
daily training trials (n = 480 trials) were pooled across training
blocks. We used these pooled trials to compute a single daily
estimate of Type-I and Type-II AUC for each participant using
the same method described in our Data Analysis section,
before testing for any training effects using repeated-measures
ANOVAs. This secondary analysis revealed comparable findings
to our primary analysis, namely a statistically significant decrease
in Type-II AUC with face identity VPL, while Type-I AUC
remained constant (see Supplementary Material).

Experiment 2: Face Contrast VPL
Method
Subjects
Twenty subjects (14 female and 6 male, Mage = 24.9,
SD = 5.24), who did not participate in Experiment
1, were recruited. All aspects of subject recruitment
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FIGURE 4 | Results for Experiment 1. (A) Pre- and post-training effects measured as median morph threshold for trained and untrained face sets before (on Day 1)
and after (on Day 3) training sessions. (∗∗∗ indicates p < 0.001). Threshold significantly decreased with training over 3 days (B), which was accompanied by
decreases in Type-II AUC (metacognitive accuracy, p = 0.015; (D) None of the following changed with training: Type-I AUC for objective accuracy (C), confidence
ratings for correct (solid) and incorrect (dashed) trials (E), and the variance of confidence ratings for correct (solid) and incorrect (dashed) trials (F). All 5 variables
were independently estimated within each training block (see Exp. 1 Method). Error bars denote ± 1 within-subjects SEM (Cousineau, 2005).

were the same as those for Experiment 1. Below,
we describe the methodological differences between
Experiment 1 and 2.

Stimuli
Four emotionally neutral, front-facing Caucasian faces (2 female
and 2 male) that differed in identity to the faces used in
Experiment 1, were generated using FaceGen software. Using

the same method as Experiment 1, each face was converted to
grayscale, and a black oval mask applied (Figure 5B).

Procedure
The following summarizes the changes in Experiment 2. In each
trial, we presented a face of the same identity as A, B, and X,
and required subjects to judge whether the contrast of the third
face matched that of the first or second face (Figure 5A). X was
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FIGURE 5 | Task and stimuli of Experiment 2: Face contrast matching. (A) The task performed by subjects was identical to the task used in Experiment 1, except for
the nature of the face stimuli. (B) Subjects were trained on one face set, and untrained on the other, in a fully counterbalanced manner. Faces were generated using
FaceGen software (v. 3.0;https://facegen.com/).

always identical to either A or B, with equal probability. We define
the contrast of face A, B, and X as their normalized root mean
square (nRMS) contrast. To obtain nRMS contrast, we calculated
the standard deviation of luminance within the oval mask of each
face, and normalized it by their mean luminance (set to 125 cd/m2

for all faces). We chose nRMS contrast based on its reliability
in predicting human contrast sensitivity to natural images (Bex
and Makous, 2002). We estimated nRMS contrast thresholds (in
log scale) corresponding to 75% accuracy using QUEST (β = 3.5,
δ = 0.05, and γ = 0.5). In each trial, we first converted contrast
threshold estimates to linear scale (i.e., 10threshold), before halving
the threshold and subtracting it from, and adding it to, the nRMS
contrast midpoint (0.5 linear scale) for a particular face to derive
the contrast values for A and B faces. The contrast of A (and B)
had an equal probability of being the midpoint± (threshold/2).

For both pre- and post-training phases, subjects were tested on
all 4 faces. During training, we trained half our subjects on face set
1, and the other on face set 2. Each face set consisted of a male and
female face (Figure 5B). In all 3 phases of our task design, each
face was used in place of each face pair in Experiment 1.

Data and statistical analysis
Experiment 2 followed the same data and statistical analysis as
Experiment 1, with the exception of the following changes. In
both analyses, each face was used in place of each face pair in
Experiment 1. Furthermore, estimates of contrast threshold for

each face used the following QUEST parameters: β = 3.5, δ = 0.05
and γ = 0.5.

Data availability
The psychophysical dataset analyzed in Exp. 1 and 2, and
the signal detection models generated in this study, are
available in the Perceptual-learning-metacognition-study
repository: https://github.com/DBenChen/Perceptual-learning-
metacognition-study.

Results
The results of Experiment 2 are shown in Figure 6. From
pre- to post-training, contrast threshold significantly decreased
for both the trained (Z = −2.17, p = 0.015) and untrained
(Z = −2.54, p = 0.006) face set (Figure 6A). Transfer Index
was 0.62 (SD = 1.25), which was significantly greater than 0
(p = 0.02), but not less than 1 (p = 0.09). This suggests that with
training, subjects successfully demonstrated identity-invariant
VPL of face contrast.

With daily training, contrast threshold steadily decreased,
confirmed by a significant main effect of training on threshold
[χ2(1) = 12.62, p < 0.001; Figure 6B]. As intended by our
QUEST procedure however, no main effect of training on
objective accuracy (Type-I AUC) was observed [χ2(1) = 0.28,
p = 0.60; Figure 6C]. Importantly, no main effect of training
on metacognitive accuracy (Type-II AUC) was also found
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FIGURE 6 | Results for Experiment 2. (A) Pre- and post-training effects measured as median contrast threshold for trained and untrained face sets before (on Day 1)
and after (on Day 3) training sessions. (∗ and ∗∗ indicate p < 0.05 and p < 0.01, respectively). Although threshold significantly decreased with training over 3 days
(B), none of the following changed with training: Type-I AUC for objective accuracy (C), Type-II AUC for metacognitive accuracy (D), confidence ratings for correct
(solid) and incorrect (dashed) trials (E), and the variance of confidence ratings for correct (solid) and incorrect (dashed) trials (F). Error bars denote ± 1
within-subjects SEM (Cousineau, 2005).

[χ2(1) = 0.34, p = 0.56; Figure 6D], consistent with improved
metacognition as predicted by our single-stage model
(Figures 1E,F). Similarly, we also found no main effect of
training on mean confidence ratings for correct [χ2(1) = 0.003,
p = 0.96] and incorrect [χ2(1) = 0.12, p = 0.73] trials (Figure 6E),
and no main effect of training on the variance of confidence
ratings for correct [χ2(1) = 2.16, p = 0.14] and incorrect
[χ2(1) = 1.84, p = 0.18] trials (Figure 6F).

As with Experiment 1, we also tested the robustness of
our AUC findings by performing a secondary analysis where
participants’ daily training trials were pooled to compute a single
daily Type-I and Type-II AUC estimate for each participant

(in contrast to the block-by-block method of our primary
analysis). This analysis revealed comparable results to the
primary analysis of Experiment 2, namely both Type-I and
Type-II AUC remaining constant with face contrast VPL (see
Supplementary Material).

MODEL II: DUAL-STAGE NOISE
REDUCTION MODEL

While the metacognitive accuracy result in Experiment 2
was consistent with our single-stage model, the metacognitive
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accuracy result in Experiment 1 was not. The primary reason is
that the single-stage model derives Type-I and II AUC from the
same signal, resulting in a highly correlated Type-I and II AUC
(r = 0.99). To reproduce the dissociation between Type-I and II
AUC in Experiment 1, it is necessary to decrease this correlation
by considering a model where Type-I and II AUC are not derived
from the same signal.

Given recent evidence from studies of metacognition (Pleskac
and Busemeyer, 2010; Ratcliff and Starns, 2013; Cortese et al.,
2016), it is reasonable to assume a first stage for perceptual
decision-making, and a second stage for confidence judgements
that inherits the signals used in perceptual decision-making,
but also receives additional noise. Accordingly, we propose a
different model that follows the same basic architecture and
assumptions of our single-stage model (Figures 1A,B), with the
following exception. Prior to assigning confidence ratings to
internal response values, we added Gaussian noise (mean = 0,
standard deviation = σII , where σII > 0) to the internal responses.
Confidence ratings were then assigned to the noised internal
responses, using the same method as our single-stage model
(Figure 1B). We term this model the ‘dual-stage model’.

In the dual-stage model, we consider the possibility that
VPL reduces the amount of noise (σII) added to internal
responses prior to assigning confidence judgements, independent
of the amount of noise reduction for perceptual decision-making
(σI). The key findings of Experiment 1 to be explained by
this model are: (i) decreased sensory thresholds, (ii) constant
Type-I AUC, and (iii) decreased Type-II AUC (Figures 4B,D).
Figures 7A,B are exemplary modeling results that reproduce the
psychophysical results of Experiment 1. For this, we needed to
assume that VPL decreases the noise associated with perceptual
decision-making (σI), but not the noise associated with
confidence judgements (σII). Figures 7C,D show an example
that reproduces the results of Experiment 2 (Figures 6B–D). To
achieve this, we needed to assume that VPL decreases the noise
for both perceptual decision-making and confidence judgements.

Figure 8 displays a more extensive parameter search
in the dual-stage model and reveals how this model
can disrupt the strong correlation between Type-I and
II AUC. As the amount of σII increases from 0.5, 0.75,
to 1, the correlation coefficient between Type-I and II
AUC decreases from 0.96, 0.92, to 0.89 for Figures 8E
vs. 8F, 8C vs. 8D, and 8A vs. 8B, respectively. Note
that Type-I AUC is unaffected by the addition of
noise (σII) to confidence judgements as the first-order
perceptual discriminations remain intact (i.e., proportion
of hits:(hits+misses), and false alarms:(false alarms+correct
rejections); Supplementary Figure S1).

In our Supplementary Material, we consider a model where
VPL enhances the internal signal magnitude (i.e., a signal
enhancement model; Gold et al., 1999), rather than decreasing
the noise associated with perceptual decision-making (σI).
However, to reproduce the results of Experiment 1, the signal
enhancement model predicts that VPL should increase the noise
associated with confidence judgements (σII). We found this
physiologically implausible and therefore do not consider this
model in further detail.

GENERAL DISCUSSION

We sought to investigate whether or not the metacognitive
accuracy of perceptual decision-making could be improved by
VPL, and whether learned stimulus complexity modulates this
relationship. Across three consecutive days, subjects were trained
to discriminate faces based on either their high-level identity
(Exp. 1) or low-level contrast (Exp. 2). We measured objective
and metacognitive accuracy as Type-I and II AUC, respectively.
To control for objective accuracy during training, we devised a
novel QUEST procedure which updates stimulus intensity only
at the end of each training block, allowing the measurement of
Type-I and II AUC within each block.

Holding objective accuracy constant across training days, we
found that metacognitive accuracy decreased with face identity
VPL (Figure 4D), which could not be attributed to changes
in the mean or variance of confidence ratings (Figures 4E,F).
According to our simple simulations, our face identity VPL result
is inconsistent with a model where perceptual decision-making
and confidence judgements are assumed to occur in a single stage
(Figure 1). In the single-stage model, metacognitive accuracy is
strongly correlated with objective accuracy (r = 0.99). As a result,
Type-II AUC has to remain constant when Type-I AUC is held
constant (Figures 1E,F). In fact, this prediction is consistent with
the results of Experiment 2, in which Type-II AUC remained
constant with face contrast VPL (Figure 6D).

To account for the decrease of metacognitive accuracy with
face identity VPL (Figure 4D), we needed to dissociate Type-
I and II AUC. We found that the correlation between Type-I
and II AUC can be reduced through the introduction of a
separate stage for confidence judgements, which inherits noisy
signals from the perceptual decision-making stage (Figures 7,
8). If we assume that VPL reduces the noise associated with
perceptual decision-making (σI) but not confidence judgements
(σII), we could reproduce the pattern of results we obtained
for Type-I and II AUC with face identity VPL (Figures 7A,B).
Over the larger parameter search space, we confirmed that
greater noise added before confidence judgements disrupted the
strong correlation between Type-I and II AUC. This result is
expected from the architecture of the dual-stage model and
what Type-I and II AUC are supposed to measure: Type-
I AUC is supposed to measure the quality of perceptual
discrimination independent of metacognition. Type-II AUC is
supposed to measure the accuracy of metacognition, which
should degrade if the confidence judgment stage receives noisy
perceptual signals.

Taken together, our results can be interpreted as
demonstrating that when subjects improve the discrimination
of high-level face identity, they do not improve conscious
accessibility to the learned information supporting their
enhanced perceptual decision-making. Conversely, conscious
accessibility to such information is improved after training
subjects to discriminate low-level face contrast. To our
knowledge, this study is the first to obtain such a dissociative
finding. If one presupposes that the processing of high-level
visual properties should be more strongly associated with
the conscious accessibility of information, our findings may
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FIGURE 7 | Dual-stage signal detection model: Psychometric functions. We added Gaussian noise (mean = 0, standard deviation = σII ) to the internal responses in
our single-stage model (Figure 1) prior to assigning confidence ratings. (A) Hypothetical psychometric functions corresponding to Type-I AUC at different levels of σI

noise (blue: σI = 2, green: σI = 1.5, and red: σI = 1) at constant noise for confidence judgements (σII = 1). Vertical dashed lines indicate thresholds at each level of
noise to attain a Type-I AUC of 0.8 (horizontal dashed line). (B) Hypothetical Type-II AUC psychometric function with the same format as (A). (A,B) Correspond to the
results of Experiment 1: Face indentity VPL, where Type-I AUC remained constant (A) but Type-II AUC decreased (B) over 3 training days. (C,D) Type-I and II AUC
psychometric functions where we modulated the noise associated with perceptual decision-making (blue: σI = 2, green: σI = 1.5, and red: σI = 1) and confidence
judgements (blue: σII = 1, green: σII = 0.75, and red: σII = 0.5). (C,D) Correspond to the results of Experiment 2: Face contrast VPL, where both Type-I (C) and II (D)
AUC remained constant over 3 training days.

appear counterintuitive. However, there are some hints in
the literature (Hochstein and Ahissar, 2002; Ahissar and
Hochstein, 2004) that are consistent with our findings, where
the VPL of high-level visual properties are proposed to be
mediated by unconscious mechanisms, while the VPL of lower-
level properties are proposed to involve both conscious and
unconscious mechanisms. If this is the case, this may have
manifested as improvements in conscious accessibility with
low-level face contrast VPL, but not high-level face identity VPL.

In the context of current views of metacognition, our key face
identity VPL finding is not consistent with single-stage models
for perceptual decision-making and confidence judgements
(Galvin et al., 2003; Kepecs et al., 2008; Sanders et al., 2016). As
we have demonstrated (Figure 1), such models should predict a
strong correlation between Type-I and II AUC, and is therefore
inconsistent with our face identity VPL result. With face contrast
VPL on the other hand, metacognitive accuracy improved, which
is consistent with single-stage perceptual decision-making and
confidence models (Galvin et al., 2003; Kepecs et al., 2008;
Sanders et al., 2016). Although one possible interpretation of our
findings as a whole is that low-level VPL improves metacognition
while high-level VPL does not, this requires further research

to address whether these findings can be generalized to other
VPL paradigms. Critical to such investigations is the use of our
VPL protocol, which fixes objective accuracy by updating QUEST
from block-to-block, allowing training effects on metacognitive
accuracy to be reliably measured.

Furthermore, our protocol also addresses a key limitation
within the VPL literature. VPL is generally assumed to produce
knowledge of the learned stimuli that is independent of conscious
experience (Fahle and Poggio, 2002). However, this conclusion
has been largely inferred using objective measures of VPL
performance (Manns and Squire, 2001; Fahle and Daum, 2002),
rather than from subjective measures of VPL performance
(e.g., confidence ratings). By measuring subjective confidence
judgements and holding objective accuracy constant, we found
that face contrast VPL improved metacognitive accuracy,
suggesting subjects were conscious rather than non-conscious of
the knowledge guiding their perceptual decision-making. Thus,
our protocol can be used in future studies to more reliably
investigate the relationship between VPL and consciousness.

In considering our study’s limitations, we acknowledge that
the simulated psychometric functions of our models, which
estimated performance (Type-I and II AUC) at a single stimulus
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FIGURE 8 | Dual-stage signal detection model: Surface plots. Surface plots for Type-I (A,C,E) and Type-II (B,D,F) AUC as a function of M and σI with σII = 1 (A,B),
σII = 0.75 (C,D), and σII = 0.5 (E,F). The white lines represent the points where Type-I AUC is around 0.8 (0.79–0.81). Type-I AUC is unaffected by the addition of
noise (σII ) to confidence judgements as the first-order perceptual discriminations remain intact.

difference, may not fully concur with the empirical estimation
of the full psychometric function (Shen, 2013). Future studies
should therefore seek to measure the full psychometric function,
which may provide further insights into the effects of training on
metacognition (e.g., changes in the slope of Type-II psychometric
functions) which could not be discerned in the present study.
However, if such studies were to be performed, we would
predict that our conclusions here would remain unchanged,
with metacognition improving with the VPL of face contrast
but not face identity. Furthermore, although confidence ratings
have been widely used as an index of conscious information
accessibility (e.g., Galvin et al., 2003; Fleming et al., 2010),
the relationship between confidence ratings and conscious

accessibility remains controversial (Charles et al., 2013; Rausch
and Zehetleitner, 2016). It would therefore be of interest for
future research to attempt to replicate our present findings using
alternative measures of consciousness, such as post-decision
wagering (Sandberg et al., 2010).

In conclusion, we found evidence suggesting that conscious
access to the information supporting perceptual decision-making
is improved by the VPL of a low- but not high-level face property.
Beyond VPL, our study can open new avenues to explore
the relationship between metacognition and other learning
paradigms, such as artificial grammar learning (Scott et al., 2014),
and perceptual learning in non-visual modalities (Ahissar et al.,
2009). Understanding the relationship between learning and
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consciousness in turn, constrains how our conscious experience
is shaped by learned information, a central question in cognitive
neuroscience (Bayne et al., 2009).
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